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Abstract. Heat transfer rate, pressure loss and efficiency are considered as the most 

important parameters in designing compact heat exchangers. Despite different types of 

heat exchangers, fin-and-tube compact heat exchangers are still common device in 

different industries due to the diversity of usage and the low space installation need. 

The efficiency of the compact heat exchanger can be increased by introducing the fins 

and increasing the heat transfer rate between the surface and the surroundings. 

Numerous modifications can be applied to the fin surface to increase heat transfer. 

Delta-winglet vortex generators (VGs) are known to enhance the heat transfer between 

the energy carrying fluid and the heat transfer surfaces in plate-fin-and-tube banks, but 

they have drawbacks as well. They increase the pressure loss and this should be 

considered. In this paper, the thermal efficiency of compact heat exchanger with VGs is 

investigated in different variations. The angle of attack, the length and horizontal and 

vertical position of winglet are the main parameters to consider. Numerical analyses 

are carried out to examine finned tube heat exchanger with winglets at the fin surface 

in a relatively low Reynolds number flow for the inline tube arrangements. The results 

showed that the length of the winglet significantly affects the improvement of heat 

transfer performance of the fin-and-tube compact heat exchangers with a moderate 

pressure loss penalty. In addition, the results show that the optimization cannot be 

performed for one criterion only. More parameters should be considered at the same 

time to run the process properly and improve the heat exchanger efficiency. 
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1. INTRODUCTION 

Nowadays, tube bank fin heat exchangers are commonly exploited in different 

industrial tools like cooling systems of locomotive engine and chillers. One of the main 

drawbacks of such heat exchangers is related to their high energy consumption. Thus, in 

order to mitigate the consumption of energy, there have been efforts on improving the 

heat transfer in the fin sides. One of the recently known ways of achieving this purpose is 

making modification on the geometry of the fin surface. 

Based on the previous works on approaches to geometry modification, the most 

outstanding modifications include the wavy fin [1], the slit fin [2], the louvered fin [3], 

the interrupted annular groove fin [4], the fin with winglet-type vortex generators (VGs) 

[5], and some combination enhanced fins [6, 7]. 

One of the well-established approaches for improving the heat transfer in fin side is 

creating a secondary flow with VGs. It functions by both making interruption in development 

of thermal boundary layer and creating longitudinal vortices, which improves the moment and 

mass transfer of fluid between the area close to the wall and the region remote from the wall. 

Fiebig [8] and Jacobi and Shah [9] conducted a review study on exploitation of VGs in 

compact heat exchangers. Their studies have shown that plain winglet VGs consisting of 

delta-winglet [10–15] and rectangular-winglet [16] are considered as the most prevalent 

applications.  

Based on the result from the comparative study done by Tiggelbeck et al. [17], delta 

winglets and the rectangular winglets are considered as the highest and second highest 

performance respectively. In a similar way, He et al. [18] made a comparison on the 

performance of delta-winglet pairs consisting of two layout styles (continuous and 

discontinuous) with that of the traditional large winglet. 

Based on the results, discontinuous oriented winglets are found to be the best heat transfer 

improvement mode. In a similar study done by Torri et al. [19], delta winglet-type VGs are 

applied, which has led to eliminating areas with poor heat transfer around wake of the tube. 

In the other study related to the application of VGs in heat transfer, Lin et al. [20, 21] 

analyzed flow features of heat exchangers which are fitted with wave-type, annular and 

inclined formed VGs. In another research by Leu et al. [22] thermal-hydraulic features of 

inlined and staggered plate fin-tube heat exchangers were studied through investigation of 

block styled VGs fitted behind the tubes, which indicated optimization of the VG's span angle 

and the VG's transverse place.  

Dupont et al. [23] did an empirical study on flow characteristics by exploiting embossed-

type VGs which were cyclically arranged. They demonstrated that the application of such 

forms of VGs could be the striking point in the area of heat transfer enhancement.   

Ye et al. [24] compared the performance of curved trapezoidal winglet VGs with that of 

conventional plain VGs consisting of rectangular-winglet, trapezoidal-winglet and delta-

winglet forms. According to the results, the delta winglet mode is observed as the best form 

under laminar and transitional flow condition. On the other hand, under the turbulent 

condition, curved trapezoidal winglet has shown the best performance. It should be noted that 

in spite of its superiority, it is not commonly used in tube bank fin heat exchangers existing on 

the market. 

Based on the current research stream on the heat transfer enhancement of the compact heat 

exchangers, VGs are basically applied to create vortices. Besides, in some studies, they have 

been exploited to put the flow in the right direction. Therefore, due to the existence of wake 



 Heat Transfer Enhancement and Pressure Drop for Fin-and-Tube Compact Heat Exchangers with Delta... 235 

area behind tubes, VGs can be taken granted with two different functions including generating 

vortex and directing flows. However, identifying the optimal design should be an important 

issue requiring sober consideration. For instance, plane VGs are found to be fitted on the fine 

surface, while other block styled VGs do not fit in this format. Therefore, this study has 

adopted a delta-winglet VG which is fitted on the fin surface as demonstrated in Fig. 1. 

By applying the proposed VG pattern, this study tries to direct fluid flow to the tube 

wake areas, which is likely to improve the weak heat transfer on the fin surfaces that are 

in touch with the wake area. Yet, it is expected that the produced vortices can improve 

the transfer in a big area of the fin surface. To achieve the main objective of this study, a 

numerical method is conducted to examine how delta winglet vortex generators function. 

In the next section, first, the physical model and numerical formulation are introduced, 

and then the results from analyses of fluid flow features are explained. 

2. NUMERICAL SETUP 

2.1. Geometry 

The solution domain describes the approximate location where the solution is performed. 

The shape of the domain can be rectangular. Most of the previous literatures show that 

rectangular domain is the best for this case [25]. The main parameters of the FTCHE are 

specified in Table 1 and shown in Fig. 1. 

 

Fig. 1 Solution domain (a) top view, (b) side view 
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Table 1 Detailed geometry parameters of based FTCHE with delta winglet 

Parameter Symbol (unit) Value 

Transverse tube spacing Pt (mm) 25.4 

Longitudinal tube spacing Pl (mm) 25.4 

Fin pitch Fp (mm) 3.0 

Fin thickness δf (mm) 0.2 

Fin length Fl (mm) 101.6 

Fin width Fw (mm) 25.4 

Tube position from the inlet Xl (mm) 12.7 

Number of tubes N 4 

Angle of attack θ(degree) 30 

Length of the VG l (mm) 6 

Horizontal Position of VG Xv (mm) 5.275 

Vertical Position of VG Yv (mm) 5.275 

2.2. Boundary conditions 

The complete details of boundary conditions were simulated in this study to investigate the 

thermal and fluid dynamic characteristics that are used in ANSYS FLUENT are described as 

follows: 

 Inflow: velocity inlet;  

 Outflow: outflow;  

 Side Wall: wall;  

 Top and bottom fins: symmetry; 

 Tube walls: no-slip walls 

 Fluid domain: FLUID 

2.3. Governing equations  

The general form of the continuity and Naiver-Stokes equations with Reynolds averaging 

[26] are used along with the k-ε model equation as explained below. Based on the study 

conducted by Ferrouillat et al. [27], k-ε is well capable of predicting the flow behaviour. 
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where Ui is the mean velocity vector of the flow, vt is turbulent kinematic viscosity, fµ is 
damping function, Cµ is model constant, k is turbulent kinetic energy and ε is energy 
dissipation rate. In a comparison to the standard closure models, the low-Re k-ε equations 
contain damping functions fµ, f1 and f2, destruction terms D and E, and molecular 
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diffusion terms. Also, the values of model constants, Cµ, Cε1 and Cε2 are to be specified 
by the user and are different for different models. The model constants for Low-Re k-ε 

model are: Cµ = 0.09, Cε1 =1.50, Cε2 =1.90, σk = 1.40 and σε = 1.40. In addition to that 

of the terms D = 0 and E = 0. The damping functions considered in this model are 
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For more details on low-Re turbulence models, model constants and notations readers 

are advised to refer ANSYS
TM

 Fluent manual [29].  

 

2.4. Mesh Generation 

The next step is the mesh generation in our domain and around the tubes. As can be 

seen in Fig. 2, the mesh is also divided into three parts to reach the maximum accuracy and 

minimum computational time. The mesh is 3D and except the edge of the winglet where 

tetrahedral elements are used, all other parts use a structured mesh. Also for reaching the 

desirable accuracy, the result convergence has been checked by using different numbers of 

elements: 382351, 507256, 725665 and 983683, for a case with an angle of attack b = 30° at 

Reynolds number 400 (chosen arbitrarily). Table 2 shows the numerical results and the 

average deviation for three different meshes for Re=400. As expected, this difference 

(error) decreases as the mesh becomes finer. However, it was found that the error between 

the results achieved with the mesh with 725665 and 983683 elements was less than 0.1% 

regarding the Friction Factor and less than 2% regarding the Colburn Factor. Based on the 

validation and in order to keep a balanced compromise between computational time and 

solution accuracy, the mesh with 725665 elements was selected. 

Table 2 Summary of the grid independence 

Number of elements Friction Factor, f 
Different 

percentage for f 

MESH 1 382351 0.07447 - 

MESH 2 507256 0.07462 0.21% 

MESH 3 725665 0.07483 0.29% 

MESH 4 983683 0.07482 -0.02% 
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Fig. 2 Mesh generation on the computational model of CHE with delta winglet VG 

2.5. Simulating Steady-State Tests 

Steady-state simulations were performed using FLUENT software with parameters set 
as follows. The first order implicit solver with the steady option (K and ε, parameter 
Turbulent Kinetic Energy=1 m

2
/s

3
, Turbulent Dissipation Rate=1 m

2
/s

3
) was selected 

together with the standard wall function, while other options remained as by default, with 
energy function. COUPLED algorithm based on [5, 30, 31] was used to calculate 
pressure-velocity coupling, pressure discretization and the momentum discretization were 
the first order upwind discrete mode. The force and momentum data are recorded in every 
step. Due to the small fin pitch and low fluid velocity, the incompressible flows in the air-
side passages turn out as laminar streams [32]. 

2.6. Validation 

Validation of the numerical study in this research has been done by comparison of the 

CFD results with other researcher’s experiments. For this phase, the experiment carried 

by Wang et al. [33] was selected. Figure 3 illustrates the comparison between the 

 

Fig. 3 Comparison of experimental results presented by Wang [33] and present work 
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experimental and numerical results for the Colburn factor on the air side. As can be seen, 

there is a good agreement between the numerical results and experimental data, which 

reveals the consistency of numerical simulation introduced in this study. The highest 

difference between the numerical results obtained by the current model and the experimental 

data for the Colburn J factor were about 12%.   

3. RESULTS AND DISCUSSION 

The parametric study was performed in order to investigate the most important design 

variable in the heat exchanger performance and choose the most appropriate optimization 

algorithm. The design variables are the angle of attack (θ), length of the VGs (l), 

horizontal position of the VGs based on the tube center (Xv) and vertical position of the 

VGs based on the tube center (Yv). To investigate the degree of importance of each 

variable before the design optimization is carried out, the effect of each design variable 

on the pressure drop, Nusselt number and overall heat transfer performance was 

examined by varying only one variable among the baseline parameters. For example, for 

examining the effect of angle of attack on the heat transfer and flow characteristics of the 

fin-and-tube compact heat exchangers (FTCHE) with delta winglets, the angle of attack 

varies from 10° to 60° and the other parameters remain the same as listed in Table 1. 

3.1. Effect of angle of attack 

In the present section, a comparative study of the effects of the angle of attack of 

vortex generator on the performance of compact heat exchangers is evaluated as the 

parametric design input variable for the optimization algorithm. The angle varies from 

10° to 60° and the other parameters are kept the same as in Table 1. The graph of Nusselt 

number, friction factor, and overall performance of CHEs are conducted by numerical 

method. 

Figure 4 shows the average Nusselt number and the friction factor with air frontal 

velocity for various angles of attack. It can be seen that Nusselt number increases with 

the increase in angle of attack up to 30° and then starts to decrease, while the friction 

factor increases in all angles. Figure 4 shows that the maximum values of convective heat 

transfer rate occur in the case of angle equal to 30°. The results show the minimum 

values of the Nusselt number created for the angle of 60°. The results have shown that the 

average Nusselt number decreases significantly with the increase of angle. Figure 4 

shows the effects of the angle of attack on friction factor. The f factor increases with the 

increase in the angle of attack. The results displayed the minimum values founded for the 

angle of 0°. It is clearly shown that larger values of angles of attack may lead to the 

higher friction factor, and smaller angle may lead to smaller flow resistance. 
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Fig. 4 Effect of angle of attack of VGs on the friction factor and average Nusselt number  

 

Fig. 5 Effect of angle of attack of VGs on the on overall performance criteria 

Figure 5 shows the effect of angle of attack of VGs on the overall performance criteria 

(JF factor). It can be seen that the JF factor decreases with increase in angle of attack.  

3.2. Effect of the length of the vortex generator 

The parametric study is performed in order to investigate the importance of wing length 

of vortex generator as a design variable in the heat exchanger performance when the other 

parameters are kept the same. The effect of the wing length on the Nusselt number and 

friction factor is shown in Fig. 6. The results for various VG length are plotted as a function 
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of the Nusselt number and Friction factor. The Nusselt number significantly decreases with 

the increase of the length, whereas the friction factor decreases with the increase of length. 

The highest values of Friction factor occur at the length of 7mm and this due to a blockage 

that these VGs make in front of the flow. It’s totally logical that most resistance is on the 

biggest block. The highest Nusselt number is at the length of 5mm and this paradox 

between the Friction factor and Nusselt number, again shows the significance of optimizing 

for the VGs. 

(a)  

 

(b)  

 

Fig. 6 Influence of winglet length: (a) on friction factor, (b) on Nu number 

Figure 7 shows the variations of the overall performances for different VGs length. 

The JF factor decreases with an increase in VGs length. It is noted obviously that the 

augment on pressure loss is smaller than the improvement in heat transfer, which leads to 

the positive effects of making the VGs smaller. 
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Fig. 7 Effect of VG length in on overall performance criteria 

3.3. Effect of the horizontal position of the vortex generator 

Examining the effect of the horizontal position of the VGs based on distance from the 

centre of the tubes (Fig. 8), it is seen that the distance varies from 4.55 mm to 6.4 mm, 

and the other parameters are kept the same for the designs of compact heat exchangers. 

Figure 9 shows the effect of horizontal position on both the Nusselt number and friction 

factor. It can be seen that the Nusselt number decreases when the VGs move away from 

the tubes, but the rate of decreasing become less at 5.825mm. Also, a downward trend in 

friction factor is achieved at all positions. The only exception is at 5.285mm in which the 

Friction has raised, but then again, it started to decrease for the rest of the positions. 

According to Fig. 9(a), the maximum values of Friction factor are achieved when the 

VGs positioned at 4.725mm from the centre of the tubes. Moreover, Fig. 9(b) indicated 

that the maximum Nusselt number is achieved for the nearest position of the VGs. Then it 

started to decrease very sharply to 5.825mm and after this point, the variation becomes 

insignificant. 

 

Fig. 8 Definition of Horizontal and Vertical position of VGs 
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(a)  

 

(b)  

 

Fig. 9 Effect of the horizontal position of the winglet on (a) Friction, (b) Nusselt number 

Figure 10 shows the maximum values of J_Factor for the different horizontal position 

from the centre of the tubes. The overall performance of FTCHE with delta winglet 

significantly decreased by moving longitudinally from the centre of the tubes 

 

Fig. 10 Variation of values of overall performance based on horizontal position 

According to Fig. 10, at the range of the various horizontal position of the present 

study, the maximum values of JF factor are achieved for the nearest VGs. For the far 
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positions, the J_Factor values are almost same and without considerable changes. This 

because of the boundary layer and whenever the VGs are in the boundary layer, they 

disturb this boundary layer more so they have more influence on the total performance of 

FTCHE. 

3.4. Effect of the vertical position of the vortex generator 

Examining the effect of the vertical position of the VGs based on distance from the 

centre of the tubes (Fig. 8), it is seen that the distance varies from 4.55 mm to 6.4 mm, 

and the other parameters are kept the same for the designs of compact heat exchangers 

based on table 1. Figure 11 shows the effect of vertical position on both the Nusselt 

number and friction factor. It can be seen that the Nusselt number decreases when the 

VGs move away from the tubes, but the rate of decreasing become less at 6.1mm. But 

there is an upward trend in the friction factor at all positions. According to Fig. 11(a), the 

maximum values of Friction factor are achieved when the VGs positioned at the farthest 

possible position, i.e. 6.375mm from the centre of the tubes. 

(a)   

(b)

 

Fig. 11 Effect of the vertical position of the winglet on (a) Friction, (b) Nusselt number 
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Moreover, Fig. 11(b) indicates that the maximum Nusselt number is achieved for the 

nearest position of the VGs. Then it starts to decrease very sharply to 6.1mm and after 

this point, the variation becomes insignificant. 

Figure 12 shows the maximum values of J_Factor for the different vertical position 

from the centre of the tubes. The overall performance of FTCHE with delta winglet 

significantly decreased by moving longitudinally from the centre of the tubes. 

 

Fig. 12 Variation of values of overall performance based on the vertical position 

According to Fig. 12, at the range of the various horizontal position of the present study, 

the maximum values of JF factor are achieved for the nearest VGs. For the far positions, the 

J_Factor values are almost same and without considerable changes. This because of the 

boundary layer and whenever the VGs are in the boundary layer, they disturb this boundary 

layer more so they have more influence on the total performance of FTCHE. 

In addition, according to Fig. 11(b) and Fig. 12, the results show that at the same 

position, the Nusselt number and J_F factor have the similar trend, which indicates that the 

overall performance of the system is dominated by convective heat transfer. 

4. CONCLUSIONS 

This study presents a numerical investigation of the effect of different parameters on the 

thermohydraulic performance of compact heat exchangers with vortex generators. The 

parameters investigated in this study are the angle of attack, length of the winglet, horizontal 

and vertical placement of the winglet. The main outcomes of this study are as follows:  
 This study shows the importance of the VGs and how they affect the heat transfer 

rate and pressure drop.  
 The heat transfer rate of the compact heat exchangers improves in lower angle of 

attack as well as lower length. But it decreases by putting the VGs far from the tubes. 
 The pressure drop has more consistent behavior and shows in all cases a stable trend. 

Increasing the angle of attack and length of the VGs will result in more pressure drop. 
In vertical positions far from the tubs, also pressure drop increases. And the horizontal 
position has the least effect on the pressure drop despite a slight improvement in case 
of a bigger gap. 
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 In all cases, the overall performance of the compact heat exchangers based on 

J_Factor decreases with the increase of the aforementioned parameters. 

 This study shows that, for improving the thermohydraulic efficiency of the compact 

heat exchangers with vortex generators, many parameters must be considered 

simultaneously and it is necessary to use a multi-objective optimizer to reach the 

optimum configuration. 

Acknowledgement: The authors gratefully acknowledge the support by the faculty of mechanical 

engineering, Universiti Teknologi Malaysia, for providing a research grant for this investigation. 

REFERENCES 

1. Wang, C.-C., Liaw, J.-S., Yang, B.-C., 2011, Airside performance of herringbone wavy fin-and-tube heat 

exchangers – data with larger diameter tube, International Journal of Heat and Mass Transfer, 54(5–6), 

pp. 1024–1029.  
2. Yun, R., Kim, Y., Kim, Y., 2009, Air side heat transfer characteristics of plate finned tube heat exchangers 

with slit fin configuration under wet conditions, Applied Thermal Engineering, 29(14–15), pp. 3014–3020.  

3. Phan, T.-L., Chang, K.S., Kwon, Y.C., Kwon, J.-T., 2011, Experimental study on heat and mass transfer 
characteristics of louvered fin-tube heat exchangers under wet condition, International Communications 

in Heat and Mass Transfer, 38(7), pp. 893–899.  

4. Lin, Z.M., Wang, L.B., Zhang, Y.H., 2014, Numerical study on heat transfer enhancement of circular 
tube bank fin heat exchanger with interrupted annular groove fin, Applied Thermal Engineering, 73(2), 

pp. 1465–1476.  

5. Joardar,  A., Jacobi,  A.M., 2008, Heat transfer enhancement by winglet-type vortex generator arrays in 
compact plain-fin-and-tube heat exchangers, International Journal of Refrigeration, 31(1), pp. 87–97.  

6. Huisseune, H., T’Joen, C., Jaeger, P.De, Ameel, B., Schampheleire, S.De, Paepe, M.De., 2013, 

Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators, 
International Journal of Heat and Mass Transfer, 56(1–2), pp. 475–487.  

7. Tian, L., He, Y., Tao, Y., Tao, W., 2009, A comparative study on the air-side performance of wavy fin-

and-tube heat exchanger with punched delta winglets in staggered and in-line arrangements, 

International Journal of Thermal Sciences, 48(9), pp. 1765–1776.  

8. Fiebig., M., 1995, Vortex generators for compact heat exchangers, J. Enhanced Heat Transfer, 2, pp. 43–61.  

9. Jacobi, A.M., Shah, R.K., 1995, Heat transfer surface enhancement through the use of longitudinal 
vortices: A review of recent progress, Experimental Thermal and Fluid Science, 11(3), pp. 295–309.  

10. Jayavel, S., Tiwari, S., 2010, Effect of tube spacing on heat transfer performance of staggered tube 

bundles in the presence of vortex generators, Journal of Enhanced Heat Transfer, 17(3), pp. 271–291.  
11. Akbari, M.M., Murata, D.A., Mochizuki, D.S., Saito, H., Iwamoto, K., 2009, Effects of Vortex Generator 

Arrangements on Heat Transfer Enhancement over a Two-Row Fin-and-Tube Heat ExchangerI, Journal 

of Enhanced Heat Transfer, 16(4), pp. 315–329.  
12. Joardar, A., Jacobi, a. M., 2007, A Numerical Study of Flow and Heat Transfer Enhancement Using an 

Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger, Journal of Heat Transfer, 
129(9), pp. 1156-1167.  

13. Hwang, S.W., Kim, D.H., Min, J.K., Jeong, J.H., 2012, CFD analysis of fin tube heat exchanger with a pair 

of delta winglet vortex generators, Journal of Mechanical Science and Technology, 26(9), pp. 2949–2958.  
14. Lemouedda, A., Breuer, M., Franz, E., Botsch, T., Delgado, A., 2010, Optimization of the angle of attack 

of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger, International Journal of Heat 

and Mass Transfer, 53(23–24), pp. 5386–5399.  
15. Wu, J.M., Tao, W.Q., 2011, Impact of delta winglet vortex generators on the performance of a novel fin-

tube surfaces with two rows of tubes in different diameters, Energy Conversion and Management, 52(8–

9), pp. 2895–2901.  

16. Gorji, M., Mirgolbabaei, H., Barari, A., Domairry, G., Nadim, N., 2011, Numerical analysis on 

longitudinal location optimization of vortex generator in compact heat exchangers, International Journal 

for Numerical Methods in Fluids, 66(6), pp. 705–713.  



 Heat Transfer Enhancement and Pressure Drop for Fin-and-Tube Compact Heat Exchangers with Delta... 247 

17. Tiggelbeck, S., Mitra, N.K., Fiebig, M., 1994, Comparison of Wing-Type Vortex Generators for Heat 

Transfer Enhancement in Channel Flows, Journal of Heat Transfer, 116(4), pp. 880-885.  
18. He, Y.L., Han, H., Tao, W.Q., Zhang, Y.W., 2012, Numerical study of heat-transfer enhancement by 

punched winglet-type vortex generator arrays in fin-and-tube heat exchangers, International Journal of 

Heat and Mass Transfer, 55, pp 5449–5458.  
19. Torii, K., Kwak, K.M., Nishino, K., 2002, Heat transfer enhancement accompanying pressure-loss 

reduction with winglet-type vortex generators for fin-tube heat exchangers, International Journal of Heat 

and Mass Transfer, 45(18), pp. 3795–3801.  
20. Lin, C.N., Jang, J.Y., 2002, Conjugate heat transfer and fluid flow analysis in fin-tube heat exchangers 

with wave-type vortex generators, Journal of Enhanced Heat Transfer, 9(3–4), pp. 123–136.  

21. Lin, C.-N., Liu, Y.-W., Leu, J.-S., 2008, Heat Transfer and Fluid Flow Analysis for Plate-Fin and Oval 
Tube Heat Exchangers With Vortex Generators, Heat Transfer Engineering, 29(7), pp. 588–596.  

22. Jang, J.Y., Hsu, L.F., Leu, J.S., 2013, Optimization of the span angle and location of vortex generators in 

a plate-fin and tube heat exchanger, International Journal of Heat and Mass Transfer, 67, pp. 432–444.  

23. Dupont, F., Gabillet, C., Bot, P., 2003, Experimental Study of the Flow in a Compact Heat Exchanger 

Channel With Embossed-Type Vortex Generators, Journal of Fluids Engineering, 125(4), pp. 701-709.  

24. Zhou, G., Ye, Q., 2012, Experimental investigations of thermal and flow characteristics of curved 
trapezoidal winglet type vortex generators, Applied Thermal Engineering, 37, pp. 241–248.  

25. Tang, L.-H., Min, Z., Xie, G.-N., Wang, Q.-W., 2009, Fin Pattern Effects on Air-Side Heat Transfer and 

Friction Characteristics of Fin-and-Tube Heat Exchangers with Large Number of Large-Diameter Tube 
Rows, Heat Transfer Engineering, 30(3), pp. 171–180.  

26. Gholami, A.A., Wahid, M.A., Mohammed, H.A., 2014, Heat transfer enhancement and pressure drop 

for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators, 
International Communications in Heat and Mass Transfer, 54, pp. 132–140.  

27. Jagadeesh, P., Murali, K., 2005, Application of low-re turbulence models for flow simulations past 

underwater vehicle hull forms, Journal of Naval Architecture and Marine Engineering, 2(1), pp. 41–54. 
28. Ferrouillat, S., Tochon, P., Garnier, C., Peerhossaini, H., 2006, Intensification of heat-transfer and 

mixing in multifunctional heat exchangers by artificially generated streamwise vorticity, Applied 

Thermal Engineering, 26(16), pp. 1820–1829.  
29. 2016, Ansys Fluent 17.0 Tutorial Guide. 

30. Sanders, P., Thole, K., 2006, Effects of winglets to augment tube wall heat transfer in louvered fin heat 

exchangers, International Journal of Heat and Mass Transfer, 49(21-22), pp. 4058-4069.   
31. Allison, C., Dally, B., 2007, Effect of a delta-winglet vortex pair on the performance of a tube–fin heat 

exchanger, International Journal of Heat and Mass Transfer, 50(25–26), pp. 5065–5072. 

32. Gentry, M.C. and Jacobi, A.M., 1997, Heat transfer enhancement by delta-wing vortex generators on a 
flat plate: Vortex interactions with the boundary layer, Experimental Thermal and Fluid Science, 14(3), 

pp. 231–242. 

33. Wang, C.-C., Chi, K.-Y., 2000, Heat transfer and friction characteristics of plain fin-and-tube heat 
exchangers, part I: new experimental data, International Journal of Heat and Mass Transfer, 43(15), pp. 

2681–2691. 


