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Abstract. Laser welding process is used in many industrial sectors. One of the most 

important aspects of the laser welding quality refers to the geometrical and mechanical 

properties of welding joints. In order to develop optimal conditions for the laser 

welding process it is desirable to know in advance which machining parameters to 

select. Though there are manuals which recommend specific parameters combinations 

for the desired laser welding quality it is difficult to cover all possible combinations 

because of the process nonlinearity. Therefore, in this study the main aim is to establish 

an algorithm for optimal parameters forecasting of the laser welding process. The 

algorithm is based on an artificial intelligence approach. The main goal is to forecast 

the geometrical parameters of the welding joints like front width, front heights, back 

width and back heights of the welding joints. Experimental process was performed in 

order to acquire training and testing data of the laser welding process. The obtained 

results could be of practical importance for engineers in industry. 
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1. INTRODUCTION 

The laser welding process is used in manufacturing engineering as an advanced 

process. One of its main merits is a high density of power, high productivity and high 

penetration. There is also a narrow heath-affected zone which is also a very important 

factor. However, before proceeding to the process itself, one needs to select optimal 

machining parameters in order to get the best performances of the welding joints. There 

are number of parameters which could have high influence on the laser welding quality. 
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The quality of the welding joints could be determined based on mechanical and geometrical 

parameters of the weld. Laser power, welding speed, focal position and gap have high 

relevance for the mechanical and geometrical parameters of the weld. It is a difficult test to 

select optimal machining parameters in order to get the best weld quality. For such a 

purpose many engineers empirically select machining parameters. However, the empiric 

selection is prone to errors since it is affected by engineers’ knowledge of the process.  

There are different mechanical and geometrical parameters which are investigated by 

researchers. According to the results reported by Schweier et al. [1] there are three 

mechanisms of spatter formation in the laser welding process. These spatter formations 

are caused by material ablation, by laser spot entry into the melting spot and by dynamics 

of melt spot. One of the important factors during the laser welding process with high 

power CO2 laser is laser-induced plasma [2]. Mi et al. [3] used a finite element code to 

predict temperature, phase fraction and stress fields during the laser welding process. 

Taguchi based grey relational analysis was used by Shanmugarajan et al. [4] for 

optimization of the laser welding process; it showed that the obtained results were closely 

correlated to the predicted values. Differences in interactions between the laser and the 

plasma arc were investigated by Chen et al. [5]. Cai et al. [6] investigated the laser effect 

on the welding process. Chen et al. [7] studied gap tolerance of the butt laser joint. Using 

a high speed video during CO2 laser-MAG hybrid welding of E36 steel, Huang et al. [8] 

studied droplet transfers at different positions. 

In spite of different approaches for selection of the optimal laser welding parameters 

there are no investigations yet which can be used universally for all different materials 

and process. Hence in this study the main aim is to forecast optimal laser welding 

parameters by the algorithms which are based on the artificial intelligence (AI) approach. 

The AI approaches are useful since they require no internal physical knowledge of the 

process. There is only the need to acquire input-output data pairs for training and testing 

process of the algorithms. The algorithms are used for forecasting of laser welding 

geometrical parameters. Three AI approaches are used in this study: 

 Extreme learning Machine (ELM) [9, 10], 

 Artificial neural network (ANN) [11], and, 

 Genetic programming (GP) [12]. 

As input parameters, laser power, welding speed, focal position and gap are used. 

Front width, front height, back width and back height are used as output parameters. The 

parameters present geometrical parameters of the welding joints and represent important 

quality indicators of the laser welding process. 

2. EXPERIMENTAL MEASUREMENT 

For an experimental measurement procedure low carbon steel Q235 and stainless steel 

SUS301L-HT are used. Fig. 1 gives a schematic view of the laser welding process. 

Fiber laser IPG YLR-4000 is used during the laser welding process. The laser has 

wavelength of 1.1 µm. Lens focal length is 220 mm and diameter spot is focused to 0.2 

mm. A set of input machining parameters are determined based on the previous studies in 

literature. Table 1 shows a set of input and output parameters used in this study. 
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Fig. 1 Schematic view of the laser welding process 

Table 1 Main parameters used in this study  

Inputs and outputs Parameters description Min Max 

Input parameter 1 Laser power (W) 1500 3500 

Input parameter 2 Welding speed (m/min) 2.5 3.5 

Input parameter 3 Focal position (mm) -3 1 

Input parameter 4 Gap (mm) 0 0.1 

Output parameter 1 Weld front width (µm) 800 1600 

Output parameter 2 Weld back width (mm) 0 1400 

Output parameter 3 Weld front height (mm) -200 50 

Output parameter 4 Weld back height (mm) -400 300 

 
Geometrical parameters are used as output indicators for the laser welding quality 

estimation and forecasting. Fig. 2 shows the positions of the geometrical parameters. 

 

Fig. 2 Geometrical parameters of weld 
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3. EXTREME LEARNING MACHINE 

A fuzzy inference system in MATLAB software is employed in the whole process of 

the ANFIS training and evaluation. An ANFIS network for 2 input variables is depicted 

in Fig. 3.  

 

Fig. 3 ANFIS structure 

The fuzzy IF-THEN rules of Takagi and Sugeno’s class and two inputs for the first-order 

Sugeno are employed for the purposes of this study: 

 if x is A and y is C then f1=p1x+q1y+r1 (1) 

The first layer is made up of input parameters MFs, and it provides input values to the 

following layer. Each node here is considered as an adaptive node having a node function 

O=AB(x) and O=CD(x) where AB(x) and CD(x) are membership functions. Bell-shaped 

membership functions having the maximum value (1.0) and the minimum value (0.0) are 

selected so that 
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where {ai, bi, ci, di} are parameter sets. The parameters of this layer are designated as 

premise parameters. Here, x and y are inputs to the nodes.  

The membership layer is the second layer. It looks for the weights of every membership 

function. This layer gets the receiving signals from the preceding layer and then it acts as a 

membership function to the representation of the fuzzy sets of each input variable, 

respectively. Second layer nodes are non-adaptive. The layer acts as a multiplier for the 

receiving signals and sends out the outcome in wi=AB(x)CD(y) form. Every output node 

exhibits the firing strength of a rule. 
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The next layer, the third one, is known as the rule layer. All neurons here act as a pre-

condition matching the fuzzy rules, i.e. each rule’s activation level is calculated whereby 

the number of fuzzy rules is equal to the quantity of layers [13]. Every node computes the 

normalized weights. The nodes in the third layer are also considered non-adaptive. Each 

of the node computes the value of the rule’s firing strength over the sum of all rules’ 

firing strengths in the form of wi
*
=wi/(w1+ w2), i=1,2. The outcomes are referred to as the 

normalized firing strengths. 

The fourth layer is responsible for providing output values as a result of the inference 

of rules. This layer is also known as the defuzzification one. Every fourth layer node is an 

adaptive node having node function Oi
4 

= wi
*
xf = wi

*
(pix +qiy + ri). In this layer, {pi, qi, 

ri} is a variable set. The variable set is designated as consequent parameters. 

The fifth and final layer is known as the output one. It adds up all the receiving inputs 

from the preceding layer. Thereafter, it converts the fuzzy classification outcomes into a 

binary (crisp). The single node of the 5th layer is considered non-adaptive. This node 

calculates the total output as the whole sum of all the receiving signals, 
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In the process of identification of variables in the ANFIS architectures, the ELM or 

Extreme Learning Machine is applied. The functional signals progress until the 4th layer 

whereby the hybrid learning algorithm passes. Further, the consequent variables are 

found by the least squares estimation. In the backward pass, the error rates circulate 

backwards and the premise variables are synchronized through the gradient decline order.  

ELM or Extreme Learning Machine is an algorithm for training of neural networks. 

The type of neural networks which are trained by ELM is single hidden layer feed 

forward networks. Fig. 4 shows the structure of the single hidden layer feed forward 

networks which are trained by ELM algorithm. The main advantage of the ELM 

algorithm is easy application, shot training time and good generalization of results.  

 

Fig. 4 ELM structure 
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3. RESULTS 

A comprehensive research is performed using the given set of input variables. 

Basically, an ANFIS model is built by the functions for each combination and then 

respectively trained for single epoch. Subsequently, the achieved performance is reported. 

In the beginning only one input parameter influence is examined. From the outset, the 

most influential input in the prediction of the output is identified and determined. ELM 

forecasting performances are analyzed based on root mean square error (RMSE) and 

coefficient of determination (R
2
). The input variable with the lowest number of errors 

(RMSE) has the highest influence on the output parameter or the most relevance in 

regards to the outcome. Figs. 5-8 show the forecasting of the laser weld geometrical 

parameters by the ELM algorithm. A high forecasting accuracy based on the coefficient 

of determination can be observed. Also, it can be noticed that the points are mostly 

aligned, meaning that there are no high errors. 

 

Fig. 5 ELM forecasting of laser weld geometrical parameters: height of weld front 

 

Fig. 6 ELM forecasting of laser weld geometrical parameters: width of weld front 
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Fig. 7 ELM forecasting of laser weld geometrical parameters: width of weld back 

 

Fig. 8 ELM forecasting of laser weld geometrical parameters: height of weld back 

Tables 2-5 show the ELM forecasting performances based on two indicators. Also for 

the sake of comparison ANN and GP results are also presented. ANN and GP present two 

different approaches of artificial intelligence. Based on the comparisons one can conclude 

that the ELM has better forecasting performances than ANN and GP. 

Table 2 ELM, ANN and GP models for weld front height prediction  

ELM ANN GP 

RMSE R2 RMSE R2 RMSE R2 

5.7326 0.9952 12.1997 0.9781 17.1592 0.9567 
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Table 3 ELM, ANN and GP models for weld front width prediction  

ELM ANN GP 

RMSE R2 RMSE R2 RMSE R2 

9.2444 0.9975 22.5804 0.985 41.4980 0.9494 

Table 4 ELM, ANN and GP models for weld back width prediction  

ELM ANN GP 

RMSE R2 RMSE R2 RMSE R2 

18.7626 0.9981 73.2556 0.9708 108.4139 0.936 

Table 5 ELM, ANN and GP models for weld back height prediction  

ELM ANN GP 

RMSE R2 RMSE R2 RMSE R2 

9.9006 0.9973 36.6879 0.9631 44.2840 0.9462 

5. CONCLUSION 

Forecasting of the laser weld geometrical parameters is complex due to many indicators 

and factors Therefore, a new approach is proposed in this study in order to overcome the 

difficulties of the laser weld geometrical parameters forecasting by removing some 

unnecessary input parameters.   A systematic approach is applied with the aim to select the 

most influential parameters for the laser weld geometrical parameters forecasting by the 

ANFIS methodology. The ANFIS is used to eliminate vagueness in the laser welding 

process and to produce the best forecasting conditions. The proposed ANFIS model is used 

to convert the complicated multiple performance characteristics into the single multi 

response performance index. As a result, the forecasting methodology developed in this 

research is useful for enhancing the multiple performances characterizing laser welding 

analyses.  

In this study the main aim is to establish a forecasting algorithm for laser weld geometrical 

parameters based on input machining conditions. The algorithm is based on an artificial 

intelligence approach. The main advantage of the approach lies in the fact that it requires no 

knowledge of the internal physical model of the laser welding process. There is only the need 

to acquire training data pairs for the AI technique. The algorithm is based on an extreme 

learning machine which is one type of training algorithm for artificial neural networks. Based 

on the obtained results, the ELM has shown better performances than other AI techniques. 
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