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Abstract. The paper investigates the accuracy of an adaptive neuro-fuzzy computing 

technique in precipitation estimation. The monthly precipitation data from 29 synoptic 

stations in Serbia during 1946-2012 are used as case studies. Even though a number of 

mathematical functions have been proposed for modeling the precipitation estimation, these 

models still suffer from the disadvantages such as their being very demanding in terms of 

calculation time. Artificial neural network (ANN) can be used as an alternative to the 

analytical approach since it offers advantages such as no required knowledge of internal 

system parameters, compact solution for multi-variable problems and fast calculation. Due 

to its being a crucial problem, this paper presents a process constructed so as to simulate 

precipitation with an adaptive neuro-fuzzy inference (ANFIS) method. ANFIS is a specific 

type of the ANN family and shows very good learning and prediction capabilities, which 

makes it an efficient tool for dealing with encountered uncertainties in any system such as 

precipitation. Neural network in ANFIS adjusts parameters of membership function in the 

fuzzy logic of the fuzzy inference system (FIS). This intelligent algorithm is implemented 

using Matlab/Simulink and the performances are investigated.  The simulation results 

presented in this paper show the effectiveness of the developed method.   
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1. INTRODUCTION 

Accurate estimation of precipitation is important for hydrologic and ecological 

modeling [1]. Several studies on the estimation of precipitation have been carried out in 

the last few years. Polarimetric rate estimation techniques such as ZPHI [2] and ZZDR 
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[3] can be used for quantitative precipitation estimation. In addition, remotely sensed 

precipitation from radar and satellites can improve precipitation estimates [4-8].  

Quantitative precipitation estimation provides information of practical importance 

which can be applied to different fields such as water resources management, agricultural 

production, planning biodiversity, and flood protection. The precipitation estimation is 

one of the key elements in an assessment of the global climate change that represents a 

nonlinear and discontinuous process [9].  

In recent years, various artificial intelligence methods have been developed for the 

estimation of precipitation [10-13]. Artificial neural network (ANN) offers a promising 

alternative for finding precipitation characteristics as well as learning complex nonlinear 

relationships. For example, Zhang et al. [9] applied artificial neural network group 

techniques for precipitation estimation in which average errors for the overall precipitation 

event fall below 10%. Grimes et al. [14] proposed ANN with a principal component 

analysis to precipitation estimation on a daily timescale. Freiwan and Cigizoglu [15] 

developed ANN models that were trained with the method of back-propagation algorithm to 

predict precipitation for the next month. Chiang et al. [16] took into account the dynamic 

ANN to construct quantitative precipitation estimation by using a three-dimensional radar 

data structure. Nkuna and Odiyo [17] and Mwale et al. [18] estimated missing precipitation 

data by using the ANN models. Nastos et al. [19] developed the ANN models for the 

prediction of the precipitation intensity for the next four months. In general, all of the cited 

studies have reported an improvement in performance by using ANNs. 

Even though a number of models have been proposed for modeling the precipitation, 

they are still suffering from the disadvantages such as their being very demanding in 

terms of calculation time. ANN can be used as an alternative to the analytical approach 

since it offers advantages such as no required knowledge of internal system parameters, 

compact solution for multi-variable problems and fact calculation.  

In this investigation adaptive neuro-fuzzy inference system (ANFIS) [20], which is a 

specific type of the ANN family, was used to estimate precipitation. For the presently 

developed neural network, monthly precipitation data from 29 synoptic stations in Serbia 

during 1946-2012 were used as case studies i.e. as ANFIS training data. The main purpose of 

this study is to analyze the performances of ANFIS for monthly precipitation estimation.  

ANFIS shows very good learning and prediction capabilities, which makes it an efficient 

tool for dealing with encountered uncertainties in any system. Researchers used ANFIS as a 

hybrid intelligent system that enhances the ability to automatically learn and adapt in 

various engineering systems [21-26]. So far, there are many studies of the application of 

ANFIS for estimation and real-time identification of many different systems [27-35]. 

2. STUDY AREA AND COLLECTED DATA 

The study area was Serbia, which is located in the central part of the Balkan Peninsula. 

Northern Serbia is mainly flat, while its central and southern areas consist of hilly and 

mountainous. The climate of the country is temperate continental, with a gradual transition 

between the four seasons of the year.  
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Series of monthly precipitation data were chosen from 29 synoptic stations (Fig. 1) for 

the period of 1946–2012. The geographical characteristics, mean and standard deviation of 

annual precipitation time series of the observed stations are listed in Table 1.  

Table 1 Geographical description, mean and standard deviation of annual precipitation 

time series of the synoptic stations used in the study 

Station name Longitude 

(E) 

Latitude 

(N) 

Elevation 

(m a.s.l.) 

Mean 

(mm) 

Standard 

deviation 

(mm) 

1. Banatski Karlovac 20°48' 45°03' 89 627.0 139.4 

2. Becej 20°04' 45°37' 78 579.7 130.8 

3. Belgrade 20°28' 44°48' 132 692.1 132.5 

4. Crni Vrh 21°58' 44°08' 1027 789.9 154.9 

5. Cuprija 21°22' 43°56' 123 651.8 124.2 

6. Dimitrovgrad 22°45' 43°01' 450 631.0 118.0 

7. Kikinda 20°28' 45°51' 81 549.7 123.8 

8. Kopaonik 20°48' 43°17' 1711 727.3 217.6 

9. Kragujevac 20°56' 44°02' 185 628.6 112.2 

10. Kraljevo 20°42' 43°43' 215 748.1 132.7 

11. Krusevac 21°21' 43°34' 166 643.6 134.3 

12. Kursumlija 21°16' 43°08' 383 635.4 131.7 

13. Leskovac 21°57' 42°59' 230 614.6 109.3 

14. Loznica 19°14' 44°33' 121 820.0 140.7 

15. Negotin 22°33' 44°14' 42 637.5 132.7 

16. Nis 21°54' 43°20' 204 578.8 110.5 

17. Novi Sad 19°51' 45°20' 86 613.8 153.8 

18. Palic 19°46' 46°06' 102 550.1 117.8 

19. Pozega 20°02' 43°50' 310 746.7 134.2 

20. Sjenica 20°01' 43°16' 1038 718.7 130.7 

21. Sombor 19°05' 45°47' 87 588.2 129.1 

22. Smederevska Palanka 20°57' 44°22' 121 635.7 115.7 

23. Sremska Mitrovica 19°38' 44°58' 82 621.9 122.3 

24. Valjevo 19°55' 44°17' 176 775.9 134.3 

25. Veliko Gradiste 21°31' 44°45' 80 666.5 140.3 

26. Vranje 21°55' 42°33' 432 601.5 114.5 

27. Zajecar 22°17' 43°53' 144 603.2 116.1 

28. Zlatibor 19°43' 43°44' 1028 954.9 151.9 

29. Zrenjanin 20°21' 45°24' 80 576.4 121.0 

 

The mean annual precipitation varied between 549.7 mm to 954.9 mm. Dry areas with 

precipitation below 600 mm is in the northeast (Becej, Kikinda, Palic, Sombor, Zrenjanin). 

The area along the valley of the South Morava to Vranje has the precipitation to 650 mm 

during the year. A larger and more compact area to the west and southwest is the wettest 

region of Serbia. In the mountains, such as Mt. Zlatibor and Mt. Kopaonik, precipitation 

may rise up to 1000 mm per year. The detailed analysis of the considered time series is 

presented in [36-38]. 
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Fig. 1 Spatial distribution of the 29 synoptic stations in Serbia map 

Data were obtained from the Republic Hydrometeorological Service of Serbia 

(http://www.hidmet.gov.rs/), that carried out technical and quality control of these 

measurements. There are no missing values in the data set. Besides, the homogeneity test 

and the Kendall autocorrelation analysis [39] were applied to the monthly precipitation 

time series of each station. 
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3. ADAPTIVE NEURO-FUZZY APPLICATION 

Fuzzy Inference System (FIS) is the main core of ANFIS. It is based on expertise 

expressed in terms of ‘IF–THEN’ rules and can thus be employed to predict the behavior 

of many uncertain systems. FIS advantage is that it does not require knowledge of the 

underlying physical process as a precondition for its application. Thus, ANFIS integrates 

the fuzzy inference system with a back-propagation learning algorithm of neural network. 

The basic structure of a FIS consists of three conceptual components: a rule base, which 

contains a selection of fuzzy rules; a database, which defines the membership functions 

(MFs) used in the fuzzy rules; and a reasoning mechanism, which performs the inference 

procedure upon the rules and the given facts to derive a reasonable output or conclusion. 

These intelligent systems combine knowledge, technique and methodologies from various 

sources. They possess human-like expertise within a specific domain – adapt themselves 

and learn to do better in changing environments. In ANFIS, neural networks recognize 

patterns, and help adaptation to environments. ANFIS is tuned with a back propagation 

algorithm based on the collection of input-output data.  

ANFIS model will be established in this study to estimate participation in Serbia 

according to the monthly precipitation data during 1946-2012. The ANFIS networks 

should determine the optimal participation for a given number of data inputs. Fuzzy logic 

toolbox in MATLAB was used for the entire process of training and evaluation of fuzzy 

inference system. Fig. 2 shows an ANFIS structure with one input, month in year, x.  

 

Fig. 2 ANFIS structure 

In this work, the first-order Sugeno model with two inputs and fuzzy IF-THEN rules 

of Takagi and Sugeno’s type is used. 

The first layer consists of input variables membership functions (MFs). This layer just 

supplies the input values to the next layer. The input is month in year.  

In this study, bell-shaped MFs (2) with maximum equal to 1 and minimum equal to 0 

are chosen. 

The second layer (membership layer) checks for the weights of each MFs. It receives the 

input values from the 1st layer and acts as MFs to represent the fuzzy sets of the respective 

input variables. Every node in the second layer is non-adaptive and this layer multiplies the 

incoming signals and sends the product out. Each node output represents the firing strength 

of a rule or weight. 

     The third layer is called the rule layer. Each node (each neuron) in this layer performs 

the pre-condition matching of the fuzzy rules, i.e. they compute the activation level of 

each rule, the number of layers being equal to the number of fuzzy rules. Each node of 
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these layers calculates the weights, which are normalized. The third layer is also non-

adaptive and every node calculates the ratio of the rule’s firing strength to the sum of all 

the rules’ firing strengths. The outputs of this layer are called normalized firing strengths 

or normalized weights. 

     The fourth layer is called the defuzzification layer and it provides the output values 

resulting from the inference of rules. Every node in the fourth layer is an adaptive node 

with node function.  

     The fifth layer is called the output layer which sums up all the inputs coming from the 

fourth layer and transforms the fuzzy classification results into a crisp (binary). The 

output represents an estimated modulation transfer function of the optical system. The 

single node in the fifth layer is not adaptive and this node computes the overall output as 

the summation of all the incoming signals. 

     The hybrid learning algorithms were applied to identify the parameters in the ANFIS 

architectures. In the forward pass of the hybrid learning algorithm, functional signals go 

forward till Layer 4 and the consequent parameters are identified by the least squares 

estimate. In the backward pass, the error rates propagate backwards and the premise 

parameters are updated by the gradient descent. 

4. ANFIS RESULTS 

At the beginning, the ANFIS network was trained with measured data by above presented 

experimental procedure. The training data are presented in Fig. 3 for one station (Becej). The 

ANFIS network determines optimal precipitation based on the measured data.  

 

Fig. 3 Experimental data for ANFIS training for one station (Becej)  

Three bell-shaped membership functions were used to fuzzify the ANFIS input. After 

training process the ANFIS networks were tested. Fig. 5 shows the result of the testing of 

ANFIS network for three distinct regions in Serbia. These regions were experimentally 

determined in [37, 38]. Here, two stations are chosen to represent one region as shown in 

Figs. 4-6. 
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Fig. 4 ANFIS predicted results of the precipitation in Serbia for region 1 

 
Fig. 5 ANFIS predicted results of the precipitation in Serbia for region 2 

 
Fig. 6 ANFIS predicted results of the precipitation in Serbia for region 3 
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Finally, we performed precipitation prediction for Serbia based on the regions 

precipitations as shown in Fig. 6. The red solid line represents ANFIS prediction of the 

Serbia participation while the estimated precipitations at all the stations are also depicted 

in Fig. 7. 

 
Fig. 7 ANFIS predicted results of the precipitation in Serbia 

The obtained results show that the maximum precipitation is in June. The decreasing 

trend of precipitation is detected in the summer, which is in an agreement with the results 

reported in [40]. 

5. CONCLUSION 

The precipitation was investigated by ANFIS methodology in Serbia using monthly 

precipitation time series from 29 stations during the period of 1948–2012. The ANFIS 

method has been presented and tested for developing an alternative method to estimate 

precipitation. The main advantage of the soft computing scheme has very good learning 

and prediction capabilities, which makes it an efficient tool for dealing with encountered 

uncertainties in any system such as precipitation. Since there are three distinct regions in 

Serbia with respect to the precipitation [37, 38], we estimated precipitation for these 

regions. Afterwards the ANFIS was applied to predict overall estimation according to all 

the stations in Serbia from period 1948–2012. 

Simulations were run in MATLAB and the results were observed on the corresponding 

output blocks. The main advantages of the ANFIS scheme are: it is computationally 

efficient, well-adaptable with optimization and adaptive techniques. The developed strategy 

is not only simple but also reliable and may be easy to implement in real time applications 

using some interfacing cards like the dSPACE, data acquisition cards, NI cards, etc. for the 

control of various parameters. This can also be combined with expert systems and rough 

sets for other applications. ANFIS can also be used with systems handling more complex 

parameters. Another advantage of ANFIS is its speed of operation; the tedious task of 

training membership functions is done in ANFIS.  
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