
FACTA UNIVERSITATIS  
Series: Mechanical Engineering Vol. 14, No 3, 2016, pp. 293 - 300 
DOI: 10.22190/FUME1603293K 

Original scientific paper 

THE BOUNDARY ELEMENT METHOD FOR VISCOELASTIC 

MATERIAL APPLIED TO THE OBLIQUE IMPACT OF SPHERES 

UDC 539.3 

Stephan Kusche 

Department of System Dynamics and the Physics of Friction, TU Berlin, Germany 

Abstract. The Boundary Element Method (BEM) for elastic materials is extended to deal 

with viscoelastic media. This is obtained by making use of a similar form of the 

fundamental solution for both the materials. Some considerations are attributed to the 

difference of the normal and the tangential contact problem. Both normal and tangential 

problems are furthermore assumed to be decoupled. Then the oblique impact of hard 

spheres with an incompressible viscoelastic half-space (linear standard-model) is studied. 

By assuming stick conditions during impact, one obtains the dependence of the two 

coefficients of restitution as functions of two input parameters. This result is expressed in 

an elegant and compact form of the fitting function. 
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1. INTRODUCTION 

The history of analytical research of the spheres’ field of the impact started with Hertz 

[1] in 1882. His theory of normal contacts has been extended to tangential contact theories, 

considering partial slip [2-9]. Like in other fields of contact mechanics, a solution in the 

case of viscoelastic time dependent material behavior is difficult and its closed form has 

not been found yet. For the pure normal impact of spheres Hunter [10], Sabin [11] and 

Calvit [12] discovered some analytical solutions. These solutions are given in an implicit 

form; some kind of numerical treatment is needed in order to obtain results. 

In the field of elastic contact mechanics, the Boundary Element Method (BEM) is well 

established. This method is based on the fundamental solution for elastic half-space. Since 

the fundamental solution for the viscoelastic half-space is known as well, it should be possible 

to adapt many procedures from elastic to viscoelastic problems. This can be achieved by using 

                                                           
Received September 22, 2016 / Accepted November 18, 2016 

Corresponding author: Stephan Kusche  

Institute of Mechanics, Berlin Institute of Technology, Str. d. 17. Juni 135, 10623 Berlin, Germany  
E-mail: s.kusche@tu-berlin.de 



294 S. KUSCHE 

the Prony series for modeling the material behavior. In this paper the given approach is 

used to study the viscoelastic impact problem of spheres.  

2. PROBLEM DESCRIPTION 

The problem under consideration is the following: A sphere of mass m and radius R has 

initial velocities vx0
s
, vz0

s
 and an initial angular velocity ω0

s
. After rebound from viscoelastic 

ground the velocities change to vx1
s
, vz1

s
 and ω1

s
 (see Fig. 1). These velocities have to be 

calculated. 

To simplify this problem approach it will be assumed, that the normal- and the 

tangential-contact problems are decoupled. This assumption becomes true under two 

circumstances. Firstly, the sphere is a rigid body and the viscoelastic half-space is 

incompressible. Then the normal load will not lead to any tangential displacement and vice 

versa. Secondly, the displacement of the centre of the sphere in tangential direction ux
s
 is 

assumed to be much smaller than radius R of the sphere. Then only tangential contact force 

Fx has to be taken into account for the calculation of the resulting moment acting on the 

sphere. Furthermore, the contact area will conserve a rotational symmetric shape and the 

action line of resulting normal force Fz points toward the centre of the sphere. 

 

Fig. 1 Velocities before and after impact (left hand side). Displacement of the center  

of the sphere and resulting contact forces during impact (right hand side) 

With these considerations tangential velocity vx
s
 and angular velocity ω

s
 are not 

independent of each other. By using the principle of impulse and angular momentum one 

obtains: 

 22
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and this results in:  
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This means that the after-impact velocities can be expressed by two numbers: 
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For the normal contact problem the coefficient of restitution ez is used. In tangential 

direction the velocity of the contact point is the major variable. The ratio of the contact 

point’s velocity after and before impact ex is the second number used in this paper. The 

tangential and angular velocity after the impact can be calculated from this number. 

The viscoelastic half-space is modeled by the linear standard-model. The Maxwell-Element 

and the Kelvin-Voigt-Element are included as special cases. For the linear standard-model the 

time dependent relaxation modulus to shear has the following form: 

 ( ) exp
t

G t G G




 
   

 
.  (4) 

It turns out that the numerical solution for ex and ez can be expressed by the following 

two dimensionless numbers: 
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At first glance it seems to be unreasonable that neither the tangential nor the angular 

velocity appears therein. But, under consideration that normal and tangential contact 

problems are decoupled, at least the coefficient of restitution ez cannot be dependent on any 

tangential velocity. Then again, the tangential problem is, under the assumption of a full 

stick regime, only dependent on the contact point’s velocity and the contact area’s shape 

during the impact. Since the system is linear, the magnitude of the contact point’s velocity 

has no significance. It is finally used for normalization of ex, as this has been done in the 

definition stated before. 

Both numbers, δ1 and δ2, can be adapted to the special cases of the material model. The 

Maxwell-Element is obtained if G∞ tends towards zero, which means that δ2 becomes 

infinite. The Kelvin-Voigt-Element is obtained if G tends toward infinity but η is held 

constant. Since δ1~ηG
-3/5

 and δ2~η, the parameter δ1 becomes zero. Finally in the elastic 

case η can be obtained to be either zero or infinity, which correspondents to an infinite soft 

or an infinite stiff damper. This means, expressed by the parameters, that either δ2 becomes 

zeros (and δ1 is finite, the elastic constant is G∞) or δ1 tends towards infinite (and δ2 is finite, 

the elastic constant is then equal to G∞+G). Summarized this means: 

 

2

1

1 2

Maxwell-Element:         

Kelvin-Voigt-Element:  0

Elastic Spring:                or 0
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3. THE BOUNDARY ELEMENT METHOD 

The used BEM is based on the fundamental solution for a point force acting on a 

viscoelastic, incompressible half-space [13-15]. Let x and y be Cartesian coordinates on the 

surface of a half-space. A point force with components Fx, Fy and Fz, is applied at the centre 

of the mentioned coordinate system and causes the following deflection of the surface: 
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These equations can only be applied, if the acting force is added at time zero and the 

force is held to be constant. From this solution, the elastic fundamental solution can be obtained 

if J(t)→1/G is substituted. Herein J(t) is the time dependent creep function for shear: 

 /

0( ) ( ) 1 tt
J t J J e 



    .  (8) 

This creep function (8) is related to the time dependent relaxation modulus G(t) given 

in Eq. (4). In the case of the standard-material: 
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and in case of the Maxwell-element: 

 
0

1
,    0,    J J G

G
    .  (10) 

The fundamental solution for the viscoelastic material looks similar to the one from 

elastic material. Especially the dependency in space is the same. With this conclusion many 

schemes from elastic contact mechanics can be used. Firstly, a standard procedure is to 

integrate the fundamental solution (Boussinesq) over a rectangle, assuming constant pressure 

[16]. This solution (Love) can be superimposed to find the deflection for an arbitrary, but 

piecewise constant, pressure distribution [17]. To speed this up, it is common practice to 

interpret this procedure as a convolution, which can be carried out on massive parallel 

processing units [18-20]. The next, more complicated problem arising in the field of elastic 

contact mechanic is the opposite task: Solve the indentation problem of a rigid indenter 

pressed in an elastic half-space with an a priori unknown contact area. Then conjugate 

gradient algorithms are used, like the modified form by Polonsky and Keer [21]. The 

procedures named above are supposed to be known and are used in the following calculations. 

The method described above can be applied to the viscoelastic case, if the acting forces 

are kept constant during one time step. The overall solution will be superimposed by 

adding the elastic solution multiplied with the time dependent creep function delayed by 

the time span since the force has been applied. At this point, a sum appears whose numerical 

costs grow linear in simulation time. By utilizing the special form of the creep function used 

here, an iterative algorithm can be derived. By applying this algorithm, only the previous time 

step is needed, and the contacting indenter shape is modified by a viscoelastic term. By using 

this method, the normal contact can be solved. A description and the application to the 

tangential sliding of an indenter can be found in [22]. The algorithm is shown below: 
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Herein uz,n is the normal deflection of the surface and fn is the deflection due to a pressure 
distribution pn - each at time tn. Furthermore, a and b are variables from the previous time step, 
initialized with value zero at the beginning of the simulation, and it is J∞=J0+J. As can be seen 
in the last line of Eq. (11), deformation D

z
 has to been taken into account to include viscoelastic 

behavior (in the elastic case D
z
 is equal to zero). The only unknown term in Eq. (11) is fn+1, 

which means that pressure distribution pn+1 is unknown. This can be calculated with the elastic 
algorithms mentioned before. It should be noted that this algorithm can handle only materials 
with a finite modulus for instant deformation (G(0)<∞ and J(0)>0). That excludes the 
Kelvin-Element because it does not fit into the scope of this algorithm. 

The tangential contact is very similar to the normal one. Only the calculation of the 
deflection in tangential direction ux has to be adopted. In all simulations carried out here, 
the deformation - perpendicular to the plane of the motion - is neglected. It has been shown 
for the case of parabolic bodies that this assumption causes only a negligible error [23,24]. 

At this point, the contact problem itself is solved. For the integration in time both an 
explicit Euler scheme and the velocity Verlet algorithm have been used. In comparison, 
they show no difference in the global error of the velocities at the end of the simulation and 
in the contact time itself. For an estimation of step size ht the solution of the elastic impact 
problem has been used: 
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Since the shear modulus is time dependent, one has to start with G(0) and iteratively set 

t→Tc. With the elastic solution also an approximation for contact radius a can be found: 

 , 0
,    

2.94

s

c elastic z

elastic

T v
a a R     . (13) 

The geometric discretisation has been chosen in a way that 256256 points are used. A 
comparison with a finer discretisation shows only a slight improvement of the error. For 
implementation it has to be considered that the total deflection in normal direction within the 
contact area is known at every time step since the indentation depth of the sphere is known. 
Contrariwise in tangential direction: the points coming into contact have a pre-deformation 
through coupling to the points within the contact area from the previous time steps. This 
can be handled by adding only the current increment of tangential movement at the boundary 
of the sphere in each time step. 
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4. RESULTS 

The simulation carried out shows that the assumptions, condensed in formula (3) and 

(5), are correct. This has been proven by choosing random simulation parameters, that all 

coincide in the same functional relation. This relation has been fitted to the numerical data 

with two functions, one for each number ex and ez. In the following contour plots (Figs. 2 

and 3) the obtained data and the fitting are shown. The fitting function and the parameter 

are given below. 

The fitting function for the coefficient of restitution in normal direction ez is (parameters are 

given in Table 1): 
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Fig. 2 Contour lines of the coefficient of restitution ez (left hand side). Special case of the 

Kelvin-Voigt-Element (δ1→0) and the Maxwell-Element (δ2→∞) (right hand side) 

Table 1 List of the fitting parameters for the coefficient of restitution in normal direction ez 

corresponding to the fitting function given in (14) 

Parameter δ1
p δ2

p c1 c2 

Value -1.342 0.9583 2.079 -2.892 
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The fitting function for the coefficient of restitution in tangential direction ex is (parameters 

are given in Table 2): 
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Fig. 3 Contour lines of the coefficient of restitution ex (left hand side). Special case of the 

Kelvin-Voigt-Element (δ1→0) and the Maxwell-Element (δ2→∞) (right hand side) 

Table 2 List of the fitting parameters for the coefficient of restitution in normal direction  

ex corresponding to the fitting function given in Eq. (15) 

Parameter ex
min ex

el ex
max δ1

p δ2
p 

Value -0.0399 0.1038 0.2028 -0.4 -0.8 

Parameter c1 c2 c3 c4 c5 

Value 2.335 0.5406 -2.29 2.253 1.718 

Parameter c6 c7 c8 c9 

Value 2.335 0.7999 -2.105 4.000 



300 S. KUSCHE 

5. CONCLUSIONS 

The BEM has been extended to the normal and tangential contact problem of viscoelastic 

media. The approach has different advantages: It implements a relatively simple adaptation 

to the existing BEM procedures developed for elastic media and its applicability to any other 

transient problem dealing with time dependent viscoelastic behavior modeled by the Prony 

series. Exemplary the impact of a sphere with an elastomer, modeled by a Maxwell-element 

and a standard-model, has been investigated. The obtained compact and elegant solution is 

given in form of a fitting function for further use. 
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