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Abstract. In an overview of Horizontal Current Bipolar Transistor (HCBT) 

technology, the state-of-the-art integrated silicon bipolar transistors are described 

which exhibit fT and fmax of 51 GHz and 61 GHz and fTBVCEO product of 173 GHzV that 

are among the highest-performance implanted-base, silicon bipolar transistors. HBCT 

is integrated with CMOS in a considerably lower-cost fabrication sequence as 

compared to standard vertical-current bipolar transistors with only 2 or 3 additional 

masks and fewer process steps. Due to its specific structure, the charge sharing effect 

can be employed to increase BVCEO without sacrificing fT and fmax. Moreover, the 

electric field can be engineered just by manipulating the lithography masks achieving 

the high-voltage HCBTs with breakdowns up to 36 V integrated in the same process 

flow with high-speed devices, i.e. at zero additional costs. Double-balanced active 

mixer circuit is designed and fabricated in HCBT technology. The maximum IIP3 of 

17.7 dBm at mixer current of 9.2 mA and conversion gain of -5 dB are achieved. 

Key words: BiCMOS technology, Bipolar transistors, Horizontal Current Bipolar 

Transistor, Radio frequency integrated circuits, Mixer, High-voltage 

bipolar transistors. 

1. INTRODUCTION 

In the highly competitive wireless communication markets, the RF circuits and 

systems are fabricated in the technologies that are very cost-sensitive. In order to 

minimize the fabrication costs, the sub-10 GHz applications can be processed by using the 

high-volume silicon technologies. It has been identified that the optimum solution might 
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be to use a coarser-lithography BiCMOS technology [1, 2], instead of an advanced-

lithography pure CMOS technology [3]. Moreover, the bipolar part should be integrated 

with CMOS with a minimum addition to process complexity, which could make the high-

performance Si/SiGe BiCMOS technologies [4] prohibitively expensive. 

On the other hand, Horizontal Current Bipolar Transistor (HCBT) [5, 6] is a very 

compact structure, outperforming all the existing Lateral Bipolar Transistors (LBTs) [7, 

8]. HCBT is fabricated in a simple technology without the need for the steps that are 

standard in the vertical-current bipolar structures, i.e. without n
+
 buried layer, epitaxial 

growth, base polysilicon layer, emitter-base spacers, collector plug implantation, deep 

trench isolation etc., which makes it attractive for the very low-cost, high-performance 

BiCMOS technology.  

HCBT is invented at the Faculty of Electrical Engineering and Computing, University 

of Zagreb, Croatia, [9, 10] and its characteristics has been improved over 3 generations of 

transistors. At first, the technology concept has been demonstrated by using coarse 

contact lithography having transistors of with cutoff frequency (fT) of 4.4 GHz and 

collector-emitter breakdown voltage (BVCEO) of 15.8 V [11]. In the second generation of 

HCBT, the 0.5 μm stepper lithography has been used reaching fT=30.4 GHz and 

BVCEO=4.2 V which became the fastest lateral bipolar transistor [12, 13]. Finally, HCBT 

has been integrated with CMOS and further optimized having fT=51 GHz and BVCEO=3.4 

V [5, 14], which is among the fastest pure-silicon bipolar transistors reported [15]. 

In this paper, an overview of the most advanced HCBT technology is given, showing all 

the innovative technology steps and specific device effects that have enabled the record-

breaking electrical characteristics. Furthermore, the mixer is demonstrated as an RF circuit 

fabricated in HCBT technology [16], together with high-voltage HCBT structures [17-19], 

which broaden the application spectrum of HCBT BiCMOS technology platform. 

2. HCBT FABRICATION 

The HCBT structure with a single polysilicon region is fabricated by using a 

commercial 180 nm CMOS process, which features dual gate oxide thicknesses of 3 nm 

and 7 nm for 1.8 V and 3.3 V supply voltages, respectively. Both nMOS and pMOS 

transistors are made with 2 versions of threshold voltages (Vth), optimized for high-speed 

and low stand-by power consumption at 1.8 V supply voltage. The CMOS process features 6 

aluminum layers and poly-poly and metal-metal capacitor modules. 

The HCBT fabrication sequence is depicted in Fig.1. The active transistor region is 

processed in the silicon sidewall defined by the Shallow Trench Isolation (STI), which is 

350 nm deep with the sidewall at approximately 80° angle relative to the surface. The 

active sidewalls of HCBT are aligned to (100) crystal direction. After the implantation of 

the CMOS n- and p-wells, the 1
st
 HCBT mask is used for the implantation of the n-hill 

collector region as shown in Fig. 1.a. The n-hill is implanted by phosphorus and consists 

of 3 steps with the energies of 340 keV, 220 keV and 110 keV. Alternatively, the CMOS 

n-well can be used for the collector n-region and the 1
st
 HCBT mask is not needed, 

resulting in the even lower-cost process. 

The CMOS gate polysilicon layer is left at the emitter side of the n-hill at the distance 

of 500 nm (Fig. 1.b), in order to obtain the desirable final shape of the emitter n
+
 

polysilicon region. After the gate polysilicon etching, re-oxidation and source/drain 
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extension implantation for MOS transistors, the extrinsic base is implanted by using the 

2
nd

 HCBT mask (or the 1
st
, if the n-well collector is used), as shown in Fig. 1.b. The edge 

of the mask across the n-hill determines the extrinsic base width (wbext) and the distance 

between the extrinsic base and the n
+
 collector region. The extrinsic base is annealed 

together with the source/drain extensions, which is a CMOS baseline process step. 

The 3
rd

 HCBT mask (or the 2
nd

 in the case of the n-well collector) is used for STI 

oxide etching after the source/drain annealing. The STI oxide is timed etched, as shown in 

Fig. 1.c, defining the trench for the emitter polysilicon region. The thickness of the 

remaining oxide at the n-hill sidewall is around 100 nm. The 10 nm of TEOS oxide is 

deposited next and the 2
nd

 HCBT mask (or the 1
st
 in the case of the n-well collector) is 

used again for the intrinsic base implantation, which is performed at a tilt angle of 30° 

using BF2, as shown in Fig. 1.d. 

The RTA process at 800°C is carried out, followed by the deposition of 450 nm of in 

situ doped amorphous silicon (α-Si) layer as shown in Fig. 1.e. The n
+
 α-Si layer fills the 

emitter trench near the active sidewall and under the CMOS gate. The α-Si is then timed 

etched by Tetramethyl Ammonium Hydroxide (TMAH) and is removed across the wafer 

except in the emitter trench (Fig. 1.f). Since the TMAH etchant is very selective to the 

oxide, the n-hill is protected from etching by a thin layer of oxide grown during the pre-

deposition RTA step, as shown in Fig. 1.e. In this way, the emitter n
+
 region is formed, 

while the base and the n-hill are protected by the thin oxide layer. The CMOS gates are 

protected from TMAH etching by the oxide encapsulation, grown during gate re-

oxidation process. 

The CMOS gate at the emitter side of the n-hill makes it possible to obtain the shape 

of emitter n
+
 α-Si layer with the minimum thickness very close to the active sidewall, as 

can be seen in the TEM cross-sections in Figs. 2.a and 2.b. If the CMOS gate is not used 

(Fig. 3), the emitter α-Si is the thinnest in the middle of the trench, which limits its 

thickness at the active sidewall. Fig. 3.a depicts the marginal case of HCBT without 

CMOS gate, where the emitter contact barely sits on polysilicon, but its thickness at the 

active sidewall is 125 nm. By using the CMOS gate, the emitter polysilicon thickness at 

the active sidewall is 85 nm (Fig. 2.b) and it increases toward the contact. Additionally, 

the use of CMOS gate requires a deposition of thinner polysilicon layer to fill the emitter 

trench, which improves the controllability of the final polysilicon thickness. 
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Fig. 1 Fabrication sequence of HCBT with a single polysilicon region. 
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The CMOS spacers are formed at the n-hill sidewalls above the n
+
 α-Si layer and serve 

to isolate the emitter and base silicides from each other, as shown in Fig. 1.f. Next, the 

source/drain implantation mask of the nMOS transistor is also opened above the n-hill 

and the collector n
+
 region is obtained (Fig. 1.f). The source/drain junction depth is 

around 200 nm, reaching deeper than the extrinsic base junction. The emitter drive-in 

diffusion is performed during source/drain annealing and α-Si layer crystallizes forming 

the emitter n
+
 polysilicon region. The silicide-blocking oxide layer has to be left between 

the extrinsic base and the implanted n
+
 collector in order to prevent the collector base 

shorts, also used in standard CMOS contact processing (Fig. 1.g). The final HCBT 

structure with a single polysilicon layer is shown in Fig. 1.h. 

 

Fig. 2 TEM cross-section of the processed HCBT structures with a single polysilicon 

region: (a) the whole transistor structure with CMOS gate, (b) close-up of the active 

sidewall. The emitter contact is out of the image plane and is hand-sketched. 

 

Fig. 3 TEM cross-section of the processed HCBT structures without CMOS gate: 

(a) excessive n
+
 amorphous silicon etching and removed n

+
 polysilicon under the 

emitter contact, (b) exact n
+
 amorphous silicon etching, but too thick n

+
 polysilicon 

(154 nm) at the n-hill sidewall. 
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3. HCBT ELECTRICAL CHARACTERISTICS 

The electrical characteristics of the HCBT with the optimized collector fabricated by a 

separate implantation are compared with the lower-cost HCBT with CMOS n-well region 

used as collector. The collector profile of the optimized HCBT is designed to obtain a 

uniform electric field in the collector-base depletion region resulting in an optimum trade-

off between the fT and fmax and collector-emitter breakdown voltage (BVCEO). This effect is 

specific to HCBT structure and can be used as an additional technological step to 

optimize transistor characteristics, which will be analyzed further in Section 4.  

The Gummel plots and output characteristics of the optimized and n-well HCBTs are 

shown in Fig. 4 and the electrical parameters are summarized in Table 1. Both transistors 

are optimized for maximum fT and fmax and have a modest current gain (β) of around 70. 

The n-well HCBT has a higher extrinsic base doping level reducing the electron 

component of the base current. The n-well HCBT has BVCEO = 2.8 V, whereas the 

optimized HCBT has BVCEO = 3.4 V, which makes it more suitable for the use in the 

circuit applications with voltage supply of 3.3 V. 
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Fig. 4 Measured DC characteristics of HCBT with a single polysilicon region with  

emitter area 0.1×1.8 μm
2
 with the optimized collector and n-well collector:  

a) Gummel plots, i.e. IB and IC vs VBE, and b) output characteristics, i.e. IC vs VCE. 

Table 1 Electrical parameters of HCBT with the optimized collector and n-well collector 

 optimized n-well 

Emitter area 0.1 x 1.8 μm
2
 

Peak β 72 76 
BVCBO (V) 9.5 8.3 
BVCEO (V) 3.4 2.8 
VA (V), VBE=0.85 V 16 15 
VA (V), IB=5 μA 10 11 
CBC (fF) @ VCB= 1 V 1.1 1.6 
RB (Ω), circle imp. 480 430 
fT (GHz) @ VCE= 2V 51 43 
fmax (GHz) @ VCE= 2V 61 56 
fTBVCEO(GHzV) 173 120 
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The high-frequency characteristics of the optimized and n-well HCBTs are shown in 

Fig. 5. The optimized HCBT has fT and fmax of 51 GHz and 61 GHz, respectively, and 

fTBVCEO product equals 173 GHzV, which is among the highest reported for the 

implanted-base Si BJTs and very close to the theoretical Johnson’s limit [20]. The n-well 

HCBT has fT and fmax of 43 GHz and 56 GHz, respectively. The fT and fmax of n-well 

HCBT fall off at higher currents due to the increased collector concentration. However, 

the peak values are lower for n-well HCBT due to the increased neutral base width and 

due to the effect of charge sharing between the extrinsic and intrinsic base regions, which 

will be explained in more details in Section 4. Peak fT and fmax of n-well HCBT are still 

high enough for wireless applications and it can be used as a low-cost technology. Both 

HCBTs have a small collector-base capacitance (CBC) per emitter length of less than 0.8 

fF/μm, which makes them attractive for low-power circuit applications. 

The Early voltages (VA) of the optimized HCBT are equal to 16 V and 10 V for 

constant VBE and for constant IB, respectively, and 15 V and 11 V for n-well HCBT. Since 

both transistors are optimized for maximum speed, VA for constant IB are relatively low, 

but it can be improved by reducing collector doping level and traded for fT in such a case. 

4. COLLECTOR DOPING PROFILE EFFECT ON ELECTRICAL CHARACTERISTICS 

In standard vertical-current bipolar transistors, the intrinsic and extrinsic base regions 

are formed at the wafer surface next to each other, resulting in classical planar collector-

base pn-junction. On the other hand, in HCBT structure, the extrinsic base p
+
-region and 

the intrinsic base p-region form the angle of approximately 100°, because the extrinsic 

base is implanted at the wafer surface, whereas the intrinsic base is implanted at the n-hill 

sidewall. Hence, the ionized donor charge on the n-collector side of the collector-base pn-

junction is shared between the intrinsic and the extrinsic base acceptors, since the 

collector is surrounded by the extrinsic and intrinsic base regions. Therefore, the 

depletion region has to extend to the collector side and to shrink at the base side to reach 

the charge balance [21], as shown in Fig. 6, reducing the electric field as a result. As a 
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Fig. 5 Cutoff frequency (fT), and maximum frequency of oscillations (fmax) vs. collector 

current (IC), of HCBT with emitter area 0.1×1.8 μm
2
 with the optimized collector 

and the n-well collector, at VCE=2 V. 
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consequence, the intrinsic base is locally wider at the top of emitter reducing the IC, β and 

fT. Hence, the collector doping must be increased just under the extrinsic base to suppress 

the charge sharing effect, i.e. to reduce the neutral base widening and the extension of the 

depletion region.  

In order to examine the effect of collector design and to optimize the HCBT 

characteristics, two structures with different collector doping profiles, as shown in Fig. 7, 

are compared [22]. HCBT with Collector 1 has a steeper doping profile than HCBT with 

Collector 2, i.e. a higher doping concentration at the top of the intrinsic base, just under 

the extrinsic base, where the charge sharing effect is mostly pronounced. A distribution of 

impact ionization rates are simulated and shown in Fig. 8. Non-local impact ionization 

based on lucky electron model with hard threshold energy is used. The peak impact 

ionization rates are 1.4·10
24

 cm
-3

s
-1

 and 7.9·10
24

 cm
-3

s
-1

 for collector 1 (steep n-hill) and 

collector 2 (uniform n-hill), respectively. The HCBT with collector 2 (uniform n-hill) has 

a higher impact ionization rate and it occurs at the bottom of the base, because the current 

density is the highest in this region due to the narrowest neutral base there. Moreover, the 

electric field is reduced at the top of the base due to the charge sharing effect reducing the 

impact ionization rate there. Additionally, the rounded shape of the collector-base 

 

Fig. 6 Simulations of HCBT cross-section showing the potential distribution  

in the collector-base depletion region. 

0 100 200 300 400 500 600

10
17

10
18

Extrinsic

base

Emitter depth

Collector 2: uniform n-hill

Collector 1: steep n-hill

 

D
o

p
in

g
 (

c
m

-3
)

Depth (nm)
 

photoresist

p-substrate

SiO2

( )a

CMOS
Poly

p+

n-hill

p-chan. stop

int. base I/I
photoresist

p

SiO2

( )b

p+

SIC

SIC +
int. base I/I

pn-hill
p

p

A

A’

CMOS
Poly

 

Fig. 7 Measured SIMS (lines) and simulated (symbols) doping profiles of collector 

region along the cross-section AA’, after all of the CMOS annealing steps. 
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depletion region at the bottom of the base causes the reverse charge sharing effect 

increasing the local electric field there. The HCBT with collector 1 (steep n-hill) has a 

smaller impact ionization rate since the doping profile reduces charge sharing effect, and 

also decreases electric field at the bottom of the base. Therefore, impact ionization rate 

does not have a peak as sharp as in uniform collector, but is more uniformly distributed 

along the intrinsic transistor.  

The output characteristics depicted in Fig. 9.a show a lower BVCEO for HCBT with 

Collector 2 (uniform n-hill) corresponding to the higher peak impact ionization shown in 

Fig. 8., and a higher BVCEO for HCBT with steep collector profile due to the more uniform 

electric field and current flow distributions in the collector-base depletion region, and 

reduced impact ionization rate. As shown in Fig. 9.b, fT and fmax are basically equal for 

two collector doping profiles. Therefore, due to the higher BVCEO and equal fT the HCBT 

with collector 1 (steep n-hill) has a higher fTBVCEO product and represents an optimum 

HCBT design. The measured characteristics of HCBT with two different collectors are 

summarized in Table 2. Both transistors are designed to have a higher β comparing to the 

transistors described in Section 3 [5], by reducing the doping levels in the intrinsic base 
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Fig. 8 Cross-sections of the simulated impact ionization rate distribution of HCBT 

structures with: (a) Collector 1 (steep n-hill), (b) Collector 2 (uniform n-hill), at 

VBE=0.7 V and VCE=2 V. 
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Fig. 9 Measured (a) output and (b) high-frequency characteristics of HCBT with a single 

polysilicon region with emitter area 0.1×1.8 μm
2
 with Collector 1 (steep n-hill), 

with Collector 2 (uniform n-hill). 
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and collector and consequently resulting in a lower fT. The HCBT with collector 1 (steep 

n-hill) has a higher collector resistance (RC) due to the lower average collector doping 

level, but it still has a rather small effect on fT and fmax as compared to the neutral base and 

collector-base depletion region time constants. 

Table 2 Measured electrical parameters of HCBT with Collector 1 (steep n-hill), 

Collector 2 (uniform n-hill). 

 Collector 1 Collector 2 

Emitter area 0.1 x 1.8 μm
2
 

Peak β 118 126 

fT (GHz) 34 35 

fmax (GHz) 57 56 

BVCEO (V) 3.6 3.1 

fTBVCEO(GHzV) 122 109 

CBC(fF) VCB=1V 1.8 1.8 

RC (Ω), sat. 590 320 

5. HCBT CIRCUIT DESIGN 

Beside the characterization of transistor-level electrical characteristics, the HCBTs’ 

performance is examined by using them in circuits. For this purpose, a down-converting 

mixer is designed and measured as the first RF circuit fabricated in HCBT technology 

[13]. Mixers are RF building blocks widely used in heterodyne transceivers [23]. Since 

most communication protocols involve an increasing number of users, the frequency 

spectrum is shared by multiple channels. In order to minimize the intermodulation 

distortion, the linearity is a critical parameter of wireless transceivers. Moreover, the 

linearity of radio receivers (also including bandpass filters and low-noise amplifier) are 

typically limited by the IM distortion of the first downconverting mixer [24]. Hence, 

mixer linearity must be as high as possible at a given power consumption, since many of 

applications include portable battery-supplied devices.  

Double-balanced active mixer based on a Gilbert cell shown in Fig. 10.a is designed in 

three different HCBT technologies by using different collector doping profiles: HCBT 1 

(steep n-hill), HCBT 2 (uniform n-hill) and HCBT 3 (CMOS n-well). Gilbert cell mixer 

consists of differential input amplifier (Q1, Q2) cascoded by a commutating circuit (quad) 

made by 4 transistors (Q3 – Q6). Since the IM distortion in such mixer is mainly caused 

by the input differential pair, degeneration resistances (RE) are used to improve the 

linearity. The Local Oscillator (LO) buffer is used to convert the single-ended input to the 

differential signal for Gilbert cell and to provide the voltage swing high enough to switch 

the quad transistors on and off. All subcircuits (Gilbert cell, LO buffer, current source) 

are made with the same HCBTs in 3 different technology versions with different collector 

doping profiles. Power supply voltage is 5 V. All passive components are kept constant in 

all versions of circuits, such that the difference in the circuit performance can be 

attributed to the difference of the used transistors. 
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Fig. 10 Double-balanced active mixer based on a Gilbert cell designed and fabricated in 

HCBT technology: (a) mixer schematic, (b) chip layout and test setup. 

Mixers are measured on-wafer by using multi-contact probes with the setup shown in 

Fig. 10.b. The RF and LO ports are driven by a single-ended RF signal generator without 

any matching networks. The input impedances are designed to be 50 Ω, but the exact 

values are measured separately by using Vector Network Analyzer (VNA) and the input 

losses due to the impedance mismatch are taken into account. However, they are below 1 

dB due to the small reflexion coefficient at both inputs. The output power is measured by 

spectrum analyzer connected asymmetrically to one output (collectors of Q3 and Q5), 

whereas the other output port is terminated by 50 Ω. The output impedance is also 

measured by VNA and the impedance mismatch loss together with the loss due to the 

single ended output is added to the measured output power. 

The 3rd order input intercept point (IIP3) and conversion gain of mixers with 3 

different HCBTs are measured at 1 GHz RF frequency and -10 dBm input power. The LO 

buffer is driven by RF generator with 0 dBm output power. The output frequency is 10 

MHz and the two-tone spacing used in IIP3 measurement is 10 kHz. The measured IIP3 

and conversion gain dependence on the mixer current (Imix) (without the LO buffer 

current) are shown in Fig. 11. The maximum IIP3 of 17.7 dBm is achieved by mixer with 

HCBT 2 at Imix= 9.2 mA, which is a small current for a given IIP3 as compared to the 

available mixers, e.g. [25]. The peak IIP3 of HCBT 1 and HCBT 3 are 10.9 dBm, and 

14.7 dBm at currents 6.7 mA and 9.5 mA, respectively. If the power consumption of the 

mixer is critical, the IIP3 above 10 dBm can be obtained at current consumption between 

5 mA and 6 mA by all three mixer designs, resulting in the power consumption between 

25 and 30 mW. The conversion gains are rather constant with current (above 4 mA) with 

the maximum values of -4.2 dB, -5 dB and -5.5 dB for HCBT 1, HCBT 2, and HCBT 3, 

respectively. The maximum conversion gains are obtained at approximately the same 

current as the maximum IIP3. Such conversion gains are expected and are due to the use 

of emitter degeneracy and are traded for high IIP3s. 
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All three mixers have approximately the same linearity at low currents (below 6 mA), 

whereas the difference appears at higher currents, where the quad transistors (Q3 – Q6) 

operate near the high-current drop-off region, i.e. at or above the currents of peak fT. The 

linearity of transistors in high-current regime is affected by the slope of fT vs IC 

characteristics at high currents, influenced by the charge sharing effect discussed in 

Section 4. It can be explained by the rate of base charge (Qb) increase with IC, which is 

the smallest for HCBT 2 with uniform n-hill collector profile. More detailed explanation 

is provided in [16]. High-current linearity can be improved for all collector doping 

profiles by increasing the size of quad transistors resulting in the operation at the lower 

current density avoiding the high-current drop-off region. However, the transistor 

operation below the current densities around peak fT implies the increase of layout area. 

6. HIGH-VOLTAGE HCBT DEVICES 

6.1. Double-emitter (DE) HCBT 

The HCBT structures described so far are optimized for high-frequency characteristics 

targeting RF communication circuit applications. In order to broaden the application 

spectrum of HCBT BiCMOS technology, i.e. for automotive, instrumentation and 

biomedical electronics, transistors with higher breakdown voltages are highly desirable. In 

standard vertical-current bipolar transistor structures based on the super-self-aligned 

transistor (SST), different breakdown voltage devices are typically obtained by the 

different parameters of Selectively Implanted Collector (SIC) [26], which usually requires 

additional lithography masks and increases the fabrication costs.  

A high-breakdown voltage HCBT can be fabricated by placing two active transistor 

regions at the silicon sidewalls opposite to each other, such that their collector-base 
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Fig. 11 Measured 3
rd
 order Input Intercept Point (IIP3) and Conversion Gain vs. mixer current 

(Imix) of mixers in three different technologies: HCBT 1 (steep n-hill), HCBT 2 

(uniform n-hill) and HCBT 3 (CMOS n-well). Measurement setup: PRF= -10 dBm, 

PLO= 0 dBm, fRF= 1 GHz, fIF= 10 MHz, two-tone Δf= 10 kHz, VCC= 5 V. 
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depletion regions merge, resulting in the reduced electric field. Such structure has two 

emitters opposite to each other and two collector contacts in the plane perpendicular to 

the direction that connects emitters, as shown in Fig. 12. The structure is named double-

emitter (DE) HCBT [17, 18]. Since the two emitters of DE HCBT are placed at the 

opposite sidewalls of the silicon n-hill, extrinsic bases overlap on the top and intrinsic 

collector between two intrinsic bases is shared, as can be seen in Fig. 13. 

The extrinsic collector is fabricated laterally in front and back of the intrinsic 

transistor. In such a way, the intrinsic collector is surrounded by p
+
 extrinsic base from 

the top, two intrinsic bases from left and right and by the p-substrate from the bottom 

(Fig. 12). Since collector charge is shared between surrounding acceptors, collector is 

fully depleted by reverse collector-base voltage, if transistor operates in the forward 

active region. Once collector is fully depleted by collector-base reverse voltage (VCB), the 

potential is pinned in the middle of the n-hill between two intrinsic bases, as shown in 
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Fig. 12 3D schematic of double-emitter (DE) HCBT structure formed by merging two 

HCBTs in opposite directions resulting in the reduced electric field. 
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Fig. 13 TEM cross-section along the emitters of the fabricated double-emitter (DE) 

HCBT structure. Extrinsic collectors are in the front and the back. 
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Fig. 14. Further increase in VCB causes the potential drop laterally across the drift regions, 

which are formed toward the extrinsic collector, whereas the potential drop across the 

intrinsic base-collector junction remains roughly constant. Additional shielding of the 

intrinsic bases from the collector voltage is obtained by the extension of the extrinsic base 

on the top of the drift region, which is wider than the intrinsic base (Fig. 12), as well as by 

the substrate, which is connected to the ground potential in order to isolate the device. 

Eventual current leakage into the substrate might occur at very high current densities, but 

this is beyond the useable bias conditions. 

Double-emitter HCBT is fabricated in the same fabrication flow as standard single 

polysilicon region HCBT with the steep collector profile [22], described in Sections 4 and 

5. The only additional process step is eventually the ion implantation of the intrinsic base 

at the opposite side of the n-hill. No additional lithography masks are needed to integrate 

DE HCBT with standard HCBT BiCMOS. 

The measured DC characteristics of DE HCBT are presented in Fig. 15. The Gummel 

characteristics (Fig. 15.a) show satisfactory quality of fabricated junctions. In the output 

characteristics (Fig. 15.b) with different n-hill widths (whill) it is obvious that DE HCBT 

has a higher BVCEO and Early voltage (VA) comparing to standard single-poly HCBT. The 

measured electrical parameters of two DE HCBTs and single-poly HCBT are summarized 

in Table 3. In order to take the full advantage of BVCEO improvement and to maximize VA 

for a given collector profile, transistors should be fabricated with a narrow n-hill, i.e. whill 

should be 0.5 µm or smaller. A hard breakdown cannot be observed in Fig. 15.b for VCE 

lower than 10 V for all DE HCBT structures. In case of the transistor with whill=0.6 µm, 

the change in the slope indicates the start of the avalanche process, which is then limited 

by the base shielding effect at higher VCE. 

The BVCEO is measured in forced VBE configuration, where VBE is set to 0.7 V and VCB 

is swept. BVCEO is determined as the VCB where the base current (IB) turns from positive to 

negative, increased by VBE=0.7 V. For the transistor with whill=0.6 µm substantial 

avalanche current is generated for VCB > 2.5 V reducing IB and eventually reversing its 

direction. However, the slope of IB characteristics becomes smaller for VCB > 4 V 

F(x)(x)

x x

Potential Field
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collector not fully depleted
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Fig. 14 (a) Schematic cross-section at the middle of the intrinsic transistor parallel with the 

wafer surface (top view). (b) Potential and electric field at the symmetry line along 

the middle of emitters (AA’ line). In case of fully depleted collector maximum 

potential and electric field are limited due to limited amount of collector fixed 

charges. The rest of the voltage is dropped laterally across the drift region. 
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indicating that collector is fully depleted and electric field across the intrinsic base-

collector junction as well as avalanche multiplication are limited. Even though IB turns to 

negative, hard breakdown does not occur and the output characteristics in Fig. 15.b 

become flat. In case of the transistor with whill=0.5 µm, characteristics in Fig. 15.b show 

similar behavior. However, since whill is decreased, a smaller VCB is needed to fully 

deplete collector and the base shielding effect is more efficient. Therefore, the electric 

field across the intrinsic base-collector junction is limited to lower value compared to the 

transistor with whill=0.6 µm. In case of the transistor with whill=0.36 µm, base shielding is 

the most efficient. The output characteristics in Fig. 15.b are flat, indicating that potential 

drop over the intrinsic base-collector junction does not increase substantially with VCB, 

meaning that base width modulation is suppressed. Indeed, extrapolated Early voltage 

from the output characteristics between VCE=5 V and VCE=8 V for IB=0.5 µA equals 

VA=301 V. Giving the fact that the current gain at VCE=5 V is β=95.4 this gives the β·VA 

product as high as 28700 V. 

Table 3  Measured electrical parameters of single-poly HCBT and double-emitter (DE) 

HCBTs with different width of the n-hill  

 Single-poly DE, whill=0.5 µm DE, whill=0.36 µm 

Emitter area (μm
2
) 0.1 x 1.8  2 x (0.1 x 1.3) 

βmax (VCE=2 V) 124 104 94 

VA, (V) 9.5 75 301 

BVCBO (V) 8.3 11.2 12.9 

BVCEO (V) 3.6 11.6 12.6 

VCB@BVCEO (V) 2.9 10.9 11.9 

fT (GHz) 37.6 13.6 12.7  

fmax (GHz) 67 29.5 28 

IC@fTmax (µA) 220 100 77 

fTBVCEO(GHzV) 135 158 160 

β·VA, (V),  1178 

(VCE=2 V) 

7800 

(VCE=5 V) 

28700 

(VCE=5 V) 

It can be seen in Table 3 that the DE HCBT with narrower n-hill has a reduced fT of 

13.6 and 12.7 GHz for transistors with whill of 0.5 µm and 0.36 µm, respectively. 

Dominant cause of the lower fT is the increase in the base-collector depletion region 

transit time, because electrons flow through the depleted n-hill region, which is 

approximately 1 µm long. Moreover, since whill is smaller than the emitter width (wE), the 

current is crowded near the middle of the n-hill increasing the local current density and 

causing the Kirk effect to occur at lower values of IC. Therefore, fT peaks at lower IC in 

DE HCBT. For transistors with smaller whill, BVCBO is increased, meaning that electric 

field is reduced at the peripheral part of the extrinsic base toward the extrinsic collector. 

Interestingly, measured BVCEO and BVCBO given in Table 3 are almost equal, but VCB at 

which BVCEO occurs (i.e. IB changes the sign) is slightly smaller than BVCBO. 
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6.2. Double-emitter (DE) reduced-surface-field (RESURF) HCBT 

In DE HCBTs the breakdown voltage can be increased above 12 V by merging the n-

collector regions of two transistors, due to the fact that the n-collectors are at the active 

region surface in the compact HCBT structure and not at the bottom of the intrinsic 

device as in the conventional vertical-current transistors. The breakdown voltage can be 

increased further, up to 36 V, by shielding the electric field in the drift region resulting in 

the reduced-surface-field (RESURF) DE HCBT [19]. This is done by using a CMOS p-

well implant and by the design of lithography masks (i.e. without any additional costs). 

Having a high-speed, as well as 12 V and 36 V high-voltage bipolar transistors along with 

the CMOS increases the flexibility and application spectrum of HCBT BiCMOS 

technology further, making it attractive both for RF and other analog applications. Since 

high-voltage bipolar transistors are integrated at zero-cost, the technology is suitable for 

integration of low-cost smarter systems including higher-power and human-interface 

sensor circuits, which makes it a contender for the future Internet of Everything (IoE) 

applications. 

Cross-sections at the symmetry lines of the DE HCBT with RESURF region are 

shown in Figs. 16.a and 16.b. In double-emitter configuration, a CEB
E
C layout is used 

with extrinsic collectors folded to front and back of the intrinsic transistor. Compared to 

the standard DE HCBT, this one has an extended extrinsic collector with CMOS p-well 

implanted underneath to obtain local substrate with increased concentration. The basic 

idea is that the n-hill above the p-well region is fully depleted if collector voltage is 

increased and that the second RESURF drift region is formed. 

 

Fig. 16 Schematic cross-sections of the fabricated DE RESURF HCBT structure having 

CEB
E
C layout. (a) EBE cross-section along the emitters. (b) CBC cross-section along 

the middle of the n-hill. Due to the symmetry, only one half is shown. Compared to 

standard DE HCBT structure, CMOS p-well is implanted in the n-hill between the 

collector contact region and the intrinsic transistor. In the forward active region, portion 

of the n-hill above the p-well is fully depleted and the 2
nd

 drift region (DR 2) is formed. 
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The change of the electric field with the increase of the collector-emitter voltage (VCE) 

is shown in Fig. 17. For small VCE, the peak electric field at the intrinsic base-collector 

junction increases with VCE as shown in Fig. 17.a and depletion regions spread into the 

intrinsic collector. After intrinsic collector is fully depleted, there is no available donor 

charge in this cross-section (Fig. 16.a) and the maximum electric field at the junctions 

remains unchanged. The voltage is dropped in the perpendicular cross-section across the 

1
st
 drift region (DR 1 in Fig. 16.b) toward the extrinsic collector. 

Electric field along the current path in the middle of the n-hill is shown in Fig. 17.b. 

As VCE is increased, the 2
nd

 peak of the electric field appears at the end of DR 1, whereas 

the 1
st
 peak at the intrinsic base-collector junction remains the same, because collector 

voltage is blocked by the extrinsic base extensions above DR 1. Further increase in VCE 

increases the 2
nd

 peak up to the voltage where the extrinsic collector above the p-well 

region becomes fully depleted and the 2
nd

 drift region (DR 2) is formed. Additional 

increase in VCE causes the voltage drop across the DR 2. Collector voltage is partially 

blocked by the p-well region reducing its impact on the value of the electric field 2
nd

 

peak. Since there is enough available charge in the extrinsic collector, the 3
rd

 peak of the 

electric field appears at the end of the DR 2. The ability of the p-well region to block the 

collector voltage determines whether the critical field is first reached in the 2
nd

 or the 3
rd

 

peak of the electric field. This can be controlled by the length of DR 2. 

DE RESURF HCBTs are fabricated on the same dies as high-speed HCBTs and DE 

HCBTs with BVCEO=12 V. The steep n-collector doping profile described in Section 4 is 

used. Measured common emitter output characteristics of fabricated transistors with 

different lpw are shown in Fig. 18.a. Breakdown occurs around 26 V for the transistor with 

lpw=0.5 µm and around 36 V for the transistor with lpw=3 µm. Summary of electrical 

characteristics is given in Table 4. 

 

Fig. 17 Electric field with the increasing VCE: (a) along the middle of the emitters (EBE 

cross-section of Fig. 16.a), (b) along the current path in the CBC cross-section 

from Fig. 16.b. 
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Table 4  Measured electrical parameters of double-emitter (DE) HCBT  

with n-hill width of 0.36 μm and different length lpw. 

 lpw=0.5 µm lpw=3 µm 

Emitter area (μm
2
) 2 x (0.1 x 1) 2 x (0.1 x 1) 

βmax 123 129 

VA, (V), (IB=15 nA, VCE=6~7 V) 1928  2233  

BVCEO (V), output char. 26  36 (=BVCS) 

BVCS (V) 33 36 

fT (GHz) 5.3 2.7 

fmax (GHz) 10.6 4.6 

fTBVCEO (GHzV) 137 97 

β·VA, (kV), 237 288 

In the case of transistor with lpw=0.5 µm, the classical common-emitter breakdown 

mechanism occurs, meaning that the critical field appears along the current path and that a 

positive feedback loop due to transistor current gain is closed. For the transistor with 

lpw=3 µm, breakdown occurs between the local p-well substrate and the n-hill. This means 

that neither the 2
nd

 nor the 3
rd

 peak from Fig. 17.b generate holes, which can close the 

positive feedback loop. The 2
nd

 peak is limited below the critical value for avalanche, 

whereas the holes generated at the 3
rd

 peak are collected by the substrate instead of the 

extrinsic base. For the transistor with lpw=3 µm, it is more effective than for the transistor 

with lpw=0.5 µm, because holes have to travel longer distance to reach the extrinsic base 

in the presence of strong vertical electric field component in the DR 2. This is confirmed 

by the measurements of the collector-substrate breakdown voltage (BVCS), which equals 

the BVCEO measured in the output characteristics for the structure with lpw=3 µm. 

Avalanche current generated at breakdown flows between the collector and the substrate, 

whereas the base and the emitter currents are not changed, which is not the case in the 

standard bipolar transistors. As a result we have BVCEO=BVCBO=BVCS. 

Due to the E-field shielding of the intrinsic base-collector junction, the base-width 

modulation is suppressed, resulting in very high Early voltage, which equals around 

1.93 kV and 2.23 kV for the transistors with lpw=0.5 µm and lpw=3 µm, respectively. This 

reflects to almost 100 dB of intrinsic gain (VA/VT) at room temperature for both devices. 

Since the value of current gain β is high, considering that the transistor has implanted 

base, the β·VA product is remarkable indicating good analog performance. Dependence of 

the cut-off frequency (fT) and maximum oscillation frequency (fmax) on collector current 

are shown in Fig. 18.b. In this structure, the high-frequency performance is traded for 

higher BV and fT and fmax are reduced accordingly. Nevertheless, fT·BVCEO products show 

results very close to the Johnson’s limit [20]. 

7. CONCLUSION 

The HCBT is based on a new concept of bipolar transistor technology resulting in a 

low-cost fabrication, but with many innovative steps. The optimized-collector HCBT is 

fabricated with 3 additional masks to CMOS process, resulting in an optimum trade-off 

between the fT, fmax and BVCEO. The HCBT with the n-well collector requires 2 additional 
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masks to CMOS process and has lower fT, fmax and BVCEO, but still high enough for wireless 

communications circuits in the frequency range between 0.9 and 5 GHz. The optimized-

collector HCBT targets the applications with supply voltages of 3.3 V, whereas the 

HCBT with the n-well collector has BVCEO below 3 V, which has to be taken into account 

in circuit design. 

Since fT and fmax peak at low currents, i.e. at 200-300 μA in HCBT with optimized 

collector, HCBT is very attractive for low-power battery-supplied wireless communications 

circuit blocks. Furthermore, such small currents allow for an increase of emitter length in 

order to reduce RB for low-noise applications, while maintaining a reasonably low IC. The 

demonstrated double-balanced active mixers based on a Gilbert cell show that the high-

current linearity of HCBTs are affected by n-collector doping profile and are optimized 

such that transistors can operate in high-current regime saving the layout area. 

The n-collector doping profile also impacts the degree of the charge sharing between 

the extrinsic and intrinsic bases, which determines the value and distribution of the 

electric field defining the transistor breakdown voltage. Therefore, the breakdown voltage 

can be increased without affecting the high-frequency characteristics. 

By using the charge sharing effect and HCBT geometry where all intrinsic transistor 

regions (emitter, base and collector) are along the horizontal line of current flow, it is 

possible to merge 2 devices and fully deplete n-collector. In this way, the electric field can 

be shielded and the breakdown voltage is engineered. By adding the p-well region 

underneath n-collector, the electric field shielding effect is extended further and the 

breakdown voltage can be increased to 36 V. The breakdown voltage can be adjusted just 

by changing the lithography masks. Hence, HCBT makes it possible to have a flexible 

BiCMOS technology platform with high-speed devices for RF circuits and high-voltage 

devices for very diverse system on-a-chip applications. 
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