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Abstract. The present paper introduces a cloud-based expert system for synthesis and 

evolutionary optimization of planar linkages. The kinematic structure of the linkage is 

composed by the modular approach based on Assur’s groups. The dyads are represented 

as functional blocks with input and output variables. The applied approach for obtaining 

the geometrical relationships between the input and the output variables of the dyads is 

based on the use of homogeneous transformation matrices. The developed software system 

allows a dimensional synthesis of planar linkages by using genetic optimization 

algorithms. One feature is remote creation of the models of genetic algorithms as well as 

the receiving of the results by means of a user-friendly interface. By exploiting the 

application, the user can produce and edit the initial information about the synthesized or 

optimized linkage; thus he can receive the calculation results as a web page and/or as MS 

Excel file. An additional mutation of the best chromosome genes by scanning of every 

gene within its searching space improves the optimal solution. The analyzed numerical 

case studies show the applicability of the developed software system for mechanism 

analysis, synthesis and optimization. Because the number of genes is not limited, the 

linkages with a very big number of design variables can be synthesized by exploiting the 

developed approach. 
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1. INTRODUCTION 

In the past two decades, along with the classical graphical and analytical techniques 

[1, 2], there has been an increasing interest in the use of computer technologies for 
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modeling and simulation of machines and mechanisms in education and engineering 

practice [3,4]. An easy applied and widely used approach is the modeling by way of 

special or general-purpose mechanical dynamics and kinematics software with different 

functionality realized on different platforms. Some programs are fully interactive, offering 

an easy-to-use environment [5-7] and possessing modules for preprocessing, numerical 

analysis and results post-processing. Simultaneously with undeniable advantages in its 

use, this type of software has some significant drawbacks: it is usually high-priced, the 

obtained results are limited to the software capabilities, equations of motion are embedded in 

the program and cannot be previewed by the user, and, finally yet importantly - it does not 

allow further development of algorithms by the user. Software systems where an active 

involvement of the user in the mechanism simulation model development is required are 

becoming increasingly popular. This type of software is based primarily on the algorithmic 

programming languages. For example, the C/C++ compatible object-oriented software [8] 

provides for a possibility of realizing independent applications in a Web environment and 

capabilities for performing a kinematic and dynamic analysis of a variety of mechanisms as 

well as synthesizing mechanisms with predefined properties. Other applications [9-11] are 

entirely Web-based and platform independent client-server systems, exploiting the 

advantages of the network computing. Typically, in this case, standard feature rich libraries 

for mechanism visualization, animation and results plotting are available. In some cases, the 

software systems are equipped with modules for mechanism type or dimensional synthesis, 

based on analytical or numerical methods [12].  

A widely used approach, considerably facilitating the mechanisms creation, analysis and 

synthesis, is the modular approach [13, 14], which uses predefined blocks and subroutines 

for composing mechanisms with arbitrary complexity. During the realization of the modular 

kinematics it is possible to use different modeling approaches and philosophies. Such 

systems as OpenModelica [15] use graphical blocks to compose the mechanism kinematical 

structure while others use a collection of software subroutines for kinematic simulation, 

written in general-purpose [16] or computer algebra programming languages [17]. 

Despite the presence of a vast number of software systems, the capabilities of the 

modular approach combined with optimization for the purpose of mechanism synthesis in 

the Web environment are not used enough. The paper presents an open cloud-based 

expert system for dimensional synthesis and optimization of planar linkages based on the 

theory of Assur’s groups and genetic algorithms. The modular approach applied to the 

building of the linkages allows for their fast creation, modification, analysis, synthesis and 

optimization in a user-friendly cloud-based Internet environment, fully exploiting the 

benefits of the network computing. This paper is organized as follows: In Section 1 

papers dealing with mechanisms different modeling approaches and philosophies are 

analyzed. Section 2 is devoted to the derivation of the Assur’s groups position, velocity 

and acceleration kinematic equations. Section 3 gives the structure of the developed 

cloud-based expert system for synthesis and optimization of planar linkages. Section 4 

presents the description and discussion of the synthesis of four-bar and six-bar planar 

linkages. Section 5 represents a short conclusion. 
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2. ASSUR’S GROUPS KINEMATIC EQUATIONS 

The idea of decomposition of the mechanisms into Assur’s groups is not new. At the 

beginning of the 20
th
 century, the Russian scientist Leonid Assur developed a method of 

composing planar mechanisms of any complexity by the sequential appending of fundamental 

kinematic chains, which were later named Assur’s groups. The number of links n and the 

number of the fifth class pairs p5 in the Assur’s groups are related by the following equation: 

5

3

2
p n  

Because n and p5 must be integer numbers, the first possible solution of the above 

equation is n = 2 and p5 = 3, i.e. the simplest fundamental kinematical chain consists of 

two links and three fifth class kinematical pairs. Internal kinematical pair of the group 

connects the two group links to each other and two external pairs connect the group to a 

driver link, to the other groups or to the ground. This simplest type of group is often 

called a binary group or dyad. Each of the dyads has zero mobility and their appending to 

the mechanism does not change the DOF (degree of freedom) of the whole mechanism. 

One can distinguish the following types of dyads: RRR, RRT, RTR, TRT, RTT, where R 

denotes rotational one DOF pair and T – translational one DOF pair. The RRR dyad is 

called Assur’s group of the first type. The rest of the dyads are created by replacement of 

the rotational with the translational pairs. The vast majority of the industrial linkages can 

be created by the combination of one or more dyads with the addition of one or more 

rotational or translational driving links. 

A substantial advantage of using dyads is the possibility to perform an independent 

kinematical analysis of each group and then compose a solution for the whole mechanism 

as a combination of partial solutions for different dyads. The primary goal of the solution 

is to describe the motion of the dyad according to the referential coordinate frame. 

Let us demonstrate the derivation and analytical solution of the kinematic equations 

for RRR dyad by using rotation and homogeneous transformation matrices, widely used in 

robotics. In order to specify the position of the dyad pairs, it is necessary to define their 

Cartesian coordinates in the fixed space reference coordinate system {x0y0}. To each rigid 

link of the dyad is attached a fixed coordinate frame {xkyk}, k = 1,2. The pose of the link 

is described by the position of its frame origin and the orientation of its x-axis according 

to the reference coordinate system. Fig.1 shows the geometrical relationships between the 

global and local representations of the dyad specific points. The orientation of link k is 

specified by the angle of rotation φk of link xk axis relative to x0 axis of the reference 

coordinate system. Angle φk is considered as positive if the rotation of xk axis according to 

positive x0 axis is counterclockwise. To point O3 is attached a local coordinate system 

{xeye} parallel to the reference frame. 

As the input for the position analysis of the RRR dyad are used coordinates (x1,y1) and 

(x3,y3) of two external rotational pairs and lengths L1 and L2 of the links. As the output are 

received coordinates (x2,y2) of the internal pair and angles φ1 and φ2. Thus, a dyad can be 

considered as а functional block which has input and output variables, related by known 

kinematical relationships. This type of dyad representation allows creating subprograms or 

modules for each dyad type and utilizing them as building blocks when creating linkages. 
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2.1. Formulation of the position equations 

Formulation of the position equations constitutes the most difficult part of the 

kinematical analysis. Over the years, various approaches for formulation and analytical or 

numerical solution of the position equations are used [18-22]. A method to establish the 

geometrical relationships between coordinates of the group external pairs O1 and O3 is by 

using homogeneous transformation matrices. They represent a mapping from one frame to 

another: 

2 2 2 1
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where by ( )B

A R  is denoted the rotation matrix between two arbitrary coordinate systems 

A and B: 
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φ – the angle of rotation between x-axes of A and B coordinate systems. By ( , )B

A x yP is 

denoted the vector that represents coordinates of the origin of frame B according to the 

origin of frame A. 
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Fig.1 Schematics of RRR dyad 

 

The transformation matrix between {x0y0} and {xeye} coordinate frames is obtained by a 

sequential multiplication of a number of transformation matrices between the adjacent 

frames: 
1 2

0 0 1 1 1 1 12 1 2 2 2( , , ) ( , ,0) ( , ,0)e ex y L L   T T T T                             (3) 
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After the expansion and simplification of Eq. (3) we get: 
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Equating the elements (1,3) and (2,3) of the left matrix to the corresponding elements of 

the right matrix leads to the following position equations: 
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where by 
1r  and 

3r are denoted the position vectors in the global frame of points O1 and 

O3, 1 1 1[ ]Tx yr , 3 3 3[ ]Tx yr . In Eq. (3) we also had in mind that  

12 2 1                                                                (6) 

Eqs. (5) constitutes a nonlinear system of transcendental equations with unknown 

variables φ1 and φ2. After elaborate algebraic manipulations are obtained equations for the 

unknown angles in an explicit form: 
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where the following notations are used: 1 1 32 ( )A L x x  , 1 1 32 ( )B L y y  , 2 2

1 2C L L    
2 2

1 3 1 3( ) ( )x x y y    , 2 2D A B  , atan2( , )B D A D  ,
1 3 1 1 2( ( ) sin ) /E y y L L    , 

1 3 1 1 2( ( ) cos ) /F x x L L    . Parameter p specifies the assembly mode of the RRR group 

and accepts values +1 and 1.  

In addition, the coordinates of inner rotational pair O2 are computed as: 

2 1 1 1cosx x L                                                               (8) 

2 1 1 1siny y L                                                               (9) 

2.2 Formulation of the velocity and acceleration equations 

Once the position equations are established, the corresponding velocity and acceleration 

equations are obtained by a straightforward differentiation with respect to the time. The linear 

velocities of joints O1 and O3 and the angular velocities of links 1  and 2  are related by 

Jacobian matrix J: 

V = JΩ                                                                (10) 

where 1 2[ ]T Ω  is the vector of the unknown angular velocities of the links and 

1 3[ ] V r r  is the vector of the difference of the known linear velocities of the external 

rotational pairs. The Jacobian for the considered RRR dyad has the following form:  
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1 1 2 2
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The singular configuration for the dyad is determined from the Eq. (12).  For L1, 

L2 ≠ 0 it is easy to find that the determinant (12) vanishes when φ1 = φ2 and singularities 

exist in this particular configuration. 

1 2 1 2det( ) sin( )L L    J                                                (12) 

The unknown angular velocities are determined from the equation 

1
Ω = J V                                                                 (13) 

where by J
-1

 is denoted the inverse of the Jacobian: 
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The time differentiation of Eq. (10) leads to  

 A JΩ JΩ                                                            (15) 

which provides the relationship between the accelerations of external pairs 1 3[ ] A r r  

and the angular accelerations of links 
1 2[ ]T Ω . From Eq. (15) we obtain the 

equations for the angular accelerations of the links: 

1( ) Ω= J A JΩ                                                       (16) 

When we use Eq. (16), we have in mind that 
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The Cartesian coordinates, velocity and acceleration of internal joint O2 are calculated by 

the Eqs. (18), (19) and (20): 

2 1 1 1 1[cos sin ]TL   r r                                               (18) 

2 1 1 1 1 1[ sin cos ]TL    r r                                            (19) 
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T

L              r r                           (20) 

Once the unknown coordinates and angles are obtained, the displacement, velocity and 

acceleration of every point of the links can be determined. A fixed point Pk on body k is 

located from the origin of local frame {xkyk} by vector P

ku  and from the origin of global 

frame {x0y0} by vector , 1, 2P

k k r  (see Fig.1). Position P

kr , velocity P

kr  and acceleration 
P

kr  of the point are computed by the following relations: 
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In a similar manner, the kinematic equations for the other four types of dyads are 

derived. In Figs.2-5 are shown the schematics and closed-form solutions for the rest of the 

Assur’s groups, derived in a similar manner as for the RRR group. For the Assur’s 

groups, containing slider pairs in their kinematic structure, one must take into account that 

the line of the sliding pair motion is defined by the coordinates of a point and angle, for 

example, for RRT dyad (see Fig.3) are used coordinates (x3,y3) and angle φ3, measured 

from horizontal x0-axis. The velocities and accelerations of the dyad output parameters 

are calculated according to the following kinematical equations: 

-1

out in
q = J q                                                          (24) 

( )-1

out in outq = J q Jq                                                (25) 

whose quantities are shown in Table 1, where the following short notations are used: 

c1 = cosφ1, s1 = sinφ1, c3 = cosφ3, s3 = sinφ3, cα = cosα, cα1 = cos(α+φ1), sα1 = sin(α+φ1), 

c4 = cosφ4, s4 = sinφ4, 13 1 3x x x   , 
13 1 3y y y   , 

13 1 3x x x   , 
13 1 3y y y   , 

14 1 4x x x   , 
14 1 4y y y   , 

14 1 4x x x   , 
14 1 4y y y   . 

 

 
Fig. 2 Schematics and equations for TRT dyad 
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Fig. 3 Schematics and equations for RRT dyad 

 

Fig. 4 Schematics and equations for RTR dyad 

 

Fig. 5 Schematics and equations for RTT dyad 
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Table 1 Velocities and accelerations of the dyads output parameters 
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3. DEVELOPMENT OF AN EXPERIMENTAL CLOUD-BASED EXPERT SYSTEM 

In order to combine the modular approach and the optimization synthesis in a common 

software environment, an experimental cloud-based expert system for synthesis and 

evolutionary optimization of planar linkages based on the derived in Section 2 Assur’s 

groups equations has been developed and tested. The system consists of the following 

software modules:  

1) A module for linkage synthesis and optimization using evolutionary optimization 

methods, and, 

2) A module with a user interface for linkage visualization, results plotting and animation. 

Among the available evolutionary algorithms [23,24] the genetic optimization algorithms 

(GA) are chosen and implemented in the developed cloud-based expert system [25]. It 

allows remote creation of the models of genetic algorithms and the receiving of the results by 

means of a user-friendly interface. By exploiting the application, the user can produce and 

edit the initial information about the synthesized or optimized linkage; thus he can receive 

the calculation results as a web page and/or as MS Excel file. The GA framework used 

technologies and realized functions are shown in Fig.6a). 

The sequence of the work with the experimental application is as follows: a) the user 

creates a description of the specific problem (model of genetic algorithm) that is 

transported and saved as XML file - Fig. 6b), where the explanation of the purpose of the 

elements is given by italic letters); b) PHP file reads stored XML and automatically 

generates a new PHP file for the considered case and the execution is redirected to the 

generated file; and c) generated PHP file performs the calculations and transmits a report 

back to the user according to the user requirements. 

 

       
                            a)                                                                             b) 

Fig. 6 a) The GA framework; b) Contents of the XML transport file 
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The sequence of the steps of genetic algorithms is: a) An initial random population of 

n chromosomes (solutions) is generated; b) The viability f(x) of each chromosome in the 

population n (target function - called "fitness function") is calculated; c) The chromosomes are 

sorted according to their viability (calculated values of the fitness function) and priority 

for the next population is given to the best m of them (m<n); d) A new population is 

established by repeating the following steps until the new population is completed, 

namely preservation of the predetermined number m of the best solutions (according to 

their fitness - the fitness function values), selection of two parental chromosomes of m 

chromosomes, use of crossover to cross the parents to form the next generation (children), 

use of mutation to mutate the newly created chromosomes and paste the new generation in 

the new population (adding n-m new chromosomes and filling the population); e) loop, go 

to step b) or stop and return the report if the final check condition is satisfied. 

The main novelties, implemented in the developed software system, are: 

1) An additional mutation at the beginning of step e) of the best chromosome genes 

by scanning of every gene within its searching space. Scanning is performed by the 

use of the dichotomy method [23] following the user-defined requirements for the 

number of the scanned points (respectively steps) and for the number of the scanning 

repetitions. If a better solution is found the best chromosome is substituted by the 

mutated one; 

2) The models of GA calculator (parameters, fitness function and chromosome contents) 

for linkages synthesis and optimization are created by the use of the Assur’s groups 

kinematic equations. 

For the results verification by plotting and animation an additional Web-based module 

is developed with options for editing, design and development of planar linkages. The 

module is developed by means of free means, namely HTML5, JavaScript and Canvas.  

The developed experimental expert system is Web-based and has all advantages of the 

network computing systems: it overcomes space and time disposition, allows multi-user 

and multitasking regimes, reduces design costs, etc. Here we have to point to some special 

outcomes from our research work: chromosome's genes number is not fixed, fitness function 

is a separate program written in PHP and it is possible to examine the results by the module 

for visualization and animation. By performing experiments with the obtained results the 

user can change the parameters of the generated linkages and/or initial parameters of the GA 

calculator. 

4. NUMERICAL CASE STUDIES AND DISCUSSION 

To test and validate the presented cloud-based expert system two numerical case studies 

are developed and analyzed. The first case study deals with the dimensional synthesis of a four-

bar linkage - Fig.7a) so coupler point M follows the desired path which is an ellipse with a ratio 

of minor to major semi-axes 1:2 and arbitrary fixed position in the plane. The four-bar 

linkage is modeled by an RRR dyad, driven by a driver crank. In the second case a Watt I 

six-bar linkage [26] is considered, composed of two RRR dyads and a driver crank – 

Fig.7b). Coupler point M follows the same ellipse. 

For both cases, the optimal values of the design variables are determined so the maximum 

distance between the desired path, defined by 20 uniformly situated points Pi, (i=1, 2,...,20) and 



150 R. MITREV, B. TUDJAROV, T.TODOROV 

the calculated coupler point Mi curve is minimal. This method can be described by objective 

function F as follows:  
2min{max },( 1,..., 20)iF r i                                          (26) 

where  
2 2 2( ) ( )

i i i ii P M P Mr x x y y                                             (27) 

is the squared distance between the points (xPi,yPi) of the ellipse and the corresponding 

points (xMi,yMi) of the coupler.  The design variables for the four-bar linkage are L1, L2, L3, 

L4 and γ1 – see Fig.4a) and for the six-bar linkage are L1, L2, L3, L4, L5, L6, L7, L8, γ1, γ2 

and γ3 – see Fig.7b). Also, for both linkages the coordinates of points O and C must be 

determined – (xO, yO) and (xC, yC). 

During the synthesis two types of constraints must be satisfied: 1) the design variables 

(lengths and angles) are changed in predefined limits (see Tables 2 and 3 – Min. and Max. 

values); 2) the Grashof condition for the OABC and BDFE four-bar linkages must be 

satisfied. In addition, to obtain a proportionate from an engineering point of view linkage, 

additional relations between the links lengths could be defined. 

The linkages dimensional synthesis is performed by using a two-stage optimization 

process. At the initial stage, the stochastic search of the design variables optimal values is 

performed in a relatively big design variables space. Based on the fitness function change, 

the design variables values found after 500 generations are considered as optimal for the 

first stage. 
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                                          а)                                                 b) 

Fig. 7 Schematics of the synthesized linkages: a) four-bar; b) Watt-1 six-bar mechanism 

 

At the second stage, the first stage optimal values are used as initial guesses and the 

design variables limits are chosen so that the stochastic search is performed in a narrower 

range of design variables values. In Tables 2 and 3 for the considered linkages the limits 

of the design variables (dimensions for the lengths are in arbitrary linear units, dimensions 

for the angles are in degrees) for the two stages are shown. The results for the parameters 

optimal values and objective function F500 after every stage are shown additionally.  
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Table 2 Limits of the design variables and optimal values – four-bar linkage 

 L1 L2 L3 L4 γ1 xO yO xC yC 

Stage 1, 500 generations, F500=2.049 

Min. values 20 20 20 20 0 -50 0 0 -100 

Max. values 100 100 100 100 90 50 100 100 0 

Optimal values 34.79 66 80 52.35 83 19.55 39.84 36.01 -63 

Stage 2, 500 generations, F500=1.565 

Min. values 30 60 70 40 60 10 30 30 -70 

Max. values 50 80 90 60 90 30 50 50 -50 

Optimal values 37 70.96 87 54 73 14.48 41.89 36.65 -67 

Table 3 Limits of the design variables and optimal values – six-bar linkage 

 L1 L2 L3 L4 L5 L6 L7 L8 γ1 γ2 γ3 xO yO xC yC 

Stage 1, 500 generations, F500=1.724 

Min. values 20 20 20 20 20 20 20 20 -90 -90 -90 -100 -100 -100 -100 

Max. values 100 100 100 100 100 100 100 100 90 90 90 100 100 100 100 

Optimal values 32 72.99 72 78 85.07 71 85 75 89 -27 11 -30.1 -6.1 44.03 -81 

Stage 2, 500 generations, F500=1.151 

Min. values 25 68 68 75 80 65 80 70 85 -32 6 -35 -11 40 -85 

Max. values 35 78 78 85 90 75 90 80 95 -22 16 -25 -1 50 -75 

Optimal values 30.95 72 73 85 86 72 85 74 91 -24 8 -26.9 -8.1 44 -85 

The presented results show that for the four-bar linkage the improvement of the fitness 

value at the second stage in relation to the first stage is about 23.6%, while for the six-bar 

linkage the same value is about 33.2%. In addition, one can see that the fitness value for 

the six-bar linkage is smaller than the fitness value for the four-bar linkage by 26.4%, i.e. 

the six-bar linkage better tracks the desired path. This fact is explained by the presence of 

more geometrical parameters in the six-bar linkage that can be adjusted to minimize the 

fitness function. 

 
Fig. 8 Evolution of the fitness function values for the considered linkages 
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In Fig. 8 the evolution of the fitness function values for the considered case studies is 

shown. In Figs. 9 and 10 the evolution of the linkages geometrical configurations together 

with the couplers trajectory and the desired path is shown. 

 

 

Stage 1 

 

  
Generation 1, F=11.6161 Generation 14, F=5.148866 Generation 500, F=2.048843 

 

 

 

 

Stage 2 

 
 

 
Generation 1, F=2.911277 Generation 14, F= 2.181182 Generation 500, F=1.565115 

Fig. 9 Evolution of the four-bar linkage geometrical configurations and the coupler point path 
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Stage 1 

 
 

 

 
Generation 1, F=17.4918 Generation 16, F=8.8444 Generation 500, F=1.7238 

 

Stage 2 

 

 

 
Generation 1, F=3.03592 Generation 10, F=1.54891 Generation 500, F=1.151466 

Fig. 10 Evolution of the six-bar linkage geometrical configurations and the coupler point path 

5. CONCLUSION 

The paper presents a cloud-based expert system for synthesis and evolutionary optimization 

of planar linkages. The software system allows composition of linkage kinematical structure by 

means of the modular approach based on Assur’s groups. The used approach for obtaining the 

geometrical relationships between the input and the output variables of the dyads is based on 

the use of homogeneous transformation matrices. The representations of the dyads as functional 

blocks with input and output variables allows creating subprograms or modules for each dyad 

type and utilizing them as building blocks when creating linkages with arbitrary complexity. 

The velocity and acceleration equations are obtained by a straightforward differentiation with 

respect to the time and the relationships between the input and output velocities and 

accelerations are represented by the use of the Jacobian, its inverse and time derivative. 

The developed expert system allows a dimensional synthesis of planar linkages by 

using genetic optimization algorithms. One feature is remote creation of the models of 

genetic algorithms and the receiving of the results by using a user-friendly interface. By 

exploiting the application, the user can produce and edit the initial information about the 

synthesized or optimized linkage; thus he can receive the calculation results as a web page 
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and/or as MS Excel file. An additional mutation of the best chromosome genes by 

scanning of every gene within its searching space improves the optimal solution. If a 

better solution is found the best chromosome is substituted by the mutated one. 

The analyzed numerical case studies show the applicability of the developed software 

system for mechanism analysis, synthesis and optimization. Because the number of genes 

is not limited, linkages with a very big number of design variables can be synthesized 

exploiting the developed approach. 
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