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Abstract. The presence of faults in a system leads to a lower value for efficiency, 

accuracy and speed, and, in some cases, even a complete breakdown. Thus, early fault 

detection is a major factor in efficiency and productivity of the procedure. In recent 

decades, many research studies have been conducted on troubleshooting and secondary 

fault detection. The current work presents an efficient and novel observer design capable 

of stabilizing the residue and dynamic error for the nonlinear Lipschitz systems with 

faults as well as a troubleshooting analysis and determining the formation of secondary 

faults in defective systems. The observer is designed based on linearizing dynamic error 

considering uncertainty, disturbance, and defects by employing non-linear gain factors 

instead of using state transformation. The dynamic error and residue stabilization of a 

non-linear faulty system have been discussed as well as the likelihood of secondary fault 

generation. The results indicate that the observer is able to determine fault-emergence, 

fault-disappearance and secondary fault formation well and quite fast. 
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1. INTRODUCTION 

In recent decades, many research studies have been drawn to fault-detection and system 

identification [1-5]. The presence of faults in a system leads to a lower value for efficiency, 

accuracy and speed, and, in some cases, even a complete breakdown. Thus, early fault 

detection is a major factor in efficiency and productivity of the procedure. 

The ability to detect faults quickly, without the need for signal excitation, and to detect 

faults online have made the observer-based fault detection one of the most popular methods 

for fault detection in non-linear systems; hence, numerous efforts have been made in recent 

years to further develop the mentioned method. 

Fault detection can be broadly classified into two categories, namely Model-based and 

Signal based. In the Model-based category, the accurate model of the system presented and 

any changes in the system parameters or fault occurrence have been studied by means of 

comparing of the faulty system with the healthy one.  In the Signal-processing method, 

fault signature can be extracted from the measured signal of system [6-7]. 

Fault-detection using sliding-mode observer has been presented in refs. [8-9], and 

utilizing unknown input observer for fault detection can be found in Refs. [10-14]. 

Detecting faults using adaptive observer are studied in refs. [15-17]. High gain observers 

[18-21] have been used frequently in non-linear systems, and a few cases where the Kalman 

Filter has been used are presented in refs. [21-24]. 

Although substantial research has been undertaken on the observer-based fault 

detection, few or no studies have been conducted to investigate secondary fault generation 

or troubleshoot detection using observer-based approaches. This "lack of interest" on the 

part of the researchers is simply due to the fact that the observer's stability is not guaranteed 

while detecting secondary fault generation or the de-faulting method in a defective system, 

and as such, it should not be seen as insignificant. In other words, no research has been 

conducted to ascertain the observer's stability for defective systems or to stabilize the 

dynamic error and residue in nonlinear systems. The authors of this study think that 

linearizing dynamic error and residue enables both stabilizing the observer of a defective 

system and tracking the faulty system's behavior. 

One of the most essential techniques for observer design is dynamic error linearization, 

which converts the non-linear system to an observable one by state transformation just as 

it converts the dynamic error to a linear form. 

Krener and Isidori [25] and Bestel and Zeits [26] pioneered dynamic error linearization. 

Since then, as a topic of significant interest to a large number of researchers, multiple 

strategies for further developing it to various classes have been offered [27-29]. One of the 

most compelling arguments in favor of linearization is that it ensures the observer's stability 

during fault detection. The observer will be able to estimate system parameters even in the 

presence of a fault (assuming the fault does not result in system failure but just modifies 

operating parameters) and will be able to forecast fault erasure as well as the appearance 

of secondary faults. However, linearizing dynamic faults solely through state transformations 

is a lengthy procedure that requires performing complex and numerous arithmetic calculations 

(such as solving a system of partial differential equations), and even then, finding the 

appropriate coordinate transformations is not always possible [29, 30]. The approaches 

available are restricted to a subset of non-linear systems. 

The requirement for state transition is the primary argument against such approaches. 

The disturbance and uncertainty are also transformed during state transformation, and the 
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knowledge regarding the nature of these variables is lost. The range and form of uncertainty 

as well as the order of disturbance are critical considerations in setting the fault-detection 

threshold, protecting the system from disturbance, and increasing the system's sensitivity 

to suspected problems. As a result, linearized dynamic error observers are rarely utilized 

for defect detection, state estimation, or parameter estimation in industrial systems, and are 

instead employed to structure and estimate the states of particular non-linear mathematical 

systems with limited classes. 

The authors of this article developed a novel method for linearizing dynamic error that 

eliminates the necessity for state translation and linearizes non-linear components [31]. To 

linearize the dynamic error, the non-linear term that emerges from the dynamic error 

equation is expressed as a factor of the dynamic error in the estimated state term and the 

system output. Stabilizing the dynamic error requires stabilizing the matrix of coefficients 

in the dynamic error differential equation. As a result, the error differential equation is 

stabilized, and gain factors are shown as functions of the estimated state and system output. 

Indeed, the error differential equation is linearized using nonlinear gain factors. 

The stability of such an observer is investigated in this study and in the continuation of 

ref. [31], and the requisite conditions for stabilizing the observer for residue tracking of a 

broken system to troubleshoot detection as well as secondary fault detection are demonstrated. 

Additionally, the estimation of fault and troubleshoot thresholds is detailed, and mathematical 

stabilization of the differential equation of dynamic error in faulty mode is demonstrated. The 

ability of the observer to detect defects in fault-free and defective systems as well as 

troubleshoot detection of a tunable micro capacitor subjected to nonlinear electrostatic 

force, are investigated and so is the behavior of residual and observer gains in faulty and 

fault-free modes. 

2. OBSERVER DESIGN FOR THE NONLINEAR LIPCHITZ SYSTEM 

2.1. Observer construction and dynamic error linearization 

This section will demonstrate the aforementioned observer's ability to linearize 

dynamic error and stabilize the residual in the presence of faults. The whole technique for 

designing an observer is described in ref [31]. To maintain the integrity and completeness 

of the fault detection process, a brief description of the observer design will be provided. 

The procedure is based on the transformation of non-linear terms into elements of the 

dynamic error in the variable that is dependent on the estimated state and output. This 

approach converts the system of differential equations governing dynamic error to a matrix 

of coefficients (in terms of the estimated state and output) and then stabilizes it before 

constructing the observer and determining its gains. 

To begin, the technique is provided with the assumption that there are no uncertainties 

in the system. 

Take the following non-linear system as an example: 

  (1) 

( , )x Ax x u

y Cx

dx
x

dt

= +

=

=
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in which, x∈𝑅𝑛, u∈𝑅𝑟, and y∈𝑅m represent state, known input and the system output, 

respectively. In the above equation A∈𝑅𝑛×𝑛 and C∈𝑅𝑚×𝑛 are system matrices of known and 

constant value. The function (x,u)∈𝑅𝑛 is a continuous, vector function of non-infinity 

extremes, i.e. it satisfies the Lipschitz condition [32]: 

  (2) 

in which, γ is a positive value denoting the Lipschitz coefficient of (𝑥,𝑢). Following 

observer is considered for estimating the state of the system (1): 

  (3) 

in which, X∈𝑅𝑛 and Y∈𝑅m represent the estimated state and the system output, respectively. 

L(X,y)∈𝑅m×𝑛 is the matrix of the observer gains, and it should be chosen in such a way that 

the dynamic error remains steady. (For the purpose of simplicity, L(X,y) will be written as 

L. Naturally, in addition to estimating the state, observer (3) can also estimate the system 

output. 

The following requirements must be followed in order to calculate the observer's gains 

[31]: 

▪ Matrices A and C must be observable, i.e., matrix [ACA … CAn-1]T must be of full rank. 

▪ Matrix C must be of full rank. 

▪ The non-linear term (𝑥,𝑢) must be uniquely determinable using the system output [31]. 

Now, assuming the state error to be e=x-X, the system of differential equations for error 

is determined as follows: 

  (4) 

In order to design the observer, L should be determined so that the dynamic errors are 

asymptotically stable. 

Lemma. If matrix F(y,X,u)∈Rn×n can be determined in such a way that satisfies the 

below equation, then the error vector is asymptotically stable, given the matrix [A-

LC+F(y,X,u)] is negative-definite [31]. 

  (5) 

Stabilizing the matrix [A-LC+F(y,X,u)], the observer's gains are calculable. The total 

of the elements on the main diagonal (trace of [A-LC+F(y,X,u)]) must be negative in order 

to stabilize the observer. Even and odd submatrices must have positive and negative 

determinants, respectively. This enables the determination of the observer gains to be made 

easily. The observer gains are determinable. Under such circumstances, the elements of 

F(y,X,u) are presented as part of the observer gains, and ultimately, the matrix [A-

LC+F(y,X,u)] is presented as a constant matrix independent of u, X, and y and the 

differential equation of dynamic error is linearized. The dynamic error approaches zero 

with an exponential rate and the convergence rate is determined as desired. 

Thus, determining F(y,X,u) seems to be the most challenging aspect of the whole 

procedure since all other tasks in the observer design are relatively straightforward. Two 

explicit methods for determining F(y,X,u) have been presented in Ref. [31]. 

( ) ( )1 2 1 2, ,x u x u x x  −  −

( ) ( )( ), ,X AX X u L X y y Y

Y CX

= + + −

=

( ) ( ) ( ), ,e A LC e x u X u = − + −

( )( ) ( ) ( ), , , ,F y X u x X x u X u − = −
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2.2. Ability of the observer to determine faults and categorizing the faults  

in the actuator and dynamic system 

The preceding section discusses the observer design technique for estimating output 

and system state. The dynamic error can be linearized using the gain factors that depend 

on the estimated state and output using the procedure described above. On this basis, the 

present part examines the stability of the error and residue following the appearance of 

defects in the system and determines the residue range for the defective condition. These 

are the detection thresholds for faults. The following conditions are required for system 

troubleshooting and secondary fault detection: 

▪ The dynamical system remains stable notwithstanding the emergence of primary and 

secondary faults. It is self-evident that no observer can detect an unstable system.  

▪ System stability should be guaranteed in the presence of uncertainty and disturbance. In 

other words, the value of the mentioned parameters should be in a range that does not 

cause any instability in microstructure. 

▪ Qualitative form of differential equation of dynamic error or governing dynamic 

equation of dynamical system should be untouched after fault emergence. For example, 

the size of A and C matrices should not be changed or primary form of (𝑥) should be 

fixed, but their magnitude can be changed. For example, neither the size of A and C 

matrices nor their fundamental form should be changed, but their magnitude can be 

adjusted. For example, matrix A can be changed from [0 1] to [2 3] but it should not be 

changed to [0 1 0]. Or (𝑥,) can be changed from 2sin(x) to 3sin(x) but it should not be 

changed from 2sin(x) to x2. 

Now, consider the dynamic system: 

  (6) 

in which, f1∈Rp and E1∈Rn×p denotes the fault and characteristics matrix, respectively (note 

that there are no null or zero elements in f1). If observer (3) is used to determine the output 

and residue of system (6), the system of differential equations for dynamic error may be 

presented as: 

  (7) 

in which, K is a negative definite matrix, and is determined by stabilizing                      [A-

LC+F(y,X,u)]. Note that K is not uniquely determined; t1 and e1 represent the time of fault 

formation and the value of the dynamic error in that time, respectively. Considering y=Cx 

and Eq. (7), the residue dynamic equation is derived as the following: 

  (8) 

in which, D=CK and E1C=CE1, while r1 is the residue at the time of fault emergence. The 

residue response for the above equation is: 

( ) 1 1,x Ax x u E f

y Cx

= + +

=

( )
1 1

1 1

e Ke E f

e t e

= +

=

( )
1 1

1 1

Cr Dr E f

r t r

= +

=
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  (9) 

If E1Cf1() satisfies F1d≤E1C≤F1u, the dynamic response limits are determined as: 

  (10) 

Now, since K is negatively definite and t1>t, the residue steady response is bound by  -

D-1F1u and –D-1F1d. In fact, these ranges demonstrate the upper and lower limit for detecting 

the fault f1 after formation. 

Now, suppose that at time t2, fault f2 is formed in the defective system (6). Or: 

  (11) 

in which, f2∈Rq and E2∈Rn×q represent the secondary fault and the secondary fault matrix 

(note that there are no zero elements in f2). If observer (3) is to be used in order to estimate 

the output and residue of system (11), the system of differential equations for dynamic 

error and residue may be presented as: 

  (12) 

in which, e2 and r2 represent the value of the dynamic error and residue for t>t2. Also, 

E2C=CE2. For Eq. (12), residue response for t>t2 is: 

  (13) 

If E1Cf1()+E2Cf2() satisfies F2d≤E1Cf1()+E2Cf2()≤F2u, the  dynamic response limits are 

determined as: 

  (14) 

Now, since K is negatively definite and t>t2, the residue steady response is bound by  –
D-1F2u and –D-1F2d. Note that E1f1=-E2f2 denotes de-faulting (troubleshoot). 

As can be observed, linearizing dynamic error and the residue enables the residue to be 
stabilized in the presence of a defect, which enables secondary fault identification and 
troubleshooting. 

This section established the observer's stability in the presence of faults, assuming no 
uncertainty or turbulence. When there is uncertainty or disturbance in the system, the 
problem can be handled without sacrificing its general utility; in this situation, the ranges of 
disturbance and uncertainty should be indicated in Eqs. (6) and (7). In other words, when 

( ) ( ) ( ) ( )
1

1 1 1 1 1exp exp
t

C

t

r t D t t r E f D t d  
  

= − + − −       
  



( ) ( ) ( )

( ) ( ) ( )

1 1

1 1 1 1

1 1

1 1 1 1

exp

exp

u u

d d

r t D t t r D F D F

r t D t t r D F D F

− −

− −

= − + −  

= − + −  

( ) 1 1 2 2,x Ax x u E f E f

y Cx

= + + +

=

( )

( )

1 1 2 2

2 2

1 1 2 2

2 2

C C

e Ke E f E f

e t e

r Dr E f E f

r t r

= + +

=

= + +

=

  ( ) ( ) 
2

2 2 1 1 2 2 2( ) exp ( ) ( ) ( ) exp
t

C Ct
r t D t t r E f E f D t d    = − + + − − 

 ( )

 ( )

1 1

2 2 2 2

1 1

2 2 2 2

( ) exp ( )

( ) exp ( )

u u

d d

r t D t t r D F D F

r t D t t r D F D F

− −

− −

= − + −

= − + −
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computing the residue ranges in Eqs. (9) and (10), it is necessary that the ranges for disturbance 

and uncertainty be added to F1d≤E1Cf1()+U+N≤F1u and F2d≤E1Cf1()+E2Cf2()+U+N≤F2u, in 
which U and N represent uncertainty and disturbance. 

3. RESULTS AND DISCUSSION 

3.1. Model description of the case study (micro tunable capacitor subjected to 

nonlinear electrostatic force) 

A parallel plate capacitor is depicted schematically in Fig. 1a [33]. It comprises a 

moveable electrode hung above a stationary conductor plate. Between two electrodes, the 

major gap is G1. Electrostatic attraction caused by the applied bias voltage u pushes the 

moveable electrode towards the fixed plate. The top view of the movable electrode, which 

is suspended by four supporting beams, is shown in Fig. 1b (two at each side). S and h 

denote the area and thickness of the moveable electrode, respectively. The width, thickness, 

and length of beams are denoted by the symbols b, h, and L. Each beam has an equivalent 

rigidity of K=12EIL-3 where E and I are, respectively, the Young's modulus and the cross 

section moment of inertia. With a density of ρ, the movable electrode is termed isotropic. 

 
(a) 

 
(b) 

Fig. 1 Micro tunable capacitor; a) Capacitor from side view, b) Capacitor from top view 

Governing dynamic equation of movable electrode of capacitor is as: 

  (15) 

where m=ρAh,c′, k=4K are mass, damping coefficient and resultant spring constant, 

respectively, t is time and ε0=8.854×10-12 C2N-1m-2 is permittivity of vacuum; z is 

deflection of movable electrode. Physical and geometrical properties of studied micro 

capacitor are presented in Table 1. 

For convenience, Eq. (15) may be rewritten in a non-dimensional form by defining the 

following parameters [34]: 

22
0

2 2

12( )

Aud z dz
m c z kz

dtdt G z


+ + =

−
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  (16) 

where x, c,  are dimensionless deflection, damping, and time.  is dimensionless 

parameter of electrostatic force. Therefore, Eq. (15) can be written as: 

  (17) 

Table 1 Physical and geometrical properties of micro capacitor 

A=400μm×400μm Area of movable electrode 

E=169 GPa Young modulus 

L=100 μm Length of each supporting beam 

b=5 μm Width of supporting beam 

h=1 μm Thickness of supporting beam 

mμ=4 1G Primary gap between two electrodes 
3=2300 Kg/mρ Density 

Eq. (17) can be presented is state space form as: 

  (18) 

Considering disturbance, uncertainty and fault vector, Eq. (18) is altered as: 

  (19) 

where x1=x and x2=dx1/dt, δ[0 αn2u2/(1-x1)2]T, δ′[0 sint]T,α(n2-1)u2/(1-x1)2[0 1]T are 

uncertainty, disturbance and fault vectors, respectively. The simulated fault is abrupt 

decreasing of the applied voltage which related by n in fault vector. For the fault-free 

system n=1 and for faulty system 0≤n<1, following observer is considered for output 

estimation and residual generation of system (19). 

  (20) 

3

1 0

, , , ,
2

o Az c m t
x c t

G kkt kG t


 

 


= = = = =

2 2

2 2(1 )

d x dx u
c x

dtdt x


+ + =

−

 

1 1 2

2 2 2

1

1

2

0
0 1

1 '
(1 )

1 0

x x
u

x xc
x

x
y

x



  
      

= +      − −      −  


  =    

( )

 

2 2
1 1 2 2 2

2
2 2 12 2

1 1

1

2

0 0
0 1 0 0 1

1 ' sin 1 (1 )
(1 ) (1 )

1 0

x x n u
u n u

x xc t x
x x

x
y

x


  

    
         −   

= + + + +            − − −            − −    


  =    

1 11 2

2 22 2

1

0
0 1

( )
1 '

(1 )

X LX
y Yu

X LcX
X

r y Y



  
        

= + + −        − −         − 
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where L1 and L2 are observer gains. With subtracting of Eq. (19) from Eq. (20), equation 

of dynamic error is extracted as: 

  (21) 

Attention toy=x1 and using proposed method for construction of F matrix [31] we have: 

  (22) 

So Eq. (21) can be rewritten as: 

  (23) 

Stabilizing the coefficient matrix in Eq. (23) is required to determine the observer gains. 

Through the stabilization of the coefficient matrix (for the stabilizing of the mentioned 

matrix, the even and odd sub matrices of the coefficient matrix must be positive and 

negative, respectively). Observer gains were calculated using this approach and are shown 

in the following equation: 

  (24) 

where ε1 and ε2 are positive numbers. By inserting the observer gains, the matrix of       A-

LC+F is extracted as follows: 

  (25) 

( )

( )

1 1 12 2

2 2 22 2

1 1

2 2

2 2

2

12

0
0 1

1
(1 ) (1 )

0
0 0 1

sin 1 (1 )
(1 )

e e L
y Yu u

e e Lc
x X
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0
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1
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1
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2
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1
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1
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3.2. Results of output estimation and fault detection  

In this section, the obtained results for fault detection, fault release, and fault detection 

of faulty micro tunable capacitor are presented. For this simulation u=3V, ε1=2, ε2=1 are 
intended. In this paper, the thresholds of a healthy system are shown with dot-dot (….). 
The thresholds of initial and secondary fault detection are line-line (----) and line-dot (-.-.-), 
respectively. A fault is considered as reduction of applied voltage. 

The thresholds for determining of the fault size for |δ|<0.1 and |δ′|<0.003 are 
determined and shown in Table 2. 

Table 2 The upper and lower thresholds for different magnitude of n for |δ|<0.1 and |δ′|<0.003 

n Upper threshold Lower threshold 

n=1 0.006392 0.006392- 
n=0.9 0.0001622- 0.01211- 
n=0.8 0.005673- 0.01722- 
n=0.7 0.01054- 0.02173- 
n=0.6 0.01475- 0.02564- 
n=0.5 0.01832- 0.02895- 
n=0.4 0.02123- 0.03166- 
n=0.3 0.0235- 0.03377- 
n=0.2 0.02512- 0.03527- 
n=0.1 0.0261- 0.03617- 
n=0 0.02642- 0.03647- 

The results of initial fault detection for various amounts of δ′ are shown in Figs. 2 to 4. 

The fault is considered as voltage decreasing where at t=6.2×10-3s magnitude of n=1 

abruptly decreased to n=0.7. As can be seen from these figures, the observer is able to 

determine the size of the fault for different magnitude of δ′. Also, it can be seen from this 

figure that an abrupt change of residual is observed as soon as a fault occurs. And the 

residual is settled in the bound of relevant threshold.   

 

Fig. 2 Fault detection result for n=0.7 and δ′=0 
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Fig. 3 Fault detection result for n=0.7 and δ′=0.003 

 

Fig. 4 Fault detection result for n=0.7 and δ′=-0.003 

Fig. 5 also shows the time depending variation of gain L2. As shown in this figure, as soon 

as a fault occurs, the coefficient of L2 changes significantly and after a short time, converges to 

 

Fig. 5 Time dependent variation of L2 for n=1 (t<6.2×10-3s), n=0.7(t≥6.2×10-3s) and  δ′=-0.003 
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near 0.005 . Considering Figs. 2 to 5, it is obvious that residual and observer gain have similar 

shapes. They have considerable change after fault occurrence and also converge to specific 

magnitude. 

Now consider that at t=6.2×10-3s the applied voltage change from 1u(n=1) to 0.7u  

(n=0.7) and at t=12.4×10-3s the actuator fault is released and the voltage is increased from 

0.7u to 1u (troubleshoot). 

For this situation, after fault is released, the residual must be settled in healthy threshold 

zone. Fig. 6 illustrates this condition for δ′=0.05. As shown in this figure the presented 

observer has a good ability for detecting the fault occurrence and troubleshooting. Fig. 7 

shows change of L2 versus time. Also, in this case a meaningful similarity can be observed 

in the behavior of Figs. 6 and 7. 

 

Fig. 6 Fault and troubleshoot detection for n=0.7 and δ′=0.05 

 

Fig. 7 Variation of L2 for simulation of Fig. 6 
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In the continuation of this section, we intend to examine the observer’s ability for secondary 
fault detection. It means that initially a fault has occurred in the system, and then another fault 

occurs in the faulty system. For example, at t=6.2×10-3s the applied voltage decreases from 1u 

to 0.7u, and then at t=12.4×10-3s the applied voltage decreases from 0.7u to zero.  
Fig. 8 shows the simulation results for such a situation. As it is obvious from this figure, 

the observer is able to detect a secondary fault in the system at an acceptable speed and can 
accurately calculate the secondary fault level. As can be seen in Fig. 9, after the formation 
of the primary and secondary faults, L2 changes substantially. 

 

Fig. 8 The initial (n=0.7) and secondary (n=0) fault defection using proposed observer 

 
Fig. 9 Time dependent variation of L2 for simulation results of Fig. 8 

4. CONCLUSION 

Troubleshooting and the creation of secondary defects in already problematic systems 
were studied in this research utilizing observer-based methodologies due to their relative 
relevance. To accomplish this, an observer capable of linearizing the differential equation 
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of dynamic error and residue was used. It was demonstrated that the linearization approach 
used ensures the observer's stability in the presence of faults and enables tracking of the 
residue's behavior even after the onset of faults in order to assess fault disappearance or the 
generation of secondary faults. The proposed observer design approach does not require 
state transformation and is based on rewriting the error differential equation non-linearity 
in terms of a non-linear term dependent on the estimated state and output. Additionally, the 
necessary circumstances for the construction and stabilization of observers were discussed. 
Finally, the observer's capacity to detect fault creation, troubleshoot, and the onset of 
secondary faults was investigated. 

The system under investigation comprised a micro tunable capacitor that was subjected 

to an electrostatic force that was non-linear. The results demonstrate that the observer is 

capable of accurately determining fault emergence, fault disappearance, and secondary fault 

creation. Additionally, it was demonstrated that when flaws manifest, a dramatic change in 

L2 can be noticed. 

REFERENCES 

1. Isermann, R., 2006, Fault-diagnosis systems: an introduction from fault detection to fault tolerance, 

Springer Science & Business Media. 
2. Čiča, Đ., Zeljković, M., Tešić, S., 2020, Dynamical contact parameter identification of spindle-holder-tool 

assemblies using soft computing techniques, Facta Universitatis-Series Mechanical Engineering, 18(4), pp. 

565-577. 
3. Mellit, A., Tina, G.M., Kalogirou, S.A., 2018, Fault detection and diagnosis methods for photovoltaic 

systems: A review, Renewable and Sustainable Energy Reviews, 91, pp. 1-17. 

4. Attaran, B., Ghanbarzadeh, A., 2015, Bearing Fault Detection Based on Maximum Likelihood Estimation 
and Optimized ANN Using the Bees Algorithm, Journal of Applied and Computational Mechanics, 1(1), 

pp. 35-43. 

5. Wu, R.T., Jahanshahi, M.R., 2020, Data fusion approaches for structural health monitoring and system 
identification: past, present, and future, Structural Health Monitoring, 19(2), pp. 552-586. 

6. Alzghoul, A., Jarndal, A., Alsyouf, I., Bingamil, A.A., Ali, M.A., AlBaiti, S., 2021, On the Usefulness of 

Pre-processing Methods in Rotating Machines Faults Classification using Artificial Neural 
Network, Journal of Applied and Computational Mechanics, 7(1), pp. 254-261. 

7. Jahangiri, M., Roknizadeh, S.A.S., 2018, Clogged impeller diagnosis in the centrifugal pump using the 

vibration and motor current analysis, Journal of Applied and Computational Mechanics, 4(4), pp. 310-317. 
8. Hamdi, H., Rodrigues, M., Mechmeche, C.H., Braiek, N.B., 2019, Fault diagnosis based on sliding mode 

observer for LPV descriptor systems, Asian Journal of Control, 21(1), pp. 89-98. 

9. Ríos, H., Punta, E., Fridman, L., 2017, Fault detection and isolation for nonlinear non-affine uncertain 
systems via sliding-mode techniques, International Journal of Control, 90(2), pp. 218-230. 

10. Triki, I., Massaoud, R.B., Bouani, F., 2020, Unknown Input Observer-Based Design for a Class of 

Nonlinear System with Time-Variable Delay, Journal of Control, Automation and Electrical Systems, 

31(5), pp. 1097-1107. 

11. Zhou, M., Wang, Z., Shen, Y., 2017, Fault detection and isolation method based on H−/H∞ unknown input 

observer design in finite frequency domain, Asian Journal of Control, 19(5), pp. 1777-1790. 
12. Xu, F., Tan, J., Wang, X., Puig, V., Liang, B., Yuan, B., 2017, Mixed active/passive robust fault detection 

and isolation using set-theoretic unknown input observers, IEEE Transactions on Automation Science and 

Engineering, 15(2), pp. 863-871. 
13. Mobki, H., Sadeghi, M. H., Rezazadeh, G., 2015, Design of Direct Exponential Observers for Fault 

Detection of Nonlinear MEMS Tunable Capacitor, IJE TRANSACTIONS A: Basics, 28(4), pp. 634-641. 

14. Tolouei, H., Shoorehdeli, M.A., 2021, Nonlinear Parity Approach to Fault Detection in Nonlinear Systems 
Using Unknown Input Observer, Iranian Journal of Science and Technology, Transactions of Electrical 

Engineering, 45, pp. 321-333. 

15. Chatterjee, S., Sadhu, S., Ghoshal, T.K., 2017, Improved estimation and fault detection scheme for a class 
of non-linear hybrid systems using time delayed adaptive CD state estimator, IET Signal Processing, 11(7), 

pp. 771-779. 



 Designing an Efficient Observer for Non-linear Lipschitz Systems to Troubleshoot... 691 

16. Kazerooni, M., Khayatian, A., Safavi, A., 2018, Fault estimation for a class of interconnected non-linear 
systems  with time-varying delay using robust adaptive unknown input observers, IMA Journal of 

Mathematical Control and Information, 35(1), pp. 231-247. 

17. Sinha, V., Mondal, S., 2021, Adaptive unknown input observer approach for multi-fault diagnosis of PEM 
fuel cell system with time-delays, Journal of Control and Decision, 8(2), pp. 222-232. 

18. Boum, A.T., Talla, S., 2019, High gain observer and moving horizon estimation for parameters estimation 

and fault detection of an induction machine: A comparative study, Journal of Control & Instrumentation, 
8(2), pp. 15-26. 

19. Ma, H.J., Liu, Y., Li, T., Yang, G.H., 2018, Nonlinear high-gain observer-based diagnosis and 

compensation for actuator and sensor faults in a quadrotor unmanned aerial vehicle, IEEE Transactions 

on Industrial Informatics, 15(1),  pp. 550-562. 

20. Trejo, D.R.E., Taheri, S., Sánchez, J.A.P., 2019, Switch fault diagnosis for boost DC–DC converters in 

photovoltaic MPPT systems by using high-gain observers, IET Power Electronics, 12(11), pp. 2793-2801. 
21. Baranowski, J., Bania, P., Prasad, I., Cong, T., 2017, Bayesian fault detection and isolation using Field 

Kalman Filter, EURASIP Journal on Advances in Signal Processing, 2017, 79. 

22. Faraji, A., Nejati, Z., Abedi, M., 2020, Actuator Faults Estimation for a Helicopter UAV in the Presence 
of Disturbances, Journal of Control, Automation and Electrical Systems, 31, pp. 1153-1164. 

23. Zarei, J., Kowsari, E., Razavi-Far, R., 2018, Induction motors fault detection using square-root transformed 

cubature quadrature Kalman filter, IEEE Transactions on Energy  Conversion, 34(2), pp.  870-877. 
24. Liu, L., Zhu, J., Lei, Y., 2021, A Generalized Identification of Joint Structural State and Unknown Inputs 

Using Data Fusion MKF-UI, Journal of Applied and Computational Mechanics, 2021. 7, pp.  1198-1204. 

25. Krener, A.J., Isidori, A., 1983, Linearization by output injection and nonlinear observers, Systems & 
Control Letters, 3(1), pp. 47-52. 

26. Bestle, D., Zeitz, M. 1983, Canonical form observer design for non-linear time-variable systems, 

International Journal of control, 38(2), pp. 419-431. 
27. Califano, C., Moog, C.H., 2014, The observer error linearization problem via dynamic compensation, 

IEEE Transactions on Automatic Control, 59(9), pp. 2502-2508. 

28. Lee, H.G., Kim, K.D., Jeon, H.T., 2015, Restricted dynamic observer error linearizability, Automatica, 
53, pp. 171-178. 

29. Lee, H.G., 2017, Verifiable conditions for multioutput observer error linearizability, IEEE Transactions 

on Automatic Control, 62(9), pp. 4876-4883. 
30. Lynch, A.F., Bortoff, S.A., 1997, Non-linear observer design by approximate error linearization, Systems 

& Control Letters, 32(3), pp. 161-172. 

31. Mobki, H., Sadeghi, M.H., Eskandari, M.M., 2020, A New Procedure for Linearizing Dynamic Error and 
Establishing Absolute Robustness  to Lipschitz Nonlinearity, Journal of Control, Automation and Electrical 

Systems, 31, pp. 625-635. 

32. Mobki, H., Sadeghi, M.H., Rezazadeh, G., 2015, Application of Thau observer for fault detection of micro 
parallel plate capacitor subjected to nonlinear electrostatic force, International Journal of Engineering, 

28(2), pp. 270-276. 
33. Mobki, H., Sadeghi, M.H., Rezazadeh, G., 2015, State estimation of MEMs capacitor using Taylor 

expansion, International Journal of Engineering, 28(5), pp. 764-770. 

34. Mobki, H., Majidzadeh Sabegh, A., Azizi, A., Ouakad, H.M., 2020,  On the implementation of adaptive 
sliding mode robust controller in the stabilization of electrically actuated micro-tunable capacitor, 

Microsystem Technologies, 26, pp. 3903-3916. 


