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Abstract. This study investigates the stability of periodic solutions of a nonlinear 

nonlocal strain gradient functionally graded Euler–Bernoulli beam model resting on a 

visco-Pasternak foundation and subjected to external harmonic excitation. The 

nonlinearity of the beam arises from the von Kármán strain-displacement relation. 

Nonlocal stress gradient theory combined with the strain gradient theory is used to 

describe the stress-strain relation. Variations of material properties across the thickness 

direction are defined by the power-law model. The governing differential equation of 

motion is derived by using Hamilton's principle and discretized by the Galerkin 

approximation. The methodology for obtaining the steady-state amplitude-frequency 

responses via the incremental harmonic balance method and continuation technique is 

presented. The obtained periodic solutions are verified against the numerical integration 

method and stability analysis is performed by utilizing the Floquet theory. 

Key words: Nonlocal strain gradient theory, Functionally graded beams, Pasternak 
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1. INTRODUCTION 

Traditional composites are homogeneous mixtures of two or more materials, where 

compromise is made between the desirable properties of the component materials. On the 

contrary, a functionally graded material (FGM) is a two-component composite 

characterized by a compositional gradient from one component to the other and because 
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significant proportions of FGM contain pure forms of each component, the need for 

compromise is eliminated. In such a case, the properties of both components can be fully 

utilized [1, 2]. Although a significant amount of work is done in the field of FG structures, 

there is still a lot of space and need for the investigation of MEMS/NEMS systems 

composed of FGMs. Nanobeams and nanoplates are used in different MEMS/NEMS 

devices [3, 4], such as microactuators [5], microswitches [6], micro sensors [7, 8], 

nanoscale resonators [9], energy harvesting nanodevices [10], etc. Besides that, carbon 

nanotubes are used as an addition in some mixtures to increase the dynamic stability of the 

material [11]. The dynamics of such systems can be studied through experiments [12, 13], 

molecular dynamics simulations [14], and continuum mechanics [15, 16, 17]. 

The most vastly used continuum theories for studying nanostructures are: nonlocal 

elasticity theory [17, 18], strain gradient theory [13, 19], modified couple stress theory (or 

modified strain gradient theory) [20], the surface elasticity theory [21], and the nonlocal 

strain gradient theory (NLSGT) [22], which includes both nonlocal and length scale effects 

into consideration. An overview of available theories and methodologies for the analysis 

of nano-isotropic, nano-functionally graded, and CNT reinforced nanocomposite structures 

is given by Garg et al. [23]. 

Nonlinearity can be introduced in beam vibration problems through geometric 

imperfections in beam material [24] and foundation [25]. Geometric material nonlinearity 

is usually introduced with von Kármán strain-displacement relation [24, 26, 27]. Simsek 

[26] examined the nonlinear vibration behavior of an NLSGT Euler-Bernoulli FG beam 

with von Kármán’s geometric nonlinearity. Liu et al. [24] studied the nonlinear vibration 

of FG sandwich NLSGT beams in the presence of initial geometric imperfection induced 

by the von Kármán theory and a cosine function. They solved a nonlinear differential 

equation and obtained nonlinear frequency relation by using He’s variational principle. 

A nonlocal theory proposed by Eringen can be utilized in differential and integral 

forms. The integral form is more general and accurate but complex to apply when solving 

advanced problems. The differential form is straighter forward in the application. For most 

cases of boundary conditions, it is scientifically proven that the differential form is equal 

to the integral form. However, cantilever beams give contradictory results when employing 

integral and differential forms. Barreta and Marotti de Sciarra [28] suggested a 

methodology to bridge two forms by replacing the integral form with differential with 

additional constitutive boundary conditions which is applied to several simple problems 

[29, 30, 31]. Still, the equation of motion, for a problem similar in complexity to ours, is 

exclusively derived in differential form as can be found in recently published papers [24, 

26, 32, 33, 34]. Therefore, we will utilize differential approach, but limit our research on 

pinned-pinned, clamped-pinned and clamped-clamped boundary conditions, since 

clamped-free boundary conditions produce contradictory results.   

In recent times, stress-driven, strain-driven, and foundation-driven vibrations have 

become in research focus. Penna et al. [35] investigated nonlinear free vibrations of 

geometrically imperfect FG nano-beams based on stress-driven nonlocal elasticity. Penna  

and Feo [36] studied nonlinear free vibrations of functionally graded porous Bernoulli–

Euler nano-beams resting on a Winkler elastic foundation through a stress-driven nonlocal 

elasticity model. Vaccaro et al. [37] studied the size-dependent behavior of nonlocal elastic 

beams by adopting the stress-driven elasticity theory where the kinematics of beams is 

modeled by the Reddy variational third-order beam theory. Ansari et al. [38] used strain-

driven nonlocal formulations of Eringen’s theory in both differential and integral forms for 
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a numerical study of free vibration behavior of piezoelectric Bernoulli–Euler nanoscale 

beams considering flexoelectric and nonlocal effects. Comparative studies between stress-

driven and strain-driven nonlocal elasticity theory have been made by several authors [39, 

40, 41]. Elasto-statical displacement-driven nonlocal problems are studied by Vaccaro 

[42], Patnaik [43] and Pinnola [44]. Moreover, Pinnola et al. [44] have studied the elasto-

static problems of classical Euler-Bernoulli beam on a reaction-driven nonlocal foundation. 

They proposed an integral elasticity mixture considering a convex combination of Winkler 

(local) and Wieghardt (nonlocal) laws and applied the proposed methodology to find 

analytical solutions to simple elasto-static problems in structural mechanics. 

The dynamic behaviour of NLSGT structures composed of FGM was studied by many 

authors. The most common approach in their analysis includes applying different 

perturbation methods. For example, Gao et al. [45] studied the nonlinear free vibration of 

FG circular nanotubes using NLSGT and two steps perturbation method. By using the same 

methodology, they also studied the vibration of nano arches [46], and FG nanobeams with 

several different functionally graded distributions [47]. El-Borgi et al. [15] investigated the 

free and forced vibration response of a simply supported FG beam resting on the nonlinear 

elastic foundation using the perturbation multiple scales method to obtain the amplitude-

frequency curves of the system. Wang and Shen [48] studied the lateral nonlinear vibration 

of an axially moving simply supported viscoelastic NLSGT beam. For obtaining the 

steady-state amplitude-frequency responses in the subharmonic parametric resonance 

regime a direct multiple scales method is used. Jafarsadeghi-Pournaki et al. [49] 

investigated the heat-induced nonlinear vibration of FG capacitive nanobeam based on 

NLSGT. They used averaging perturbation method to obtain the governing equations and 

study the steady-state responses. Li et al. [50] studied analytically the longitudinal vibration 

of NLSGT rods and discovered that the NLSGT rod model shows a stiffness-softening 

effect when the nonlocal parameter is larger than the length scale parameter and a stiffness-

hardening effect in the opposite case. However, the main disadvantage of perturbation 

methods is that they can only treat systems with small nonlinearity. Nanostructures 

modeled by nonlocal stress and strain gradient theory are also studied by other methods, 

for example, the differential quadrature method. Li [51] used the generalized differential 

quadrature method to investigate the vibration of axially FG beams based on NLSGT and 

Euler-Bernoulli beam theory. However, in the recent time, the IHB method becomes 

popular in the investigation of nonlinear dynamical systems with harmonically varied 

excitation. In an interesting work of Bhattiprolu et al. [52], they found periodic solutions 

of a nonlinear Euler-Bernoulli beam resting on viscoelastic uni- and bilateral foundations 

by using the incremental harmonic balance method (IHBM). However, they investigated 

vibration of a linear beam on a nonlinear foundation subjected to multiple concentrated 

forces and only pinned-pinned boundary conditions. Our considered beam is nonlinear with 

three different boundary conditions. The advantage of IHB over other methods is in its 

accuracy, the possibility to treat small and huge nonlinearities, and relatively simply 

implementation. Perturbation methods can solve differential equations with small 

nonlinear terms and rather simple problems. Therefore, IHB is used in our work to find 

periodic solutions when strong nonlinearity is present in the system. 

Stability of FG nanobeams has been investigated in the literature by using several 

different criteria and methods. Wang and Shen [48] employed the Routh–Hurwitz criterion 

to determine the stability of the (non-) zero equilibrium solution of nonlinear laterally 

vibrating axially moving simply supported viscoelastic NLSGT beam. Jafarsadeghi-
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Pournaki et al. [49] used a shooting technique in conjunction with the Floquet theory for 

capturing the periodic motions and examining their stability of heat-induced nonlinear 

vibration of FG NLSGT capacitive nanobeam. Jalaei et al. [53] investigated the dynamic 

stability of a temperature-dependent Timoshenko FG nanobeam under the axial excitation 

load and magnetic field in a thermal environment by using Navier's and Bolotin's method. 

In this paper, we used Floquet theory to determine the stability of our model because it is 

suitable to be implemented coupled with the IHB method. 

Nešić et al. [27] studied the vibration of a nonlocal nonlinear FG beam on the fractional 

visco-Pasternak foundation based on the amplitude-frequency response analysis and 

utilizing the IHB, perturbation multiple scales, and Newmark methods to find and confirm 

the periodic solution. In the current paper, the stability of periodic solutions is investigated 

for the amplitude-frequency responses of a nonlinear nonlocal strain gradient functionally 

graded Euler–Bernoulli beam model resting on a visco-Pasternak foundation and subjected 

to external harmonic excitation. Therefore, this study can be considered as a special case 

and natural extension of the work done by Nešić et al. in [27] since a special case of the 

visco-Pasternak foundation model without fractional derivatives is adopted and stability of 

periodic solutions analysis is performed. Nonlinear von Kármán strain-displacement 

relation is used together with the nonlocal stress and strain gradient theories. Variations of 

material properties across the thickness direction are defined by the power-law model. The 

governing differential equation of motion is derived by using Hamilton's principle and then 

discretized by the Galerkin approximation. The incremental harmonic balance method and 

continuation technique are employed to obtain the amplitude-frequency responses and 

some periodic solutions are verified against the numerical integration Runge-Kutta method. 

For each periodic solution, a stability check is performed by utilizing Floquet theory.  

The novelty in presented paper includes introduction of the model of nonlocal nonlinear 

FG beam vibrating on the visco-Pasternak foundation. Nonlinearity is introduced via von 

Karman strain-displacement relation and nonlocality through strain gradient and stress 

gradient constitutive relations. The proposed visco-Pasternak foundation is defined with 

four parameters enabling modeling of vast range of practical foundations. Originality is 

obtaining periodic solutions for such a system by using IHB method and continuation 

technique and analyzing amplitude-frequency response curves for different parameters.  

Additional novelty is utilizing Floquet theory to determine stability of periodic solutions 

for different excitation frequencies of such vibrating system and usage of basins of 

attraction to determine stability of the solution based on initial conditions. 

Technical interest in considering such structural schemes includes the development of 

MEMS/NEMS devices composed of small beams that can vibrate on a broad type of elastic 

supports. In the practical implementation, specific end supports might be preferable. 

Therefore, three different boundary conditions are considered to demonstrate their 

influence on vibration behavior. 

2. GOVERNING EQUATION OF FG BEAM ON A VISCO-PASTERNAK FOUNDATION 

Let us consider a mechanical model of a beam as given in Fig. 1. Relations for Young's 

modulus and density of FG beam, as well as relations for the nonlocal strain gradient theory 

can be found in the Appendix of the paper [27]. 
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Fig. 1 Model of the simply-supported nonlinear nonlocal strain gradient FG beam resting 

on a visco-Pasternak foundation and excited by traverse load 

The displacement field of the Euler-Bernoulli beam is given as:  

 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤

𝜕𝑥
,

𝑢𝑦(𝑥, 𝑧, 𝑡) = 0,

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡),

  (1) 

where ux, uy, and uz denote the displacements along with the length, width, and thickness 

directions, described by x, y and z coordinates, respectively. Functions u and w are the axial 

and transverse displacements of the physical middle surface, respectively. The only non-

zero strain component of the Euler-Bernoulli beam is described in terms of displacements 

with von Kármán's nonlinearity as 

 𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

− 𝑧
𝜕2𝑤

𝜕𝑥2 . (2) 

Following stress resultants are considered in further study:  

 
𝑁𝑥𝑥 = ∫ 𝑡𝑥𝑥𝑑𝐴

𝐴
, 𝑁𝑥𝑥

(0)
= ∫ 𝜎𝑥𝑥𝑑𝐴,

𝐴
𝑁𝑥𝑥

(1)
= ∫ 𝜎𝑥𝑥

(1)
𝑑𝐴,

𝐴

𝑀 = ∫ 𝑧𝑡𝑥𝑥𝑑𝐴
𝐴

, 𝑀(0) = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

, 𝑀(1) = ∫ 𝑧𝜎𝑥𝑥
(1)

𝑑𝐴.
𝐴

 (3) 

where Nxx, N(0)
xx and N(1)

xx are axial forces due to total stress txx, nonlocal stress σxx and 

high-order nonlocal stress σ(1)
xx, respectively. All stresses are in axial direction. M, M(0) and 

M(1) are bending moments resulting from the following stresses in axial direction: total, 

nonlocal and high-order nonlocal, respectively. Additionally, the extensional Axx and the 

bending coefficient Dxx are defined in the following form: 

 {𝐴𝑥𝑥 , 𝐷𝑥𝑥} = 𝑏 ∫ {1, 𝑧2}
𝐻/2−𝑐

−𝐻/2−𝑐
𝐸(𝑧)𝑑𝑧, (4) 

where H represents the beam height and c is the distance between physical and geometrical 

middle surfaces of the beam. Note that for homogeneous beam Axx = EA and Dxx = EI, with 

E denoting Young’s modulus, A cross sectional area and I second moment of area. Reaction 

force of the visco-Pasternak foundation acting on the beam is defined as [27]: 

𝐹𝑚 = (𝑘𝑤 + 𝐾𝑤
𝜕

𝜕𝑡
) 𝑤 − (𝑘𝑔 + 𝐾𝑔

𝜕

𝜕𝑡
)

𝜕2𝑤

𝜕𝑥2 ,                                       (5) 

with the elastic Pasternak parameters kw, kg and viscose constants Kw, Kg shown in Fig. 1. 

Note that the time derivative in Eq. (5) is in the paper [27] replaced with a more general 
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fractional derivative, being a real number, with values between 0 and 1 that have a physical 

meaning. Foundations described with fractional derivatives as in [27] are more general and 

therefore can describe a broader range of real value applications. However, a disadvantage 

of the fractional derivative model is that a stability analysis of fractional differential 

equations cannot be done with straightforward methods presented in this paper. 

After following of the procedure presented in [27], we obtain expressions for variations 

of strain, kinetic and external energy. After applying Hamilton's principle as given in [27], 

two equations of motion are obtained. We assume fast dynamics, which means that 

acceleration in an axial direction is negligible. Finally, this leads us to the following 

equation of motion of a nonlinear FG beam resting on the visco-Pasternak foundation:  

 
(1 − 𝜇2 𝜕2

𝜕𝑥2) [−
𝐴𝑥𝑥

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝜕2𝑤

𝜕𝑥2

𝐿

0
− 𝑚2

𝜕4𝑤

𝜕𝑥2𝜕𝑡2 +
𝜕2𝑤

𝜕𝑡2 + 𝑏𝑘𝑤𝑤 + 𝑏𝐾𝑤
𝜕𝑤

𝜕𝑡

−𝑏𝑘𝑔
𝜕2𝑤

𝜕𝑥2 − 𝑏𝐾𝑔
𝜕3𝑤

𝜕𝑡𝜕𝑥2 + 𝑄 𝑐𝑜𝑠 𝛺1 𝑡] + 𝐷𝑥𝑥 (1 − 𝑙2 𝜕2

𝜕𝑥2)
𝜕4𝑤

𝜕𝑥4 = 0,
 (6) 

where b is the beam width, μ and l are small parameters in nonlocal and strain gradient 

theory, m2 is the second moment of inertia, Q and Ω1 are the external force magnitude and 

frequency, respectively. Eq. (6) is non-dimensional with the following relations: 

 

𝑋 =
𝑥

𝐿
, 𝑊 =

𝑤

𝑘𝑥
, 𝛴 =

𝑙

𝐿
, 𝜆 =

𝜇

𝐿
, 𝜁 =

𝑏

𝐿
, 𝜏 = 𝑡

𝑘𝑥

𝐿2 √
𝐴𝑥𝑥

𝑚0
,

𝛺 = 𝛺1
𝐿2

𝑘𝑥
√

𝑚0

𝐴𝑥𝑥
, 𝐹 =

𝑄𝐿4

𝐴𝑥𝑥𝑘𝑥
3 , 𝑦 =

𝑚2

𝑚0𝐿2 , 𝑘𝑥 = √
𝐷𝑥𝑥

𝐴𝑥𝑥
,

𝑘1 =
𝜁𝑘𝑤𝐿5

𝐴𝑥𝑥𝑘𝑥
2 , 𝐾1 =

𝜁𝐾𝑤𝐿3

𝑘𝑥√𝐴𝑥𝑥𝑚0
, 𝑘2 =

𝜁𝑘𝑔𝐿3

𝐴𝑥𝑥𝑘𝑥
2 , 𝐾2 =

𝜁𝐾𝑔𝐿

𝑘𝑥√𝐴𝑥𝑥𝑚0
.

  (7) 

Note that radius of gyration kx, appearing in Eq. (7), for the homogenous beam is 

kx = (Ix /A)1/2. Non-dimensional form of equation of motion Eq. (6), obtained by substituting 

Eq. (7) in Eq. (6) is 

 
(1 − 𝜆2 𝜕2

𝜕𝑋
2) [−

1

2
∫ (

𝜕𝑊

𝜕𝑋
)

2

𝑑𝑋
𝜕2𝑊

𝜕𝑋
2

1

0
− 𝑦

𝜕4𝑊

𝜕𝑋
2

𝜕𝜏2
+

𝜕2𝑊

𝜕𝜏2 + 𝑘1𝑊 + 𝐾1
𝜕𝑊

𝜕𝜏

−𝑘2
𝜕2𝑊

𝜕𝑋
2 − 𝐾2

𝜕3𝑋

𝜕𝜏𝜕𝑋
2 + 𝐹 𝑐𝑜𝑠 𝛺 𝜏] + (1 − 𝛴2 𝜕2

𝜕𝑋
2)

𝜕4𝑊

𝜕𝑋
4 = 0.

 (8) 

The solution of Eq. (8) could be assumed as a sum of products of amplitude and time 

functions for each mode. Nayfeh and Lacarbonara [54] have shown in their study that in 

certain cases one-mode Galerkin approximation fails to predict the dynamic behavior of 

hinged-hinged beams, especially when quadratic type nonlinearity is involved and even 

modes are observed in certain subharmonic or superharmonic resonance conditions. Since 

we have only a cubic nonlinear term, we will use only a single mode discretization which 

is the most commonly used method in the investigation of nonlinear structural vibration 

problems [15, 22, 26, 55, 56]. The solution of Eq. (8) is assumed as 

 𝑊(𝑋, 𝜏) = 𝜑𝑛(𝑋)𝑞(𝜏), (9) 

where φn is the amplitude function, q is the time function and n = 1, 2, ... is the mode 

number. Amplitude function φn, also known as eigenfunction, can be defined as the form 

of trigonometric functions and should satisfy the boundary conditions. In the present paper, 
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three different boundary conditions are taken into account: pinned-pinned (P-P), clamped-

pinned (C-P) and clamped-clamped (C-C), and the amplitude function for each case is 

given in Eq. (10), respectively [34], as 

 𝜑𝑛(𝑋) = |
|

𝑠𝑖𝑛 𝛾𝑛 𝑋, 𝛾𝑛 = 𝑛𝜋,

(𝑠𝑖𝑛 𝛾𝑛 𝑋 − 𝑠𝑖𝑛ℎ 𝛾𝑛 𝑋) −
𝑠𝑖𝑛 𝛾𝑛+𝑠𝑖𝑛ℎ 𝛾𝑛

𝑐𝑜𝑠 𝛾𝑛+𝑐𝑜𝑠ℎ 𝛾𝑛
(𝑐𝑜𝑠 𝛾𝑛 𝑋 − 𝑐𝑜𝑠ℎ 𝛾𝑛 𝑋), 𝑡𝑎𝑛 𝛾𝑛 = 𝑡𝑎𝑛ℎ 𝛾𝑛 ,

(𝑠𝑖𝑛 𝛾𝑛 𝑋 − 𝑠𝑖𝑛ℎ 𝛾𝑛 𝑋) −
𝑠𝑖𝑛 𝛾𝑛−𝑠𝑖𝑛ℎ 𝛾𝑛

𝑐𝑜𝑠 𝛾𝑛−𝑐𝑜𝑠ℎ 𝛾𝑛
(𝑐𝑜𝑠 𝛾𝑛 𝑋 − 𝑐𝑜𝑠ℎ 𝛾𝑛 𝑋), 𝑐𝑜𝑠 𝛾𝑛 𝑐𝑜𝑠ℎ 𝛾𝑛 = −1.

 (10) 

Coefficients s0 - s5 are calculated as  

 {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} = ∫ {𝜑, 𝜑2, 𝜑″𝜑, 𝜑𝐼𝑉𝜑, 𝜑𝑉𝐼𝜑, 𝜑′2}𝑑𝑋.
1

0
 (11) 

We replace Eq. (9) into Eq. (8), and use Eq. (11) to obtain nonlinear differential equation 

as 

 �̈� + 𝛾�̇� + 𝜔0
2𝑞 + 𝜃𝑞3 = 𝑓 𝑐𝑜𝑠 𝛺 𝜏, (12) 

with the following coefficients 

 

𝛾 =
𝐾1𝑠1−𝐾2𝑠2−𝜆2𝐾1𝑠2+𝜆2𝐾2𝑠3

𝑠1−𝑦𝑠2−𝜆2𝑠2+𝑦𝜆2𝑠3
,

𝜔0
2 =

𝑘1𝑠1−𝑘2𝑠2−𝜆2𝑘1𝑠2+𝜆2𝑘2𝑠3+𝑠3−𝛴2𝑠4

𝑠1−𝑦𝑠2−𝜆2𝑠2+𝑦𝜆2𝑠3
,

𝜃 =
−

1

2
𝑠5𝑠2+

1

2
𝑠5𝑠3𝜆2

𝑠1−𝑦𝑠2−𝜆2𝑠2+𝑦𝜆2𝑠3
,

𝑓 =
−𝑠0𝐹

𝑠1−𝑦𝑠2−𝜆2𝑠2+𝑦𝜆2𝑠3
.

 (13) 

3. NONLINEAR PERIODIC RESPONSE 

For obtaining the amplitude-frequency response of a nonlinear problem described by 

Eq. (12), the IHB method and continuation technique will be used. IHB is a vastly used 

procedure for solving the nonlinear differential equations of Duffing and Mathieu-Duffing 

type [27, 57]. The continuation technique serves as a supporting methodology for obtaining 

the periodic solutions in points close to resonant states. 

3.1 The incremental harmonic balance method  

To apply the IHB method, we introduce a new time scale τ ̅ = Ωτ into Eq. (12) to obtain 

the system of nonlinear ordinary differential equations in the following form 

 𝛺2 𝑑2𝑞

𝑑𝜏
2 + 𝛾𝛺

𝑑𝑞

𝑑𝜏
+ 𝜔0

2𝑞 + 𝜃𝑞3 = 𝑓 𝑐𝑜𝑠 𝜏. (14) 

For arbitrarily chosen initial values of q0 and Ω0 for the steady-state modal amplitude, a 

neighboring state of motion is incrementally changed to the current state and it can be 

expressed in the following form 

 𝑞 = 𝑞0 + 𝛥𝑞, 𝛺 = 𝛺0 + 𝛥𝛺. (15) 
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Substituting Eq. (15) into Eq. (14) and neglecting higher-order terms, we obtain a linearized 

incremental relation given as 

 𝛺0
2𝛥𝑞″ + 𝛾𝛺0𝛥𝑞′ + 𝜔0

2𝛥𝑞 + 3𝜃𝑞0
2𝛥𝑞 = 𝑟 − 2𝛺0𝑞0

″ 𝛥𝛺 + 𝑓 𝑐𝑜𝑠 𝜏, (16) 

where r is the residual term given as 

 𝑟 = −(𝛺0
2𝑞0

″ + 𝛾𝛺0𝑞0
′ + 𝜔0

2𝑞0 + 𝜃𝑞0
3). (17) 

To obtain the periodic solutions of the differential equation, q0 and Δq are expanded into 

finite Fourier series of N terms as 

 𝑞0 = 𝑎0 + ∑ [𝑎𝑛 𝑐𝑜𝑠 𝑛 𝜏 + 𝑏𝑛 𝑠𝑖𝑛 𝑛 𝜏]𝑁
𝑛=1 = 𝑪𝑨𝟎, (18) 

 𝛥𝑞 = 𝛥𝑎0 + ∑ [𝛥𝑎𝑛 𝑐𝑜𝑠 𝑛 𝜏 + 𝛥𝑏𝑛 𝑠𝑖𝑛 𝑛 𝜏]𝑁
𝑛=1 = 𝑪𝜟𝑨, (19) 

Where the vector C, and vectors A0 and ΔA with unknown constants are given as:   

 𝑪 = [1 𝑐𝑜𝑠 𝜏 𝑐𝑜𝑠 2 𝜏 … 𝑐𝑜𝑠 𝑁 𝜏 𝑠𝑖𝑛 𝜏 𝑠𝑖𝑛 2 𝜏 … 𝑠𝑖𝑛 𝑁 𝜏], (20) 

 𝑨𝟎 = [𝑎0 𝑎1 𝑎2 … 𝑎𝑁 𝑏1 𝑏2 … 𝑏𝑁]𝑇 , (21) 

 𝜟𝑨 = [𝛥𝑎0 𝛥𝑎1 𝛥𝑎2 … 𝛥𝑎𝑁 𝛥𝑏1 𝛥𝑏2 … 𝛥𝑏𝑁]𝑇 . (22) 

Substituting Eqs.(18)-(22) into Eq. (16) and applying the Galerkin procedure leads to the 

system of linearized algebraic equations in terms of ΔA given as 

 𝑲𝜟𝑨 + 𝑽𝛥𝛺 = 𝑹, (23) 

where, elements of the Jacobi matrix K of size [2N+1, 2N+1], the corrective vector R, and 

vector V, both of size [2N+1, 1], are defined as:  

 𝑲 =
1

2𝜋
∫ [𝛺0

2𝑪𝑇𝑪″ + 𝛾𝛺0𝑪𝑇𝑪′ + 𝜔0
2𝑪𝑇𝑪 + 3𝜃𝑞0

2𝑪𝑇𝑪]
2𝜋

0
𝑑𝜏, (24) 

 𝑹 = −
1

2𝜋
∫ [(𝛺0

2𝑪𝑇𝑪″ + 𝛾𝛺0𝑪𝑇𝑪′ + 𝜔0
2𝑪𝑇𝑪 + 𝜃𝑞0

2𝑪𝑇𝑪)𝑨𝟎 + 𝑪𝑇𝑓 𝑐𝑜𝑠 𝜏]
2𝜋

0
𝑑𝜏, (25) 

 𝑽 =
1

2𝜋
∫ [2𝛺𝑪𝑇𝑪″]

2𝜋

0
𝑑𝜏𝑨𝟎, (26) 

with ( )' denoting the derivative with respect to non-dimensional time τ ̅. If we want to get 

the solution at a given single frequency, we should set ΔΩ to zero in Eq. (23). Otherwise, 

we solve Eq. (23) for both ΔA and ΔΩ, by inserting ΔΩ in the first entry of the vector ΔA 

and transforming the system of equations. We initialize the solution process by entering 

guessed values of A, and calculating ΔA by using the Eq. (23). The solution ΔA is then 

added to the current estimated value of A to determine the new vector A, i.e,  

 𝑨𝒌+𝟏 = 𝑨𝒌 + 𝜟𝑨. (27) 

We repeat this process until the value of the residuum norm |R| is within the preset tolerance 

(in our case less than 10-10). 

3.1.1 The Continuation Method 

The main benefit of using the continuation method is the possibility to compute periodic 

solutions at each point. The requirement for starting the continuation process is the 

determination of the periodic solutions in two successive points by using the IHB method. 
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It is usual that these initial points are taken far from the resonant state since response 

amplitudes at both points have similar values, which are also small. Subsequently, the 

predictor-corrector method can be used to make point-to-point computations and obtain 

corresponding branches of the amplitude-frequency responses. We introduce new vectors 

X = [A, Ω]T and ΔX = [ΔA, ΔΩ]T, a function of vector g(X) = XTX, and an arc-length 

parameter η to follow direction of the path. An augmented equation is given as 

 𝑔(𝑿) − 𝜂 = 0. (28) 

When two previous points Xk-1 and Xk-2 of the response curve are known, the slope for 

computation of the next point can be determined as 

 𝑿′ =
𝑿𝒌−𝟏−𝑿𝒌−𝟐

‖𝑿𝒌−𝟏−𝑿𝒌−𝟐‖
. (29) 

The first prediction of the next point is obtained by 

 𝑿𝒖 = 𝑿𝒌−𝟏 + 𝛥𝜂𝑿′. (30) 

After extending Eq. (23) with Eq. (28) we have 

 [
𝑲 𝑽
𝜕𝑔

𝜕𝑨

𝜕𝑔

𝜕𝛺

] [
𝜟𝑨
𝛥𝛺

] = [
𝑹

𝛥𝜂 − 𝑔
]. (31) 

More information about the continuation method one can find in [52, 58, 59]. 

4. STABILITY ANALYSIS 

When the periodic solution is obtained in the form of Fourier series as in Eq. (18) for a 

chosen value of Ω, we can investigate the local stability of such periodic solution by using 

the Floquet theory [60, 61]. Based on this theory, we applied the methodology given by 

Hsu [62] for the approximation of the transition matrix during one period. Let us consider 

that the solution of Eq. (14) is given as 

 𝑞(𝜏) = 𝑞0(𝜏) + 𝛥𝑞 (32) 

where Δq denotes a small perturbation in the proximity of previously determined periodic 

solution q0. By substituting Eq. (32) into Eq. (14), and after linearization, one can obtain 

the linear differential equation with time-periodic coefficients given as:  

 𝛺2𝛥𝑞″ + 𝛾𝛺𝛥𝑞′ + 𝜔0
2𝛥𝑞 + 3𝜃𝑞0

2𝛥𝑞 = 0, (33) 

To determine the stability of the obtained periodic solutions using the Floquet theory, the 

transformation of Eq. (33) into the state-space form should be performed as 

 
𝑑𝒀

𝑑𝜏
= 𝑷(𝜏)𝒀 (34) 

where Y (τ) = [Δq, Δq']T and P (τ) denotes the periodic matrix with the period T = 2π. 

The stability criteria based on the Floquet theory is used for the determination of the 

local stability of periodic solutions and it is related to the determination of the Floquet 

multipliers as Hsu gave in [62]. The Floquet multipliers are represented by the eigenvalues 

of the monodromy matrix. By solving the corresponding eigenvalue problem, for the case 
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when all Floquet multipliers are located inside the unit circle centered at the origin of the 

complex plane, the determined periodic solutions are stable or asymptotically stable. 

Otherwise, when the values of Floquet multipliers are outside the unit circle, the periodic 

solutions are unstable [60]. Depending on where the Floquet multipliers or a pair of 

complex conjugate multipliers cross the complex plane unit circle, different bifurcation 

points can be detected. 

Introduction of the Hsu procedures for the numerical approximation of the transition 

matrix during one period leads to the numerical determination of Floquet multipliers as a 

solution of the corresponding eigenvalue problem as Shen et al. stated in [60]. It is assumed 

that the period T = 2π of the periodic solution q0 (τ) is divided into Nk sub-intervals, where 

the k-th interval is equal to Δk = τk - τk-1 for τk = kT / N. Furthermore, P (τ) is the continuous 

periodic matrix with respect to τ and period T, wherein the k-th interval it can be replaced 

by the constant matrix provided in the case when Nk is chosen to be sufficiently large:  

 𝑷𝒌 =
1

𝛥𝑘
∫ 𝑷(𝜏)𝑑𝜏.

𝜏𝑘

𝜏𝑘−1
 (35) 

The monodromy (transition) matrix can be written in the following form 

 𝑀= ∏ 𝑒𝑷𝒊𝛥𝑖
𝑁𝑘
𝑖=1 ≈ ∏ (𝑰 + ∑

(𝑷𝒊𝛥𝑖)𝑗

𝑗!

𝑁𝑗

𝑗=1
)

𝑁𝑘
𝑖=1 , (36) 

where Nj denotes the number of terms in Taylor series, for the approximation of matrix 

exponent of the constant matrix Pk. From the monodromy matrix M, given in Eq. (36), one 

can obtain Floquet multipliers as its eigenvalues σ from relation:  

 𝑑𝑒𝑡(𝑴 − 𝜎𝑰) = 𝟎. (37) 

For Eq. (14), the periodic matrix P (τ) can be obtained in the following form 

 𝑷(𝜏) = [
0 1

−
𝜔0

2+3𝜃𝑞0
2

𝛺2 −
𝛾

𝛺

]. (38) 

In this study, for approximation of the monodromy matrix the values Nk = 5000 and Nj = 5 

are adopted as the optimal values compromising computational cost and precision. Larger 

values for Nk and Nj wouldn’t offer some benefit in determination whether point is stable 

or unstable in this particular numerical example, but would increase computation time 

significantly.  

5. NUMERICAL RESULTS 

Here, the stability of the obtained periodic solutions of the forced Duffing differential 

equation Eq. (12) is checked by using the methodology given in the previous section. The 

IHB and continuation method are numerically applied to trace the periodic solutions 

branches of a nonlinear model of a nonlocal strain-gradient beam resting on a visco-

Pasternak foundation with direct transverse harmonic excitation. Moreover, the Floquet 

theory is applied to check the stability of periodic solutions for given amplitude-frequency 

curves. In the first part of the numerical study, we validate our model by comparing the 

beam's natural frequencies in two simplified cases with the results available in the literature 

(Tables 1 and 2). Then, the validity of the results from the IHB method is examined, which 
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is then followed by the parametric and stability study in the frequency domain. The 

parameters used in simulations are adopted from the paper [33] and extended with the 

parameters for the Pasternak layer, FG material, and excitation force as given in Table 3, 

unless other specified. The number of adopted harmonics in the Fourier series is N = 6. The 

amplitudes corresponding to particular Fourier coefficients (Eq. (21)) and harmonics (Eq. 

(20)) are computed as 

 𝐴0 = 𝑎0, 𝐴𝑖 = √𝑎𝑖
2 + 𝑏𝑖

2, (𝑖 = 1,2, . . . , 𝑁). (39) 

Table 1 The first five non-dimensional fundamental natural frequencies of a local Euler-

Bernoulli beam resting on Winkler-Pasternak foundation for the simply-supported 

boundary conditions (k1 = 25, k2 = 25)  

Present Ref.[63]  Ref.[64]  Ref.[65]  Ref.[66] 

19.2133 19.2133  19.2133  19.21  19.2178 

50.7002 50.7002  50.7002  50.7  50.7804 

100.6767 100.677  100.6767  100.7  - 

170.0281 170.028  170.0281  170.1  - 

258.9868 258.987  258.9868  259.1   

Table 2 Comparison of non-dimensional fundamental natural frequencies of simply-

supported nonlocal Euler-Bernoulli beam with different nonlocal parameters μ (L = 10, 

h = 1, ρ = 1, E = 30∙106, ν = 0.3)  

μ Present  Ref.[17]  Ref.[67]  Ref.[68] 

0 9.8293  9.8696  9.8298  9.8696 

1 9.3774  9.4159  8.3814  9.4159 

2 8.9826  9.0195  8.9892  9.0195 

3 8.6338  8.6693  8.6424  8.6693 

4 8.3228  8.3569  8.3329  8.3569 

Table 3 Parameter values of the presented mechanical model 

Parameter Symbol  Value   Unit 

Young's modulus at top Et  390 GPa 

Young's modulus at bottom Eb  210 GPa 

Density at top ρt  3960 kg/m3 

Density at bottom ρb  7800 kg/m3 

Power-law index k  1  

Height of the beam h  100 nm 

Width of the beam b  1 μm 

Length of the beam L  10 μm 

Nonlocal parameter μ  10 nm 

Length scale parameter l  100 nm 

Winkler coeff. of viscoelastic layer  kw  1e-8 m-1 

Winkler coeff. of viscoelastic layer Kw  1e-8 Nsα/m3 

Pasternak coeff. of viscoelastic layer kg  1e-8 m 

Pasternak coeff. of viscoelastic layer Kg  1e-8 Nsα/m 

Amplitude of excitation force Q  0.002 N 
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5.1 Verification  

Table 1 compares the first five non-dimensional fundamental natural frequencies of a 

local Euler-Bernoulli beam resting on Winkler-Pasternak foundation for the simply 

supported boundary conditions with foundation parameters k1 = 25, k2 = 25, taking the 

values obtained in [63, 64, 65, 66], where fine agreement is achieved. Besides that, we 

made a comparison of non-dimensional fundamental natural frequencies of simply 

supported nonlocal Euler-Bernoulli beam with different values of nonlocal stress-gradient 

parameter μ with data available in the literature [17, 67, 68]. These results are also in good 

agreement (Table 2). 

To demonstrate the reliability and accuracy of the presented methodology for the 

determination of the amplitude-frequency responses and corresponding periodic solutions, 

the obtained results from the IHB are verified with the direct numerical integration by using 

the Runge-Kutta method. Choosing the desired IHB periodic solutions at the corresponding 

excitation frequency (magenta and cyan stars) from Fig. 2 (a, b) and extracting the initial 

conditions for the use in the Runge-Kutta method, two solutions are compared in Fig. 3 

where excellent matching of the results from two different methods IHB and Runge-Kutta 

can be observed for both excitation frequency examples. Periodic solutions in Fig. 3 are 

depicted in the phase plane where the velocity is given on the ordinate axis, while the 

displacement is given on the abscissa.   

 5.2 Numerical Results of Stability Analysis  

In this section, we investigate how excitation force, parameters of the functionally 

graded material, and foundation are affecting the frequency response curves in terms of the 

first and third amplitudes. For pinned-pinned boundary conditions, Fig. 2 (a, b) shows the 

frequency response curves for the amplitudes A1 and A3, respectively, which are then given 

on the ordinate axis while the excitation frequency Ω is on the abscissa. Here, one can 

observe that the maximum amplitude experiences a rise at two resonance frequencies. Two 

such regions can be noticed at frequencies around Ω = 4 and Ω = 16-27, depending on Q. 

In the case of the first dominant amplitude A1, this change is weak in the first resonance 

region while it is very high for the second region, where the system experiences the 

hardening stiffness nonlinearity. Here, one can observe jump-down and jump-up behavior 

as well as coexisting periodic solutions, which is the characteristic of this nonlinear 

phenomenon [69]. On the other side, despite the much lower values than A1, the amplitudes 

A3 show an increase in the first resonance region that is more pronounced compared to 

those occurring within the second region but displaying only the linear-like behavior. 

However, in the second resonance region, a strong nonlinear hardening stiffness behavior 

occurs even for very low values of the amplitude. An increase of the excitation force 

amplitude Q increases the amplitude values and resonant picks. Moreover, a forward 

frequency sweeping due to an increase of the excitation frequency Ω, starting from small 

values, shows changes of response amplitudes up to the point when the periodic response 

loses its stability. This critical point known as fold point is given as upper brown dot in 

Fig. 2. It can be observed that further forward frequency sweeping produces another branch 

of stable periodic solutions, which is also known as the lower branch of periodic solutions. 

It can be noticed in Fig. 2 that the upper branch of the amplitude grows until the critical 

moment (response peak) which represents the maximal value of the response amplitude.  
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Fig. 2 The amplitude-frequency response curves of the NLSGT beam on visco-Pasternak 

foundation for pinned-pinned (a,b), clamped-pinned (c,d) and clamped-clamped (e,f)  

boundary conditions. Amplitudes A1 and A3 are plotted for different values of external 

load parameter Q. The unstable periodic solutions are represented by the tick solid lines. 
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At this peak point, periodic solutions lose their stability leading to the jump-down 

phenomena of the response amplitude i.e. a sudden jump of the response amplitude to some 

lower values. Further forward frequency sweeping produces stable periodic solutions. On 

the contrary, the backward frequency sweeping process starts from values higher than the 

resonant frequency. By moving backward, response amplitude increases slowly until the 

critical point (another fold point) where the periodic solution loses its stability and the 

jump-up phenomena occur. If we further decrease the excitation frequency another stable 

(upper) branch of periodic solutions occurs. The branches of unstable periodic solutions 

displayed as thick solid lines can be detected in between the two different fold points of 

the same curve by applying the path following method in combination with the Floquet 

theory. Similar observations can be made for the Fig. 2 (c, f), for clamped-pinned and 

clamped-clamped boundary conditions. 

 

Fig. 3 Periodic response obtained by IHB and RK method for two points 

Fig. 4 shows the amplitude-frequency responses for four different values of the 

functional graded material parameter k. For pinned-pinned boundary conditions, the first 

(Fig. 4 (a)) and the third (Fig. 4 (b)) amplitude are traced, displaying both stable and 

unstable branches of the response. The linear growth of response amplitude A1 (or A3) 

appears for an increase of the excitation frequency from some small values until the fold 

point when the periodic response loses its stability. Same as in the previous case, further 

forward frequency sweeping produces a lower branch of stable periodic solutions. 

Therefore, the upper branch of the amplitude grows until the critical moment (response 

peak) which represents the maximal value of the response amplitude. At this peak point, 

periodic solutions lose their stability leading to the jump-down phenomena of the response 

amplitude. Again, the backward frequency sweeping process starting from the values 

higher than the resonant frequency displays a slow increase until critical point where the 

periodic solution loses its stability and the jump-up phenomenon occurs. A further decrease 

of the excitation frequency gives the stable (upper) branch of the periodic responses. The 

branches of unstable periodic solutions can be detected between two instability points 

(lower and upper brown points in Fig. 4) and they are represented by the thicker solid lines. 

In these unstable points, Floquet multipliers exit the unit circle of the complex plane as 

displayed on the Fig. 7. Similar observations can be made for clamped-pinned and 

clamped-clamped boundary conditions (Fig. 4 (c, f)). 
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Fig. 4 The amplitude-frequency response curves of the nonlinear NLSGT FG beam on 

visco-Pasternak foundation for pinned-pinned (a,b), clamped-pinned (c,d) and clamped-

clamped (e,f)  boundary conditions. Amplitudes A1 and A3 are plotted for different values 

of parameter k. The unstable periodic solutions are represented by the tick solid lines. 
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Fig. 5 The amplitude-frequency response curves of the nonlinear NLSGT FG beam on 

visco-Pasternak foundation for pinned-pinned (a,b), clamped-pinned (c,d) and clamped-

clamped (e,f)  boundary conditions. Amplitudes A1 and A3 are plotted for different values 

of parameter Kg. The unstable periodic solutions are represented by the tick solid lines. 
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Further, Fig. 5 shows amplitude-frequency response curves for changes of the 

parameter Kg of the visco-Pasternak foundation. One can observe that the change of this 

parameter yields similar shapes of amplitude-frequency response curves exhibiting the 

nonlinear hardening stiffness behavior. Moreover, an increase of parameter Kg, related to 

viscous properties of the foundation, results in a decrease of pick amplitude values. 

Consequently, this yields shortened unstable branches (thick bold lines) of the periodic 

solutions located in between the corresponding fold points (Fig. 5). This behavior can be 

observed for both amplitudes A1 and A3. For clamped-pinned and clamped-clamped 

boundary conditions, an increase of parameter Kg can even stabilize the system by making 

an unstable region (bold line) disappear.  A more detailed parametric study of amplitude-

frequency responses of the similar system with nonlocal strain gradient functionally graded 

beam on the fractional visco-Pasternak foundation can be found in the paper by Nešić et 

al. [27]. 

To study the influence of the type of boundary conditions on the amplitude-frequency 

response curve three different cases (pinned-pinned, clamped-pinned, and clamped-

clamped boundary conditions) are plotted in Fig. 6. It can be observed that reducing degrees 

of freedom in supports decrease maximal amplitude and shifts resonant frequency to the 

right, which is expected behavior. 

 

Fig. 6 Different boundary conditions 

In all previous examples, the unstable periodic solutions are detected by the calculation 

of Floquet multipliers, where at least one of them crosses the unit circle in the complex 

plane in the +1 direction. Fig. 7 displays a unit circle in the complex plane and Floquet 

multipliers for the case of parameters adopted from Table 3. It can be observed that Floquet 

multiplies are crossing the unit circle in the complex plane in the +1 direction for the 

unstable periodic solutions located between the two different fold points of the amplitude-

frequency response curve. It is well known that different bifurcation points can be detected 

depending on where the Floquet multipliers are crossing the unit circle. Therefore, when 

Floquet multipliers are crossing the unit circle in the +1 direction, one can expect that a 

saddle-node bifurcation point occurs in that case. We also observe that number of Floquet 

multipliers crossing the unit circle is the highest in the case of the simple supports and that 
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the ones that are crossing the unit circle are the most distant to it compared to other 

boundary conditions. On the other hand, in the case of clamped-clamped supports, the 

number of Floquet multipliers crossing the unit circle and their distance to it is minimal. 

Consequently to this behavior, clamped-clamped boundary conditions contribute to the 

most and pinned-pinned boundary conditions to the least stable system. Therefore the 

influence of the boundary conditions on stability cannot be neglected. 

 

 

Fig. 7 Floquet multipliers crossing unit circle (vertical axis is imaginary, horizontal real): 

a) simply-supported, b) clamped-pinned and c) clamped-clamped boundary conditions  

Fig. 8 shows a pair of Floquet multipliers for points with different excitation frequency 

Ω. We can observe in Fig. 8 (a, b) that between approximately Ω = 14.5 and Ω = 23 at least 

one of two Floquet multipliers has modulus greater than one, meaning that this region is 

unstable. The stability border is reached when Floquet multipliers modulus (FMM) is equal 

to one. The degree of instability is defined by the distance of a point in the instability region 

from the unit circle (Fig. 7) which is equivalent to the distance of slowly growing curve 

(with small slope) on Fig. 8. For example, for the case of simply-supported beam and 

Ω = 16 instability is higher than in the case Ω = 22 (Fig. 8 (a, b)). We can also observe 

from Fig. 8 that with an increase of the system's stiffness by reducing degrees of freedom 

in boundary conditions, the main instability region is decreased and shifted to the right 

towards higher excitation frequencies. The stability of the solution for higher excitation 

frequencies can be achieved by introducing the pinned-pinned boundary conditions. On the 

(a) 

(b) (c) 
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contrary, stability on lower excitation frequencies can be reached with clamped-clamped 

boundary conditions. An unstable region with clamped-free boundary conditions is 

between unstable regions for another two pairs of boundary conditions. This result can be 

utilized for the practical realization of such a system. Depending on the excitation 

frequency and operation range of the system, boundary conditions can be selected and 

physically established so that unstable solutions for amplitudes are avoided, which can 

prolong the duration of the system. 

 

Fig. 8 Floquet multipliers modulus (FMM) of the first (FMM1) and second (FMM2) 

Floquet multiplier versus excitation frequency Ω 

Moreover, in the amplitude-frequency responses, one can notice that the coexisting 

periodic solutions exist for certain frequency ranges. Knowing that the amplitudes of these 

periodic solutions are dependent on initial conditions and starting positions in excitation 

frequency sweeping, there are two sets of initial conditions for which the response 

amplitude will converge towards the lower or upper branch of the periodic solutions 

forming the basin of attraction as given in Fig. 9 and Fig. 10. Therefore, the system will 

possess two attractors for the given excitation frequency and system parameters. These two 

attractors are highlighted in two different colors for two sets of initial conditions. For the 

presented nonlinear system, the basin of attraction is given in Fig. 9 and Fig. 10 and for the 



20 N. NEŠIĆ, M. CAJIĆ, D. KARLIČIĆ, M. LAZAREVIĆ, S. ADHIKARI 

excitation frequency Ω = 20 and Ω = 25 and coexisting periodic solutions from the 

amplitude-frequency response curve given in Fig. 2 and varying initial conditions. One can 

observe that the basin of attraction is displaying two colors with two coexisting periodic 

solutions in Fig. 9 and Fig. 10. Here, the case with the initial condition highlighted in red 

color converges to the upper stable branch while the case with the initial conditions 

highlighted in blue converges to the lower stable branch. Since excitation frequency is close 

to the bifurcation point, the solution converges to both upper and lower stable branches of 

periodic solutions. In the special case of simple-supported beam, the set of initial conditions 

that converges to the upper stable branch of periodic solutions is dominating over the set 

of initial conditions that converges to the lower branch of solutions. 

 

Fig. 9 Basin of attraction for Ω = 20 

 

Fig. 10 Basin of attraction for Ω = 25 for clamped-clamped boundary conditions 

To summarize, in this chapter, after a short verification of eigenfrequencies for 

simplified model with the results available in the literature, stability analysis is performed. 

For different values of excitation frequency acting in transversal direction, the first (A1) 

and the third (A3) harmonic of the amplitudes for displacement of the beam in transversal 

direction are obtained and given in the Figs. 2, 4, 5. These figures, for given frequency, 
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give us information about the number of solutions (1, 2 or 3) for each of the amplitudes 

(A1 and A3) and whether the solution is stable or not. All this is to predict the vibration 

behavior of the beam at certain frequency and set of the parameters. Selected solution for 

amplitude is stable if a pair of Floquet multipliers is in the unit circle of the complex plane 

as presented on the Fig. 7. Floquet theory is basically a tool for proving stability. In Figs 

7-8 are graphically given values of Floquet multipliers for different values of excitation 

frequency from the range Ω = 0 – 30, enabling reader to determine how far from stability 

border are solutions at particular excitation frequency. Finally, for specific frequency, 

which is in the range of multiple amplitude solutions, basins of attractions are given in 

Figs. 9-10, describing whether amplitude will be greater or smaller, depending on initial 

conditions.  

6. CONCLUSIONS 

In this work, a stability analysis of a nonlinear nonlocal strain-gradient beam resting on 

the visco-Pasternak foundation is performed. The governing equation of the system is 

derived by using Hamilton's principle and then discretized by using the Galerkin 

approximation method. The periodic solutions of the strongly nonlinear differential 

equation are then sought by using the incremental harmonic balance method in 

combination with the continuation technique. The results obtained by the proposed 

approach are verified with the direct numerical integration technique (Runge-Kutta 

method) and good agreement is confirmed. A parametric study is performed through the 

amplitude-frequency responses and the stability of each periodic solution is examined by 

using the Floquet stability theory and Hsu procedures. The main contributions of this work 

can be summarized as follows: 

 The parametric study is performed and stability of obtained periodic solutions of a 

nonlocal strain-gradient functionally graded beam on the visco-Pasternak 

foundation is investigated. It is demonstrated that the hardening stiffness 

nonlinearity becomes more apparent for an increase of the excitation amplitude and 

for lower values of the parameter of functionally graded material, which 

consequently leads to an increase of the unstable branches of periodic solutions. 

Opposite to this, an increase of the parameter related to viscous properties of the 

foundation yields lower picks in the amplitude-frequency response and smaller 

unstable branches, therefore increasing the stability of the system. 

 Investigation of the Floquet multipliers and their behavior in the complex plane 

revealed the nature of bifurcation points where unstable solution appears. Moreover, 

the exiting of Floquet multipliers out of the unit circle in the +1 direction 

demonstrated the existence of saddle-node bifurcation points. 

 Modulus of Floquet multipliers is compared for different values of excitation 

frequencies and shown that in an unstable region, instability degree is higher for 

lower excitation frequencies. 

 To obtain stable solutions on higher excitation frequencies, pinned-pinned boundary 

conditions should be applied. On the contrary, stability on lower excitation 

frequencies can be reached with clamped-clamped boundary conditions. An 

unstable region with clamped-free boundary conditions is between unstable regions 

for another two pairs of boundary conditions. 
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 The occurrence of coexisting periodic solutions and hardening stiffness effect in the 

strongly nonlinear functionally graded beam system is confirmed as well as their 

dependence on the initial conditions and starting positions of the excitation 

frequency sweeping. Therefore, the basin of attraction is obtained for such a system 

to examine which of the stable periodic solutions will prevail for different sets of 

initial conditions. 

The paper illustrates how the incremental harmonic balance method in combination 

with the continuation technique and Floquet theory can be efficiently utilized to study the 

stability of strongly nonlinear structural vibration systems with different sizes, boundary 

conditions, and foundation effects included. The future perspectives of the proposed 

research and the developed model is application of the model and methodology presented 

in this paper in the development of MEMS devices, since the presented model describes 

oscillating nonlocal beam, and nonlocal theory is used in small scale systems. Additionally, 

when neglecting two nonlocal parameters, presented model of beam oscillating on visco-

Pasternak foundation with four adjustable parameters can be used to describe wide range 

of foundations used in civil and mechanical engineering and oscillatory behavior of the 

nonlinear beam resting on it.   
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