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Abstract. Smart equipment can support feedback in motor learning process. Smart 

equipment with integrated sensors can be used as a standalone system or complemented 

with body-attached wearable sensors. Our work focuses on real-time biofeedback system 

design, particularly on the application of a specific sensor selection. The main goal of our 

research is to prepare the technical conditions to prove efficiency and benefits of the real-

time biofeedback when used in selected motion-learning processes. The most used 

wireless technologies that are used or are expected to be used in real-time biofeedback 

systems are listed. The tests performed on two prototypes, smart golf club and smart ski, 

show an appropriate sensor selection and feasibility of implementation of the real-time 

biofeedback concept in golf and skiing practice. We are confident that the concept can be 

expanded for use in other sports and rehabilitation. It has been learned that at this time 

none of the existing wireless technologies can satisfy all possible demands of different 

real-time biofeedback applications in sport. 
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1. INTRODUCTION  

Feedback is the most important concept for learning except practice itself [1]. During 

the practice, the natural (inherent) feedback information is provided internally through 

human sense organs. Augmented feedback is provided by an external source, traditionally 

by instructors and trainers [2]. Modern technical equipment can help both the performer 

and the instructor.  In many sports disciplines video recording is a classical method for 

providing additional feedback information for post analysis and terminal feedback. 

Modern technical equipment can provide more precise measurements of human kinetics 
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and kinematics parameters and can considerably improve the quality of feedback 

information. Modern optical motion tracking systems are using passive or active markers 

and a number of high-speed cameras. An alternative to optical tracking systems are 

inertial motion unit (IMU) based systems, which use several wearable sensors attached to 

the human body. Both types of motion tracking systems are professional and expensive 

equipment that can be used not only for biomechanics research in sports, rehabilitation 

and ergonomics but also as an animation tool in movie industry and virtual reality 

tracking. Augmented feedback supported by technical equipment (sensors and actuators) 

is defined as biofeedback because a human is inside the feedback loop. The general 

architecture of a biofeedback system is presented in Fig. 1. 

In a biofeedback system, a person has attached sensors that measure body functions 

and actions. The sensors are connected to a processing device for sensor signal and data 

analysis. The results are communicated back to the person through one of the human 

senses. The person attempts to act on the received information to change the body 

function or action in the desired manner. The term biofeedback was first described in 

connection with the human physiological processes and shortly afterwards in terms of the 

physical body activity in sports biomechanics. According to [3], biofeedback can be 

categorized into two main groups: physiological and biomechanical. In this paper, the 

word biofeedback concerns body and with body-related activity in the sense of physical 

movement; it is classified as biomechanical biofeedback in [3]. 

 

Sensor(s)

Processing device

Actuator(s)

User

 

Fig. 1 General architecture of a biofeedback system 

To achieve a widespread use of biofeedback applications, important feedback information 

concerning knowledge of performance should be provided with less complex and cheaper 

technical equipment. Miniature IMU sensors (accelerometers and gyroscopes) are integrated in 

every modern smartphone. Consequently, many motion activity applications for smartphones 

and wearables using only accelerometer data exist. 

In many sport disciplines various types of equipment are essential or even indispensable for 

performing the desired task (tennis rackets, baseball bats, golf clubs, alpine skis, etc.). In fact, 

some of the most relevant human actions are transferred through the equipment. All this 

equipment can be supported by different types of sensors, not only accelerometers, gyroscopes 

and magnetometers. For example, strain sensors are the perfect choice to detect and measure 

force, torque, and bending in different parts of the equipment. An appropriate sensor fusion 

algorithm can give precise information on performers’ actions and equipment reactions. A 
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feedback from the sport equipment could therefore improve the performer’s skills, especially if 

it is provided in real-time, that is, without a significant delay. Smart sport equipment can 

include any combination of sensor(s), processing device, and actuators(s) as defined in Fig. 1. 

Sport equipment manufacturers have already started embedding the digital technology 

into their products. Some examples of smart sport equipment, which are already available 

on the global market, are: smart shoes, smart tennis racket, smart basketball, smart 

baseball bat, and smart golf club [4]. In the near future it is possible to predict many 

improvements in technology that could drive down the prices and encourage a widespread 

adoption of smart sport equipment. The real-world application of smart sport equipment 

as a part of biofeedback systems face several constraints that can represent higher or 

lower obstacles in their acceptance and use.  

The space constraint defines the possible locations of biofeedback system elements: 

(a) personal space system, where all system elements are attached to the user, (b) confined 

space system, where the elements are distributed within a defined and limited space, and 

(c) open space system, where elements are not restricted in space.  

The time constraint defines the timing of the feedback given by the biofeedback system, 

which can work only if the feedback loop is closed. That means that the user receives, 

understands, and possibly reacts to the feedback information. The feedback information can 

be given at different times: (a) terminal feedback is given after the activity has been 

performed; (b) concurrent feedback is given during the activity. Feedback loop delay 

consists of communication delays for the transmission of sensor and feedback signals, 

processing delay, and user reaction delay. 

Computation constraint is closely related and dependent on the space and time constraints 

as well as on the properties of sensors and actuators. Processing in the biofeedback loop can be 

done in real time or in post processing. While the post processing mode does not represent a 

computational problem to the most of the processing devices and communication technologies, 

real time operation can many times be a difficult problem because the processing device has to 

finish the processing within the time frame of one sensor sampling period, which can be as low 

as 1 ms or even less. 

Another important parameter is the communication delay within the biofeedback loop. 

This parameter is connected to all of the constraints studied above. Communication delay 

is heavily dependent on the communication technology used. For the real-time 

biofeedback systems the communication delay must be a fraction of the reaction delay. 

2. MOTIVATION 

In majority of research work in sport wearable sensors are used for the purpose of 

monitoring and for the post processing analysis of signals and data. The feedback 

information is given with delay after the performed activity, what is defined as terminal 

feedback. The same is true for the majority of sport applications already available on 

smartphones; post processing with presentation of some vital or important parameters. The 

concurrent feedback, which is given in real time within the currently performed action, is 

very useful for motor learning, but is rarely used. 

The primary aim of our research is the development of technical equipment that would 

allow implementation of real-time biomechanical biofeedback systems. We are convinced 
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that such systems would allow a leap in research in this field. The important tasks in our 

research are the selection of appropriate sensors and the assurance of suitable conditions 

for sensor signal transmission and processing. As it is evident from research papers, IMU 

sensors are the most often used ones in sports [5-12]. One promising direction of research 

is the use of smartphones in place of one or several elements of the biofeedback loop. 

Smartphones can bring many important advantages, especially in bringing biofeedback 

systems closer to amateur users, who cannot afford expensive expert systems. Smartphone 

properties and their suitability for biofeedback applications have been studied in [13-17]. 

The main focus of our current research is motor learning in sport with the help of 

feedback information provided by sensors integrated into sport equipment [18, 19]. The 

results of our research can be implemented also in the field of rehabilitation equipment as 

motor learning in rehabilitation is generally less demanding from that in sport. Research 

efforts in smart sport equipment, many times coupled with sensors attached to the athlete, are  

present in many sports: from swimming [20], rowing [21, 22], kayak [23], canoe [24], and 

precision shooting [25], to golf and skiing that are presented and discussed later in this 

paper. 

One of the main research motivations of this paper is also the identification and 

selection of the most appropriate wireless communication technologies for various 

biofeedback applications that include smart sport equipment. To date, there is no one-fits-

all solution to the above challenge. The sources of the data are sensors that are very 

heterogeneous in many aspects. They produce data rates from of a few bytes per minute 

for measuring patient’s temperature to a few Mbit/s for a high-resolution and high-speed 

camera used in sport. Sensors can be used for measuring physiological processes of a human 

(heart rate, glucose levels, blood saturation, etc.) to measuring performance of an athlete or 

sport equipment (high dynamic movement, high frequency vibrations, bending, strain, etc.). 

The same heterogeneity is expressed in the variety of sensor network technologies; from 

technologies that cover body area (BAN) to technologies that cover metropolitan area 

(MAN), from technologies with bitrates of a few kbit/s to technologies of a few hundreds 

of Mbit/s, from frequencies of 400 MHZ to frequencies of 60 GHz, etc. It is obvious that 

the heterogeneity of sensors, networking technologies and application demands will yield 

the heterogeneity of the most appropriate solutions. 

We would like to emphasize that this paper represents an interdisciplinary research in 

the fields of communication technologies, sensors, feedback systems, and sports. During 

our study and experiments in the abovementioned fields we have come across important 

obstacles and challenges that have not yet been addressed properly. 

The main contributions of our paper are: (a) a systematic approach to the design of smart 

equipment that acts as a component of feedback systems in sport, (b) setting a guideline for 

the selection of the most appropriate combination of sensors, actuators and wireless 

technologies for different variants of real-time feedback systems in sport. To the best of our 

knowledge, there are no research papers that jointly discuss the topics in this paper. 
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3. SMART SPORT EQUIPMENT SENSORS, ACTUATORS AND WIRELESS TECHNOLOGIES 

The integration of sensors and actuators into sport equipment enables not only the 

acquisition of information about motion, static positions, and acting forces, but also the 

means of giving appropriate feedback information back to the user. Using the sensor 

signal analysis and specific a priori knowledge, the validation of the movement 

correctness can be achieved and appropriate feedback information can be communicated 

within the biofeedback loop. This procedure was tested in practical experiments in the 

field of training in golf and alpine skiing that is presented in Section 4. 

3.1. Sensors and actuators 

Sensors and actuators used in sports are heterogeneous in their properties. They can be 

grouped based on different criteria, such as measured quantity, bit rate, sampling rate, 

accuracy, precision, and similar [26-28]. Some of the most popular sensors and actuators 

used in sport are presented in Table 1. 

Table 1 Sensors and actuators used in sport 

Sensor/Actuator Bit rate Delay 

Temperature < 100 bit/s Not critical 

Heart rate < 100 bit/s Seconds 

ECG 20-100 kbit/s < 1 s 

Accelerometer 1-200 kbit/s < 50 ms 

Gyroscope 1-200 kbit/s < 50 ms 

Strain-gauge 1-50 kbit/s < 50 ms 

Tactile actuator < 100 bit/s < 50 ms 

Audio actuator <1 Mbit/s < 50 ms 

Video actuator < 10 Mbit/s < 50 ms 

Several sensor groups can be distinguished: (a) Sensors for low or high dynamic 

physiological processes, (b) sensors for low dynamic movement activities and (c) sensors for 

high dynamic movement activities. The main parameters that correspond to abovementioned 

groups are: sampling frequency (from below 1 Hz to a few kHz), precision (from 8 to 16 bit), 

and produced bit rate (from less than 1 bit/s to tens of Mbit/s). Actuators show less variety in 

their type and output, but can vary as much as sensors in sampling frequency and bit rate; from 

a one-bit tactile actuator (buzzer) to a high-definition and high-speed video screen. By 

combining several sensors and actuators within one (real-time) biofeedback system, the 

required bit rates and delay constraints can be very high. The selection of the most 

appropriate wireless technology is of paramount importance for achieving high quality of 

service of biofeedback system operation. 

3.2. Wireless technologies 

Like sensors and actuators, wireless technologies are also very heterogeneous in their 

properties. Table 2 lists the most used wireless communication technologies that are in 

use today for providing the functionalities of BAN, PAN (Personal Area Network), LAN 

(Local Area Network), and MAN. Only the range and bit rate properties that are the most 
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important for our discussion are listed. More details about the listed technologies can be 

found in [26]. The selection of the most appropriate wireless communication technology 

depends on the type and implementation of the biofeedback systems. The heterogeneity of 

wireless technologies and the variety of biofeedback system versions suggests the use of 

multi-radio concepts [26-28]. 

Table 2 Standardized wireless technologies with potential use in sport 

Technology Range Bit rate 

Bluetooth 10 - 100 m 1 - 3 Mbit/s 

ZigBee 10 - 100 m 20 - 250 kbit/s 

IEEE 802.11n 70 m 600 Mbit/s 

IEEE 802.11ac 35 m 6.93 Gbit/s 

IEEE 802.11ah 1 km 40 Mbit/s 

IEEE 802.11af >1 km 1.8-26.7 Mbit/s 

LoRaWAN to 100 km 250 - 5470 bit/s 

3.3. Selection of technologies for real-time feedback system 

A large number of factors and constraints have to be considered when selecting the 

most appropriate elements of feedback systems in sport. This is particularly true for the 

feedback systems that operate in real time (time constraint) giving concurrent feedback to 

the user. For help with the selection process, we have composed Fig. 2 that illustrates the 

available bitrates of wireless technologies from Table 2 plotted against their ranges, 

bitrate ranges of various sensors and actuators from Table 1, and space constraints of 

feedback systems defined in the Introduction. Computational constraint is not addressed 

in detail here because it can be controlled to a high degree by the system designer while 

the other two constraints are mostly the given properties of the feedback system. It should 

be noted that IEEE 802.11ah, IEEE 802.11af wireless technologies are trying to fill-in the 

gap for open space systems with kilometre ranges and bitrates in Mbit/s, but at the time of 

writing they were not yet available in the market. 

A number of important conclusions for the design of real-time feedback system can be 

drawn from Fig. 2. For example: (a) real-time feedback systems based on physiological 

parameters, such as temperature and heart rate, can be implemented in personal, confined, 

and open space by using LoRaWAN wireless technology; (b) usage of audio and video 

actuators in personal space systems is supported by Bluetooth, IEEE 802.11n, IEEE 

802.11ac, IEEE 802.11ah, and IEEE 802.11af wireless technologies; in open space systems 

these actuators can be used to some extent by implementing IEEE 802.11ah, IEEE 802.11af 

wireless technologies; the problem is that the latter two technologies are standardized, but 

not yet available in the market; (c) inertial sensors (accelerometer and gyroscope) can be 

used in personal and confined space systems by using all listed wireless technologies, 

except LoRaWAN, but that is always true only for one such sensor; if there are more 

inertial sensors in the feedback system, some of the above technologies can prove 

insufficient; (d) given the ZigBee based system in confined space, sensors for low dynamic 

physiological processes and a limited number of inertial and strain-gauge sensors with low 

sample rates can be used. Many similar useful conclusions can be made based on information 

included in Fig. 2. 
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Fig. 2 Illustration of available bitrates of wireless technologies from Table 2 plotted against 

their ranges, bitrate ranges of various sensors and actuators from Table 1, and space 

constraints help with the selection of appropriate feedback system elements 

4. SMART SPORT EQUIPMENT PROTOTYPES 

For the validation of the above presented concept, two original smart equipment 

prototypes have been developed: smart golf club and smart ski. The development of real-

time biofeedback system usage concepts and procedures were started based on the first 

measurement results. They include a systematic approach by defining the useful short 

practice lessons, adapting the precision of real-time biofeedback system to the capabilities 

of the user (amateur vs. professional), the choice of correct feedback modality, and the 

appropriate amount of feedback information adapted to the limited perception capabilities 

of users during training.  
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4.1. Smart golf club 

The smart golf club prototype includes: (a) two strain gage sensors, which measure the 

golf club shaft bend and (b) 3-axis MEMS accelerometer and 3-axis MEMS gyroscope, 

which measure acceleration and angular speed of the golf club. The latter two sensors are 

a part of the independent Shimmer 3 IMU equipped with Bluetooth communication 

interface. Strain gage sensor signals are acquired by the professional measurement system 

(National Instruments Corporation, Austin, TX, USA) with NI cRIO 9063 base (667 MHz 

dual-core controller with FPGA) with bridge amplifier module NI 9237. IMU sensor 

signals are acquired by the LabVIEW™ application running on the laptop.  

Shimmer 3 devices can reliably stream sensor data using the Bluetooth up to sampling 

frequencies of 512 Hz, which was used in our experiments. The accelerometer's dynamic 

range is up to ±16 g0 and the gyroscopes dynamic range is up to ±2000 deg/s. The 

precision of both is 16 bits per sample. In the experiments the Shimmer 3 device is fixed 

to the club's shaft just below the grip as seen in Fig. 3. 

Sensor signals are synchronized and processed by the distributed LabVIEW™ 

application running on the laptop and cRIO platform. After streamed sensor signals are 

aligned by their impact samples, they are segmented into separate swings, each containing 

1500 samples, with impact sample at index 1000. At the sampling frequency of 500 Hz 

the duration of each swing is 3 s. In the graphs presented in this paper only swing signal 

samples between indexes 250 and 1000 or 1.5 s time frame are plotted. 

    

Fig. 3 Smart club prototype used in the field 

Figure 4 shows the player signatures produced by the two strain gage sensors 

orthogonally placed on the shaft of the golf club. Fig. 4(a) shows trajectories (signatures) 

of a perfectly performed straight swing of three different players. It can be seen that their 
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signatures are distinctively different. Figs. 4(b) and 4(c) show the trajectories of different 

swing types of player 1 and player 3, respectively. It can be seen that the differences in 

trajectories of the same swing type of different players is greater than the difference in 

trajectories of the different swing types of the same player. 

Figure 5 shows the sensor signals with marked points in time that correspond to the 

distinctive phases of the golf swing. Sensor signals are acquired by two strain gage 

sensors (top graph), 3-axis accelerometer (middle graph), and 3-axis gyroscope (bottom 

graph). Trajectories show high consistency of swings, repeatability, and precision of the 

measuring system. 

 
(a) 

  
(b) (c) 

Fig. 4 Smart golf club prototype includes a 2D bending sensor; its trajectories confirm high 

consistency of players swings. Average trajectories (N=10) show (a) large differences 

between three different players’ signatures, and much smaller differences between the 

perfect swing and faulty swings of the same player (b) and (c) 
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Fig. 5 Sensor signals and phases of the swing: (a) address, (b) takeaway, (c) backswing, 

(d) top of the backswing, (e) downswing, (f) impact. In the s train gage graph the 

red curves represent the response of the side-mounted sensor and the blue curves 

represent the response of the top-mounted sensor. In accelerometer graph red, blue, 

and green curves represent the acceleration in 1x, 1y, and 1z axis respectively. In 

the gyroscope graph red, blue, and green curves represent the angular velocity 

around 1x, 1y, and 1z axis, respectively. 
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4.2. Smart ski 

Smart ski prototype includes strain gage sensors for measuring the bend of the ski in 

several sections of the ski, several force sensors for measuring the force that the skier is 

applying to the ski, 3-axis accelerometer, and 3-axis gyroscope for measuring the motion. 

Bend and force sensors are integrated into the ski, accelerometer and gyroscope are 

attached to the skier's torso. Two additional Shimmer 3 devices are attached to the legs of 

the skier. The prototype is shown in Fig. 6; Smart skis are shown on the left hand side and 

the fully equipped skier to the right hand side of the figure. 

 

      

Fig. 6 Smart ski prototype 

Sensor signals are collected, synchronized and processed by the LabVIEW™ application 

running on the professional measurement system (National Instruments Corporation, Austin, 

TX, USA) with NI cRIO 9063 base (667 MHz dual-core controller with FPGA) with bridge 

amplifier module NI 9237 and analogue to digital converter module NI 9205. The sampling 

frequency of the system is 100 Hz. The accelerometer's dynamic range is up to ±16 g0 and 

the gyroscopes dynamic range is up to ±2000 deg/s. The accelerometer and gyroscope are 

using the Wi-Fi connection (IEEE 802.11) to stream data to the cRIO device. Shimmer 3 

devices are operating in the logging mode because of incompatibility of wireless 

technologies between the system elements; the laptop used in golf club prototype cannot be 
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used during the skiing action. Sensor signals from Shimmer 3 device are synchronized with 

the rest of the sensors in post processing. 

Laboratory tests for equipment operation testing, calibration and validation were 

followed by several snow tests in different weather and snow conditions and performed 

with different expert skiers, some ex world cup racers and some from the Slovenian 

Alpine Demo Team. Test skiers performed various skiing tasks and techniques according 

to the predefined schedule. 

 

 

(a) 

 

 
(b) 

 

Fig. 7 Skiing experiments with smart ski prototype (a)  

and the corresponding signals and calculated plots (b) 
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For example, one of the tasks was to perform the carving turns by equally loading both 

skis. Figure 7(a) shows the test skier during testing and Fig. 7(b) the corresponding 

signals acquired during the test. Figure 7(b), observing from top to bottom, is showing the 

following signals and calculated plots: a pair of signals shoving the flexing of the left and 

the right ski (narrow red and blue lines), total dynamic load applied to both skis (cyan 

line), a pair of plots showing the load on the left and the right ski edges (thick red and 

blue lines), relative load balance in the right-left direction (thick black line), and relative 

load balance in the front-rear direction (thick green line). 

The final goal of the research is the development of the user application with real-time 

biofeedback. The feedback can be given through different modalities. An example of a 

real-time visual feedback, projected onto the skier's goggles, is shown in Fig. 8. The 

exemplary display includes the binary state indicators (carving) and sliders showing skiers 

current performance (outer/inner). 

 

Fig. 8 Real-time biofeedback application 

5. CONCLUSION 

Biofeedback systems are important in motor learning in sports. Given the heterogeneity 

of sensors, actuators, and wireless technologies, countless scenarios of their use in 

biofeedback systems in sport are possible. Prototypes of a smart golf club and smart ski have 

been designed and the most important results of experimenting with both prototypes have 

been presented. With the smart golf club prototype it has been shown that the differences in 

trajectories of the same swing type of different players is greater than the difference in 

trajectories of the different swing types of the same player. The action of the skier and the 

reaction of the skis and terrain at the same time can be precisely and timely measured with 

the smart ski prototype. The acquired information from the integrated sensors is used in the 
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testing of ski performance and for ski technique improvement or learning. The developed 

application allows the ski expert to analyze the performance of the skier based on several 

measured and calculated parameters. The application is currently capable of recognizing 

different phases of carving technique and diagnoses typical errors in regard to the load 

distribution during the steering phase of the turn. 

The development of real-time biofeedback system usage concepts and procedures has 

been started based on the first measurement results. Concepts and procedures include a 

systematic approach by defining the useful short practice lessons, adapting the precision 

of real-time biofeedback system to the capabilities of the user (amateur vs. professional), 

the choice of correct feedback modality, and the appropriate amount of feedback 

information adapted to the limited perception capabilities of users during training.  

With the development of real-time biofeedback systems we have been challenged by 

communication technologies limitations and limitations of the of-the-shelf sensor devices.  

It is important to accept that at this time none of the existing wireless technologies can 

satisfy all possible demands of different real-time biofeedback application scenarios. The 

main limitation here is the required real-time operation of the biofeedback system that at 

the same time requires a high bit rate, low delay, and long range. This can be a problem 

with highly dynamical human motion tracking and also with sport equipment that is 

usually used for enhancing or extending human motion, such as baseball bat, golf club, 

skis, ice hockey stick, and many others. 
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