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Abstract. This article presents a biased implementation style weak-indication self-timed 

full adder design that is latency optimized. The proposed full adder is constructed using 

the delay-insensitive dual-rail code and adheres to the 4-phase handshaking. 

Performance comparisons of the proposed full adder vis-à-vis other strong and weak-

indication full adders are done on the basis of a 32-bit self-timed ripple carry adder 

architecture, with the full adders and ripple carry adders realized using a 32/28nm CMOS 

process. The results show that the proposed full adder leads to reduction in latency by 

63.3% against the best of the strong-indication full adders whilst reporting decrease in 

area by 10.6% and featuring comparable power dissipation. On the other hand, when 

compared with the existing optimized weak-indication full adder, the proposed full adder 

is found to minimize the latency by 25.1% whilst causing an increase in area by just 1.6%, 

however, with no associated power penalty.  
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1. INTRODUCTION 

Self-timed design, which constitutes a robust flavor of asynchronous design, is 

considered to be a viable alternative and/or a necessary supplement to mainstream 

synchronous design by the Semiconductor Industry Association [1] due to several 

reliability and variability issues, which have become prominent in the nanoscale 

electronics regime. Random dopant fluctuations, sub-wavelength lithography, high heat 

flux, electro-migration, hot carrier effects, negative bias temperature instability, stress-

induced variation, electrostatic discharge, process-induced defects, and metrology and 

other manufacturing defects [2] are complicated issues which have become more 

pronounced in the nanoelectronics are compared to the microelectronics era and are 

indeed difficult to deal with. To circumvent these issues, various material-level, device-

level, process-level, circuit-level and system-level solutions have been developed and 

further developments are also underway [1].  
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At the circuit/system-level, self-timed design has been drawing sustained interest from 

the research community over the past decades due to several inherent advantages such as 

low noise [3] and almost nil electro-magnetic interference (EMI) [4], greater modularity 

[5], ability to cope with process, temperature, and parametric variations with ease thus 

being inherently adaptive [6] [7], consuming power only when and where active [5] [8], 

and being self-checking [9]. Low noise and EMI compatibility imply that self-timed 

circuits are innately resistant to side channel attacks [10] [11] and are therefore preferable 

for secure banking and financial and other sensitive applications. Modularity, also known 

as design reusability, and the capacity to tolerate process, temperature and parametric 

uncertainties imply that self-timed circuits are well positioned to deal with statistical 

timing analysis and reliability issues whilst delivering an average case performance. Due 

to the consumption of power only on-demand, depending on when and where required, 

self-timed circuits/systems form a natural choice for ultra low power VLSI designs where 

complimentary design strategies such as multiple supplies, multiple thresholds, and 

dynamic voltage and/or frequency scaling may be deployed to leverage the maximum 

benefits from a self-timed design. Being self-checking, self-timed circuits/systems 

conform to the design-for-testability paradigm although complexities may be involved in 

the testability aspect of certain asynchronous elements, for example the C-element which 

incorporates feedback; nevertheless some feasible approaches are reported [12] [13].  

Asynchronous designs are primarily classified as bundled-mode and input-output 

mode, and here, we only consider the input-output mode, which is the robust among the 

two as it employs unbounded delay models for components (gates) and/or interconnect 

[14]. Asynchronous circuits/systems corresponding to input-output mode are commonly 

referred to as self-timed circuits/systems [15]. The fundamental architecture of a self-

timed system is shown in Figure 1, which has a centrally located function block. The 

function block in a self-timed system is equivalent to the combinational logic of a 

synchronous system, with the exceptions of being realized using delay-insensitive codes, 

and being bestowed with the responsibility of not only having to produce the correct 

outputs subject to the applied inputs but also should signal the completion of internal data 

computation. Thus the function block forms the heart of a self-timed system that performs 

data processing. In this article, the term ‘function block’ may refer to an arithmetic 

element, say the full adder, or a sub-system, for example, a ripple carry adder (RCA). The 

self-timed system, portrayed in Figure 1, utilizes delay-insensitive codes (here, dual-rail 

code) for data representation, communication and processing, and the 4-phase return-to-

zero (RTZ) handshaking. The dual-rail code is the simplest member of the generic family 

of delay-insensitive m-of-n codes [16], where m wires are asserted ‘high’ (i.e. binary 1) 

out of a total of n wires to represent binary data. In a dual-rail code, a data wire D is 

encoded using two wires viz. D0 and D1, where D = 1 is represented by D1 = 1 and D0 = 

0, and D = 0 is represented by D0 = 1 and D1 = 0. When D1 and D0 signify a binary 

value of 0 or 1 according to the assignments mentioned, it is called ‘valid data’. The state 

of both D0 and D1 being equal to 0 is referred to as the ‘spacer’. It may be noted that both 

D0 and D1 cannot simultaneously transition to 1 as it is illegal and invalid since the 

coding scheme adopted is unordered [17], where no codeword should form a subset of 

another codeword.  
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Referring to Figure 1, the 4-phase handshake protocol is explained as follows
1
. The 

dual-rail data bus that feeds the current stage register is initially in the spacer state, and 

the acknowledge input (ACKIN) for the current stage register is high (binary 1), since the 

acknowledge output (ACKOUT) provided by the next stage register is low (binary 0). 

The current stage register now transmits a codeword (i.e. valid data). This results in low 

to high transitions on the bus wires (i.e. any one of the rails of all the dual-rail signals is 

asserted as binary 1) feeding the function block. After the next stage register receives a 

codeword, subsequent to data processing in the function block, it drives the ACKOUT 

wire to binary 1, and the ACKIN wire assumes binary 0. The current stage register waits 

for the ACKIN signal to become 0 and then resets the data bus, i.e. the data bus feeding 

the function block is driven to the spacer state. After an unbounded but finite and positive 

amount of time taken for resetting the function block and the passage of spacer data to the 

following register stage, the next stage register drives the ACKOUT (ACKIN) to 0 (1). A 

data transaction is now said to be complete, and the system is ready to proceed with the 

next transaction. The application of data in the self-timed system depicted by Figure 1 

follows the sequence: valid data – spacer – valid data – spacer, and so forth.   
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Fig. 1 Standard self-timed system architecture employing delay-insensitive data encoding 

and 4-phase handshaking  

2. FUNCTION BLOCKS – CLASSIFICATION AND TIMING BEHAVIOR 

Self-timed function blocks are classified as strongly indicating and weakly indicating 

[18] depending on the manner in which they indicate (i.e. acknowledge) the arrival of the 

primary inputs. The differences between the properties of strong and weak-indication 

function blocks are explained using the illustrative timing diagram shown as Figure 2.  

2.1. Strong-indication function block 

A strongly indicating function block [19] waits for all the valid/spacer primary inputs 

to arrive and then starts to compute and produce the desired valid/spacer primary outputs. 

The strong input-output conditions are given as follows:    

                                                           
1 This explanation remains valid for any delay-insensitive data encoding scheme.  
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 All the primary inputs must attain the valid/spacer state before any primary output 

attains the valid/spacer state  

 All the primary outputs must have attained the valid/spacer state before any 

primary input attains the spacer/valid state  

2.2. Weak-indication function block 

A weakly indicating function block [20] is capable of producing valid/spacer primary 

outputs subsequent to the arrival of just a subset of the valid/spacer primary inputs. 

However, the production of at least one valid/spacer primary output is delayed until all 

the valid/spacer primary inputs have arrived. Reference [21] discusses two kinds of weak-

indication function block implementations: i) distributed implementation [22], where the 

task of indicating the primary inputs is shared between the primary outputs, and ii) biased 

implementation [18] [23], where the responsibility of primary inputs indication is just 

delegated to a single primary output. The weak input-output conditions are given below:      

 Some valid/spacer primary outputs are produced subsequent to the arrival of a 

subset of the valid/spacer primary inputs 

 All the valid/spacer primary inputs should have arrived before all the respective 

valid/spacer primary outputs are produced 

 All the valid/spacer primary outputs should have been produced before any 

subsequent spacer/valid primary input(s) arrive 

Inputs arrived

All

None

All

None

Outputs producedStrong-indication

All

None

Outputs producedWeak-indication

 

Fig. 2 Input-output behavior of strong and weak-indication function blocks 

3. WEAK-INDICATION: BASIC, DISTRIBUTED, AND BIASED IMPLEMENTATIONS 

Three types of weakly indicating self-timed full adder implementations viz. basic, 

distributed, and biased implementations are discussed in this section.  

3.1. Basic implementation 

The weakly indicating DIMS full adder [24], shown in Figure 3, is an example of the 

basic weak-indication implementation style. The circuit consists of two levels, with C-

elements realizing the product terms in the first level and the OR gates summing up the 
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product terms in the second level. Only one product term will be activated to produce the 

sum or carry outputs thus satisfying the monotonic cover constraint [14], which requires 

that the product terms comprising a Boolean function should be mutually disjoint [25] 

[26]. The C-element
2
 is highlighted by the circle with the marking ‘C’ on its periphery. 

A1, A0, B1, B0, CIN1 and CIN0 represent the dual-rail primary inputs, while SUM1, 

SUM0, COUT1 and COUT0 represent the dual-rail primary outputs. A1 and A0 represent 

the augend, and B1 and B0 represent the addend inputs. The logic equations governing 

the full adder are,   

 SUM1 = A0B0CIN1 + A0B1CIN0 + A1B0CIN0 + A1B1CIN1 (1) 

 SUM0 = A0B0CIN0 + A0B1CIN1 + A1B0CIN1 + A1B1CIN0   (2) 

 COUT1 = A0B1CIN1 + A1B0CIN1 + A1B1  (3) 

 COUT0 = A0B1CIN0 + A1B0CIN0 + A0B0   (4) 

From (1) to (4), it is evident that the sum outputs depend upon all the primary inputs, 

while the carry outputs may not. When the carry-generation occurs (i.e. A1 = B1 = 1), 

COUT1 would output binary 1 irrespective of the value of the carry input CIN1 or CIN0. 

On the other hand, when the carry-kill condition occurs (i.e. A0 = B0 = 1), COUT0 would 

output binary 1 regardless of the value of the incoming carry signal CIN1 or CIN0. Thus 

for both valid data and spacer, while the sum outputs have to wait for the arrival of all the 

primary inputs, the carry outputs may not. However, since the product terms are realized 

using C-elements for both the sum and carry outputs, the carry-output logic provides an 

additional acknowledgement for some/all of the primary inputs besides the sum outputs.  

When the carry-propagate condition (i.e. A1 = B0 = 1 or A0 = B1 = 1) occurs, the 

arrival of the augend, addend and carry inputs are indicated by both the sum and carry 

outputs, i.e., the responsibility of indicating the primary full adder inputs is not shared 

between the sum and carry outputs, neither is the responsibility confined to a single 

primary output (i.e. the sum or carry output), but rather, multiple acknowledgments tend 

to manifest for both valid data and spacers. As a result, if the full adder shown in Figure 3 

is cascaded to form an n-bit RCA and if the carry signal propagates through a maximum 

m out of n full adder stages in the RCA, the forward latency and the reverse latency would 

be specified by O(m). The forward latency signifies the maximum propagation delay 

incurred in processing the valid data inputs, and the reverse latency denotes the maximum 

propagation delay encountered for the passage of spacer data inputs (i.e. the time taken 

for the reset of the self-timed circuit/system) [14]. Hence, the cycle time, which is the 

time taken for a single data transaction, and computed as the sum of forward and reverse 

latencies, would be specified by O(2m).  

                                                           
2 The Muller C-element/C-gate basically governs the rendezvous of the input signals. Hence the C-element is 

also referred to as an ‘input-complete element’. It outputs a 1/0 only if all its inputs are 1s/0s respectively. It 

retains the existing steady-state in case the inputs are different.   
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Fig. 3 DIMS weak-indication full adder  

3.2. Distributed Implementation 

Martin’s full adder [22], which forms an example for the distributed weak-indication 

implementation, is shown in Figure 4. Equations (5) to (8) are synthesized by Martin’s full 

adder using a full-custom static CMOS design involving 42 transistors. In fact, (5) to (8) 

represent the factorized forms of (1) to (4). The nMOS network realizes the full adder 

functionality and is activated when the valid data inputs are supplied, while the pMOS network 

is activated during the application of spacers and resets the full adder during the RTZ phase.  

 SUM1 = (A0B0 + A1B1) CIN1 + (A0B1 + A1B0) CIN0 (5) 

 SUM0 = (A0B0 + A1B1) CIN0 + (A0B1 + A1B0) CIN1 (6) 

 COUT1 = (A0B1 + A1B0) CIN1 + A1B1          (7) 

 COUT0 = (A0B1 + A1B0) CIN0 + A0B0 (8) 
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Fig. 4 Martin’s weak-indication full adder 

When valid data inputs are supplied, the operation of the Martin’s full adder is 

identical to the weakly indicating DIMS full adder discussed previously. Therefore the 

forward latency of an n-bit self-timed RCA employing the Martin’s full adder would be 

specified by O(m), where m signifies the maximum length of the carry chain activated in 

the RCA. However when spacer data are applied, the carry output is reset through the 

spacer states of augend and addend inputs, while the sum output is reset subsequent to the 

arrival of the carry input as well. Therefore, the responsibility of indicating the primary 

inputs is distributed between the primary outputs (viz. sum and carry outputs) in the 

Martin’s full adder, especially when spacer data are applied during the RTZ phase.  

Since the carry signal alone may be required to propagate through the full adders in an 

n-bit RCA, subject to the propagate mode becoming active, the Martin’s full adder paves 
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the way for a fast and simultaneous reset of all the intermediate carry outputs in the RCA 

by involving just one full adder delay, soon after the corresponding augend and addend 

inputs of the full adders have become spacers regardless of the carry input. Once the carry 

output of a k
th

 stage full adder attains a spacer which in turn serves as the carry input for 

the (k + 1)
th

 stage full adder, the sum output of the (k + 1)
th

 stage full adder in the RCA 

would also become a spacer which entails another full adder delay. Therefore the reverse 

latency of the n-bit self-timed RCA employing a cascade of Martin’s full adders is not 

data-dependent unlike the previous case but is just a constant, which is approximately 

equal to two full adder delays. As a result, the cycle time of the n-bit RCA incorporating a 

cascade of Martin’s full adders is specified by O(m + 2).  

3.3. Biased implementation 

Seitz’s weakly indicating full adder design [18], shown in Figure 5, constitutes a good 

example for the biased implementation style, and synthesizes (1) to (4). Note that the full 

adder shown in Figure 5 is similar in many aspects to that portrayed by Figure 3 with a 

few exceptions: i) the product terms are realized using AND gates in Figure 5 instead of 

the C-elements in Figure 3, and ii) the intermediate sum outputs viz. intsum1 and intsum0 

are combined with the output of the 6-input OR gate (org) that logically sums up the dual-

rail input signals to produce the primary sum outputs viz. SUM1 and SUM0. The carry 

output logic of Seitz’s weak-indication full adder may utilize the carry-generate or the 

carry-kill condition similar to that of the DIMS weak-indication full adder or the Martin’s 

full adder. To explain the biased approach prevalent in the design of the Seitz’s weak-

indication full adder, let us two consider two example scenarios.  

When valid data inputs are applied to the full adder shown in Figure 5, and assuming 

that the carry propagates, one of the 3-input AND gates present in the first-level of the full 

adder would transition to 1, which will cause a similar transition on intsum1 or intsum0. 

Even with a single dual-rail primary input transitioning to 1, org would transition to 1. 

However with isochronic fork assumptions [27] imposed on the primary inputs, it is 

implied that the low to high transitions on the primary inputs of the AND gate are 

simultaneously accompanied by similar transitions on the inputs of the 6-input OR gate. 

The isochronic fork implies that when a transition arrives on one branch of a node and is 

acknowledged, the transitions on all other branches of the same node are also assumed to 

have arrived at the same time and hence they are considered to be acknowledged. 

Subsequently, the low to high transition on intsum1/intsum0 is combined with the 

transition on org, resulting in the production of a low to high transition on the primary 

sum output viz. SUM1/SUM0. Notice that the low to high transition on the output of an 

AND gate would also cause a similar transition on the carry output viz. COUT1/COUT0. 

In a subsequent RTZ phase, the AND gate which experienced a low to high transition 

earlier would now output the spacer and this can happen even with anyone of its inputs 

assuming the spacer state, which leads to the production of a spacer output on 

COUT1/COUT0, either of which was asserted high previously.  
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Fig. 5 Seitz’s weak-indication full adder 

 

Let us now consider that the carry-generate mode is active. Under this consideration, 

when valid data inputs are supplied to the full adder shown in Figure 5, a 3-input AND 

gate and a 2-input AND gate (which implements ‘A1B1’) would transition to 1. With org 

also transitioning to 1, either SUM1 or SUM0 would experience a low to high transition, 

and COUT1 would also experience a low to high transition. Notice here that COUT1 

acknowledges the arrival of only the augend and addend inputs, i.e. A1 and B1, and not 

the carry input CIN1/CIN0. However, intsum1/intsum0 and subsequently SUM1/SUM0 

indicates the arrival of the augend and addend inputs as well as the carry input. In the 
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following RTZ phase, even with either A1 or B1 becoming a spacer, COUT1/COUT0, 

which transitioned to 1 earlier, would now assume the spacer state. Thus COUT1/COUT0 

may not specifically acknowledge the RTZ of A1 and/or B1, nor is the RTZ of the carry 

input acknowledged. However, org that indicates the RTZ of those dual-rail primary 

inputs which experienced a low to high transition previously, when coupled with 

intsum1/intsum0 results in the RTZ of SUM1/SUM0 respectively. Hence the primary sum 

output is found to assume the entire responsibility of duly indicating the RTZ of all the 

primary inputs. This deliberation would equally apply for the carry-kill condition.  

From the preceding discussions, it may be understood that in the case of Seitz’s weak-

indication full adder, the sum output assumes the responsibility of indicating the complete 

arrival of all the primary inputs subsequent to the application of valid or spacer data 

inputs and that the carry output is freed from indication constraints; thus there is a bias 

towards the carry output. Nevertheless, this tends to benefit by paving the way for fast 

carry propagation between the full adder stages in an n-bit RCA.  

Also, note that the 6-input OR gate shown as part of Figure 5 cannot be decomposed 

arbitrarily due to the gate orphan problem [21] [29] that would arise for the application of 

valid data. The gate orphan implies an unacknowledged transition at a gate output.  
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org

A1
A0

B1

B0
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org

int

(a) Safe realization (b) Unsafe realization  
Fig. 6 Naïve decomposition of the 6-input OR gate, potentially causing a gate orphan 

 

To explain the gate orphan problem associated with a naïve logic decomposition, 

consider Figure 6, wherein the 6-input OR gate is decomposed into a 4-input OR gate and 

a 3-input OR gate. Supposing during a valid data phase CIN1 transitions to 1, output org 

will transition to 1 in the case of both the realizations shown in Figure 6 without waiting 

for the low to high transitions to occur on the remainder of the dual-rail inputs viz. A1/A0 

and B1/B0. Subsequently, if A1/A0 and B1/B0 also experience transitions, they will not 

be acknowledged by the OR gate in Figure 6a but they do not give rise to wire orphans 

since they are considered to be acknowledged by the AND gate(s) present in the first level 

of Figure 5 through the isochronic fork assumption. Let us revisit the similar scenario of 

CIN1 transitioning to 1 before A1/A0 and B1/B0 experience low to high transitions with 

reference to Figure 6b. It can be seen that after CIN1 experiences a low to high transition, 

the output org will also experience a low to high transition irrespective of any transition 

occurring on the intermediate output int. Subsequently if A1/A0 and B1/B0 also transition 

to 1, the internal output int will experience a transition to 1. However, the low to high 

transition on int will not be acknowledged by the output org, and the unacknowledged 

transition on the internal gate output (int) is referred to as a gate orphan, which may get 

eliminated only through sophisticated timing assumptions. Gate orphans are problematic 

and tend to affect the robustness of a self-timed circuit/system. Therefore, self-timed 

implementations should be devoid of gate orphans in order to be robust.   
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It can be inferred from [28] that a strong-indication n-bit RCA constructed using 

strongly indicating full adder blocks has fixed forward and reverse latencies of O(n), and 

hence exhibits the worst-case cycle time of O(2n). On the other hand, the weak-indication 

n-bit RCA composed using basic weak-indication full adders has similar forward and 

reverse latencies of O(m), and hence features a cycle time of O(2m), where m denotes the 

maximum length of carry propagation in the n-bit RCA. The weak-indication n-bit RCA 

constructed using the distributed or biased implementation style weak-indication full 

adders have forward and reverse latencies of O(m) and O(2), and hence the least cycle 

time of O(m + 2) [28]. Given these, weak-indication realizations are preferable than their 

strong-indication counterparts for self-timed design of arithmetic circuits.  

4. PROPOSED BIASED IMPLEMENTATION STYLE WEAK-INDICATION FULL ADDER 

The proposed full adder that corresponds to the biased implementation style of weak-

indication is depicted in Figure 7, synthesizing (5) to (8) using 4 simple gates viz. 2-input 

OR gates and 10 complex gates. Among the 10 complex gates, 8 of them are 2-input 

Muller C-elements, where a 2-input C-element is realized using an AO222 cell with 

feedback, and the remaining are AO21 gates. Assuming X and Y are the inputs and Z is 

the output of a 2-input C-element, Z = XY + (X + Y) Z. Presuming that A and B are the 

inputs given to the AND logic part of an AO21 gate and with C as its other input, the 

output of the AO21 gate, say D, is given by D = AB + C. When AB and/or C are equal to 

1, D equates to 1; hence the AO21 gate is said to be input-incomplete. In general, with the 

exception of the C-gate, all other logic gates tend to exhibit input-incomplete behavior.  

It can be seen in Figure 7 that the product terms corresponding to the sum logic are 

realized using input-complete C-elements. Hence the sum output would indicate the 

complete arrival of the entire primary inputs viz. augend, addend and carry inputs for both 

valid and spacer data. On the other hand, the carry output logic is realized using a mix of 

input-complete C-elements and input-incomplete complex gates. Since the sum output 

fully indicates the arrival of all the primary inputs during the valid and spacer data phases, 

the carry output at the best provides multiple acknowledgments for the arrival of valid or 

spacer data on the augend and addend inputs and/or the carry input. Hence the proposed 

full adder features a bias toward the carry output in terms of relaxing its indication 

constraints, and the advantages associated with such an implementation in terms of less 

forward and reverse latencies and cycle time have been articulated earlier. To elaborate 

on this, let us consider the following:   

 Carry-propagate mode: Once the primary inputs assume valid data states, internal 

outputs intm1 or intm2 and intm3, shown in Figure 7, would transition to 1. 

Depending on whether CIN1 or CIN0 experiences a low to high signal transition, a 

similar transition is reflected on the corresponding primary output, COUT1 or 

COUT0. When spacer data are applied subsequently, even with intm1 or intm2 and 

intm3 becoming a spacer, the carry output which transitioned to 1 earlier would 

now be reset regardless of the carry input becoming a spacer 

 Carry-generate or Carry-kill mode:  When valid data are supplied through the 

primary inputs, an intermediate output intm4 or intm5, highlighted in Figure 7, 

makes a low to high signal transition, which is followed by a similar transition on 
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COUT1/COUT0 respectively. This could occur regardless of a transition on the 

carry input. Subsequently, when spacer data are applied on the primary inputs, 

intm4 or intm5 which transitioned to 1 earlier would now assume the spacer state, 

which is acknowledged by the respective carry output. This could also happen 

irrespective of the carry input becoming a spacer          

C

C

A0

B1

A1

B0

C

C

A1

B1

A0

B0

C

C

C

C

AO21 COUT1
CIN1

AO21 COUT0
CIN0

SUM1

SUM0

CIN0

CIN0

CIN1

CIN1

intm1

intm2

intm3

intm4

intm5

 

Fig. 7 Proposed weak-indication full adder 

5. SIMULATION RESULTS AND DISCUSSION 

A number of 32-bit self-timed RCAs were constructed in a semi-custom design 

fashion at the gate-level by utilizing the various strong and weak-indication full adders 

separately. The structural integrity of the different gate-level self-timed full adders was 

preserved during the physical realization (technology mapping) to pave the way for a 

legitimate comparison, and they were implemented using the elements of a 32/28nm 

CMOS cell library [30]. The 2-input C-element was alone designed manually using the 

AO222 cell with feedback and was made available to realize the self-timed designs, and 

the 3-input C-elements were decomposed safely into 2-input C-elements using the method 

of [29]. The self-timed RCAs comprise the function block, the input registers, and the 

completion detection circuit. The input registers and the completion detector part of the 

various RCAs are identical, and only the function blocks differ. Hence the differences 

between the simulation results of the various RCAs can be attributed to the differences 

between their constituent full adders. More than 1000 random input vectors were supplied 

to the RCAs at time intervals of 20ns through test benches in order to capture the 



 A Latency Optimized Biased Implementation Style Weak-indication Self-timed Full Adder 669 

switching activities. The .vcd files generated were subsequently used for power estimation 

using Synopsys tools. Since the EDA tool estimates just critical path timing, only the 

worst-case forward latency was evaluated. Appropriate wire loads were included 

automatically whilst performing the simulations. As part of the advanced timing analysis, 

a virtual clock was used just to constrain the input and output ports of the RCAs, and it 

did not consume any power. The power, (forward) latency, and area results obtained for 

the various 32-bit RCAs are shown in Table 1. The indication type of each full adder is 

highlighted in the 1
st
 column of Table 1. The area of the RCAs and the respective full 

adders are given before and after the semicolon in the 4
th

 column. The gates present in the 

critical path of the different RCAs are mentioned in the 5
th

 column. The simulation results 

correspond to a typical case specification (1.05V, 25⁰ C) of the 32/28nm CMOS process 

[30]. The primary sum and carry outputs of the RCAs possess fanout-of-4 drive strength.  

Table 1 Power, latency and area parameters of different 32-bit self-timed RCAs 

incorporating distinct full adders 

Full adder and its indication type Power 

(µW) 

Latency 

(ns) 

RCA; Full adder area 

(µm2) 

Critical path elements 

Singh [31] – Strong  

DIMS [24] – Strong 

DIMS [24] [14] – Weak 

Toms [32] – Strong 

Folco et al. [33] – Weak 

SSSC [23] – Weak 

Toms & Edwards [34] – Weak 

Proposed – Weak 

2190 

2181 

2177 

2172 

2171 

2174 

2192 

2171 

14.61 

9.26 

8.24 

9.04 

7.00 

4.43 

9.66 

3.32 

2529; 54.64 

2504.60; 53.88 

2423.27; 51.34 

2293.14; 47.27 

2016.63; 38.63 

2097.96; 41.17 

2642.85; 58.20 

2049.16; 39.65 

2 CE2, 2 OR3 

CE2, OR4 

CE2, OR3 

CE2, 2 OR2 

CE2, OR2 

AO222 

AND2, CE2, OR3 

AO21 

CE2: 2-input C-element; AND2: 2-input AND gate; OR2/3/4: 2/3/4-input OR gate;  

AO222 and AO21 are complex gates 

The reason for the differences in the latency figures of the various RCAs is due to the 

different logical operators found in their critical paths, as mentioned in Table 1. It can be 

seen in Table 1 that the 32-bit RCA incorporating the proposed full adder features the 

least latency of 3.32ns among its counterparts – thanks to the AO21 cell used for 

implementing the carry output logic of the proposed full adder. With respect to power 

dissipation, the 32-bit RCA featuring the Folco et al.’s full adder is comparable with that 

incorporating the proposed full adder since both these dissipate a similar average power 

of 2171µW. It can be seen that the total power dissipation does not vary much across the 

different RCAs, although the variations in area are quite significant. This is because self-

timed designs have a unique signal propagation path for each input pattern unlike 

synchronous designs as they adhere to the monotonic cover constraint [14]. In terms of 

area, the 32-bit RCA incorporating Folco et al.’s full adder occupies the least area while 

the 32-bit RCA constructed using the proposed full adder occupies more Silicon by just 

1.6%. However, the latter enables considerably less latency by 52.6% compared to the 

former. Also, note that this latency reduction is achieved not at the expense of any extra 

power dissipation for the latter compared to the former. The SSSC full adder which is a 

gate-level design features a carry output logic that is similar to the carry output logic of 
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Martin’s full adder which is a transistor-level design. Hence the SSSC full adder was 

considered as a substitute for the Martin’s full adder in implementing the RCA as both 

these have similar latencies and cycle time metrics. The weak-indication SSSC full adder 

corresponds to the biased implementation style similar to that of the proposed full adder, 

and the proposed full adder leads to reduced latency by 25.1% than the SSSC full adder 

for a 32-bit RCA implementation with no penalty in terms of power or area parameters.  

6. CONCLUSION 

A new full adder design that corresponds to the biased implementation style of weak-

indication was presented. For an n-bit RCA realized using the proposed full adder, the 

forward and reverse latencies and cycle time are specified by O(m), O(2), and O(m + 2) 

respectively, where m denotes the maximum number of full adder stages in the n-bit RCA 

through which the carry propagates. Example 32-bit self-timed RCA implementations 

incorporating different strong and weak-indication full adders were analyzed. Against the 

best of the strong-indication full adders, the proposed full adder reports respective 

reductions in latency and area by 63.3% and 10.6% whilst dissipating similar power. On 

the other hand, in comparison with the existing optimized weak-indication full adder, the 

proposed full adder achieves reduced latency by 25.1% with no power penalty albeit at a 

small area expense of 1.6%. Overall, from a combined power-latency-area perspective, 

the proposed full adder is found to yield optimum quality-of-results.    

REFERENCES 

[1] Semiconductor Industry Association’s ITRS report. Available: http://www.itrs.net 

[2] S. Kundu and A. Sreedhar, Nanoscale CMOS VLSI Circuits: Design for Manufacturability, McGraw-

Hill, USA, 2010.  

[3] N.C. Paver, P. Day, C. Farnsworth, D.L. Jackson, W.A. Lien and J. Liu, "A low-power, low noise, 

configurable self-timed DSP", In Proceedings of the 4th International Symposium on Advanced Research 

in Asynchronous Circuits and Systems, 1998, pp. 32-42.  

[4] G.F. Bouesse, G. Sicard, A. Baixas and M. Renaudin, "Quasi delay insensitive asynchronous circuits for 

low EMI", In Proceedings of the 4th International Workshop on Electromagnetic Compatibility of 

Integrated Circuits, 2004, pp. 27-31.  

[5] C.H. Van Kees Berkel, M.B. Josephs and S.M. Nowick, "Scanning the technology applications of 

asynchronous circuits", In Proceedings of the IEEE, vol. 87, pp. 223-233, 1999.  

[6] K.J. Kulikowski, V. Venkataraman, Z. Wang, A. Taubin and M. Karpovsky, "Asynchronous balanced 

gates tolerant to interconnect variability", In Proceedings of the IEEE International Symposium on 

Circuits and Systems, 2008, pp. 3190-3193.  

[7] I.J. Chang, S.P. Park and K. Roy, "Exploring asynchronous design techniques for process-tolerant and 

energy-efficient subthreshold operation", IEEE Journal of Solid-State Circuits, vol. 45, pp. 401-410, 2010.  

[8] O.C. Akgun, J. Rodrigues and J. Sparsø, "Minimum-energy sub-threshold self-timed circuits: design 

methodology and a case study", In Proceedings of the 16th IEEE International Symposium on 

Asynchronous Circuits and Systems, 2010, pp. 41-51.  

[9] I. David, R. Ginosar and M. Yoeli, "Self-timed is self-checking", Journal of Electronic Testing: Theory 

and Applications, vol. 6, pp. 219-228, 1995.  

[10] Z.C. Yu, S.B. Furber and L.A. Plana, "An investigation into the security of self-timed circuits", In 

Proceedings of the 9th International Symposium on Asynchronous Circuits and Systems, 2003, pp. 206-215.  

[11] D. Sokolov, J. Murphy, A. Bystrov and A. Yakovlev, "Design and analysis of dual-rail circuits for 

security applications", IEEE Transactions on Computers, vol. 54, pp. 449-460, 2005.  

http://www.itrs.net/


 A Latency Optimized Biased Implementation Style Weak-indication Self-timed Full Adder 671 

[12] D. Koppad and A. Efthymiou, "BIST for strongly-indicating asynchronous circuits", In Proceedings of 

the 17th IFIP International Conference on Very Large Scale Integration, 2009, pp. 215-218.  

[13] A. Efthymiou, "Initialization-based test pattern generation for asynchronous circuits", IEEE 

Transactions on VLSI Systems, vol. 18, pp. 591-601, 2010.  

[14] J. Sparsø and S. Furber (Editors), Principles of Asynchronous Circuit Design: A Systems Perspective, 

Kluwer Academic Publishers, Netherlands, 2001.  

[15] Balasubramanian Padmanabhan, "Self-timed logic and the design of self-timed adders", PhD thesis, 

School of Computer Science, The University of Manchester, UK, 2010.   

[16] T. Verhoeff, "Delay-insensitive codes – an overview", Distributed Computing, vol. 3, pp. 1-8, 1998.  

[17] B. Bose, "On unordered codes", IEEE Transactions on Computers, vol. 40, pp. 1-8, 1988.  

[18] C.L. Seitz, "System Timing", Introduction to VLSI Systems, C. Mead and L. Conway (Editors), pp. 218-

262, Addison-Wesley, Reading, Massachusetts, USA, 1980.  

[19] P. Balasubramanian and D.A. Edwards, "Efficient realization of strongly indicating function blocks", In 

Proceedings of the IEEE Computer Society Annual Symposium on VLSI, 2008, pp. 429-432.  

[20] P. Balasubramanian and D.A. Edwards, "A new design technique for weakly indicating function 

blocks", In Proceedings of the 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits 

and Systems, 2008, pp. 116-121.   

[21] C. Jeong and S.M. Nowick, "Block-level relaxation for timing-robust asynchronous circuits based on 

eager evaluation", In Proceedings of the 14th IEEE International Symposium on Asynchronous Circuits 

and Systems, pp. 95-104, 2008.  

[22] A.J. Martin, "Asynchronous datapaths and the design of an asynchronous adder", Formal Methods in 

System Design, vol. 1, pp. 117-137, 1992.  

[23] P. Balasubramanian and D.A. Edwards, "A delay efficient robust self-timed full adder", In Proceedings 

of the IEEE 3rd International Design and Test Workshop, 2008, pp. 129-134.  

[24] J. Sparsø and J. Staunstrup, "Delay-insensitive multi-ring structures", Integration, the VLSI Journal, vol. 

15, pp. 313-340, 1993.  

[25] P. Balasubramanian and D.A. Edwards, "Self-timed realization of combinational logic", In Proceedings 

of the 19th International Workshop on Logic and Synthesis, 2010, pp. 55-62.  

[26] P. Balasubramanian, R. Arisaka and H.R. Arabnia, "RB_DSOP: a rule based disjoint sum of products 

synthesis method", In Proceedings of the 12th International Conference on Computer Design, 2012, pp. 

39-43.  

[27] A.J. Martin, "The limitation to delay-insensitivity in asynchronous circuits", In Proceedings of the 6th 

MIT Conference on Advanced Research in VLSI, 1990, pp. 263-278.  

[28] P. Balasubramanian and N.E. Mastorakis, "Timing analysis of quasi-delay-insensitive ripple carry 

adders – a mathematical study", In Proceedings of the 3rd European Conference of Circuits Technology 

and Devices, 2012, pp. 233-240.  

[29] P. Balasubramanian and N.E. Mastorakis, "QDI decomposed DIMS method featuring homogeneous/ 

heterogeneous data encoding", In Proceedings of the International Conference on Computers, Digital 

Communications and Computing, 2011, pp. 93-101.  

[30] Synopsys Digital Standard Cell Library SAED_EDK32/28_CORE Databook, Revision 1.0.0, 2012.   

[31] N.P. Singh, "A design methodology for self-timed systems", M.Sc. thesis, MIT Laboratory for Computer 

Science Technical Report TR-258, 1981.  

[32] W.B. Toms, "Synthesis of quasi-delay-insensitive datapath circuits", PhD thesis, School of Computer 

Science, The University of Manchester, UK, 2006.  

[33] B. Folco, V. Bregier, L. Fesquet and M. Renaudin, "Technology mapping for area optimized quasi delay 

insensitive circuits", In Proceedings of the IFIP International Conference on Very Large Scale 

Integration, 2005, pp. 146-151.  

[34] W.B. Toms and D.A. Edwards, "A complete synthesis method for block-level relaxation in self-timed 

datapaths", In Proceedings of the 10th International Conference on Application of Concurrency to System 

Design, 2010, pp. 24-34.  


