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Abstract. This paper reports the synthesis of magnesium silicate hydroxide (MSH) 

nanoparticles and their synergistic tribological properties combined with amphiphilic 

molecules (AMs) as additives in base oil. This combination reduces wear losses 

substantially due to the formation of a double well-arranged molecular layer or tribofilm 

on the rubbing surfaces under certain test conditions. From the results of nonequilibrium 

molecular dynamics (NEMD) simulations, lamellate MSH nanoparticles provide a 

medium for the adsorption of AMs thus further decreasing the contact of rough peaks. In 

addition, with the increase of load, a tribofilm containing element Mg, Si, O forms on the 

worn surfaces and greatly improves the anti-wear property of base oil. 
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1. INTRODUCTION 

To obtain more excellent tribological properties, a variety of approaches including new 

wear resistant materials [1,2], coating [3], new lubricant additives [4–6], various 

low-viscosity base oil and others have been explored widely. Among these, finding out 

new additives with outstanding tribological and dispersive properties which can replace or 

partly replace the traditional lubricant additives such as zinc dithiophosphate (ZDDP) [7], 

is always the focus of research. 

Magnesium silicate hydroxide (MSH) is a new type of lubricant additive with an ideal 

chemical formula of Mg3Si2O5(OH)4. Because of the weaker Van der Waals forces and 

hydrogen bonds between Si-O tetrahedral sheet and Mg-O/OH octahedral sheet, it is easy to 
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decompose and release unsaturated groups such as Si–O–Si、O–Si–O、OH–Mg–OH(O)、
OH

-
 and O–H–O [8–12]. Actually, because of these features, scholars have systematically 

investigated the anti-wear behavior of serpentine powders whose composition is mainly MSH, 

as additives in oil under different friction conditions and concentrations [13–15]. The results 

show that a tribofilm mainly consisting of Fe, C, O and Si elements forms on the rubbing 

surfaces, which indicates that serpentine particles decomposed under the combination of local 

high pressure and temperature. However, as a type of natural mineral, serpentine contains a 

small quantity of aluminum oxide, calcium oxide, iron oxide and other compounds which work 

against the clarification of its tribological mechanisms. Meanwhile, by the method of 

high-energy mechanical ball-milling, only micro-sized natural serpentine particles can be 

obtained, which is not suitable for their applications as lubricant additives. Inspired by the 

above research studies, we have synthesized MSH nanoparticles and confirmed its outstanding 

tribological properties in base oil [16–18].  

In order to disperse the nanoparticles uniformly and steadily in oil, amphiphilic 

molecules (AMs) like oleic acid or stearic acid are commonly used as a modification agent 

[19–21]. These molecules do not only adsorb around the nanoparticles and prevent the 

agglomeration effectively, but also reduce friction and wear by itself [5]. Early in 1920s, 

organic friction modifiers (OFMs) based on AMs were introduced to increase the energy 

efficiency of equipment, and are always one of the most important additives in lubricant 

oil. The main friction-reducing mechanism of OFMs is that it can form a vertically 

oriented, close-packed monolayer on the sliding surfaces [22–24]. To our knowledge, 

although there have been many literatures on the surface modification effects and the 

friction properties of OFMs, few research studies have been focused on the synergistic 

tribological behaviors of nanoparticles combined with AMs. So as to improve the 

dispersity of natural serpentine particles in oil, Xu et al. [13–15] used oleic acid or other 

AMs as a surface modifier during the process of ball-milling and studied the tribological 

performance of these surface-coated particles without considering the anti-wear effect of 

AMs. Song et al [21] prepared surface-modified ZnAl2O4 nanoparticles by heating and 

drying a solution containing particles and oleic acid, then also tested their tribological 

properties by ignoring the influence of oleic acid.  

In this paper, we synthesized lamellate MSH nanoparticles hydrothermally and 

explored their synergistic tribological behaviors combined with amphiphilic organic 

molecules while improving its dispersity in polyalphaolefin base oil (PAO). At the same 

time, techniques of nonequilibrium molecular dynamics (NEMD) simulations, scanning 

electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to 

explain the anti-wear mechanisms. 

2. EXPERIMENT AND MATERIALS 

The synthesis of MSH nanoparticles was carried out in autoclaves by the method of 

hydrothermal reaction. Nano-sized magnesium oxide (MgO, >99.9wt%, 40nm) and silicon 

dioxide (SiO2, >99.9wt%, 40nm) were used as precursors and their reaction concentrations 

were 2.7×10
-7

mol/L and 1.8×10
-7

mol/L, respectively. The mixture was hydrothermally 

treated in a reactor containing NaOH aqueous solution at temperature of 200°C, pressure of 

1.6MPa and experiment duration of 12h. The resulting powders were washed in distilled 

water for three times to remove sodium and dried in furnace at 80°C for 10h. Table 1 lists 
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the X-ray Fluorescence Spectrometer (XRF) result of the synthetic MSH particles. Its 

crystal formula can be expressed as Mg2.329Si2.202Na0.469O5(OH)4. The morphology of the 

synthetic MSH nanoparticles was investigated by SEM in Fig. 1. 

Table 1 Chemical elements of synthetic MSH nanoparticles 

Elements Content (wt %) 

Magnesium (Mg) 24.19 

Silicate (Si) 26.72 

Sodium (Na)   2.23 

 

Synthetic MSH nanoparticles were ultrasonically dispersed in PAO base oil with a 

viscosity of 73cSt at 40℃ and using AMs as a dispersant agent (termed as oil+ MSH+ 

AMs). The weight percentage of the powder and AMs in the oil-powder suspension was 

1% and 2%, respectively. To make clear the influence of AMs on the tribological 

performance of additives, pure oil only added 2wt% AMs (termed as oil+ AMs) also 

prepared at the same time. 

  

Fig. 1 SEM morphology of synthetic MSH nanoparticles. 

Tribological experiments were carried out by a four-ball friction and wear test machine 

(MRS-10A). GCr15 balls with 62~67 HRC hardness and 0.02m roughness (Ra) were 

used. The radius, Poisson's ratio and Young's modulus of ball specimens are 6.35mm, 0.3 

and 208GPa, respectively. The experimental conditions were: normal loads 200 and 600N 

(corresponding to maximum pressures of 2.71 and 3.91GPa, respectively), rotational 

speeds 400rpm (corresponding to speeds of 0.153m/s), duration two hours at room 

temperature. Once the test was finished, the wear scar diameter of ball was obtained by 

using an optical microscope (accuracy is 0.01mm) and all sets of the experiment were 

repeated three times. The morphologies and chemical elements of the worn surfaces were 

characterized by SEM and EDS. 
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3. RESULTS AND DISCUSSION 

3.1. Lubricant additives 

From Fig. 1, we can see that the synthetic MSH nanoparticles are mostly lamellate and 

have an average lateral dimension of approximately 50 nm10 nm. There are also some 

MSH nanoparticles curled to a certain extent, which is attributed to the hydrothermal 

conditions. And specific synthesis mechanism of MSH can refer to our previous study [17]. 

3.2. Dispersion property 

To illustrate the influence of AMs on the dispersive property of synthetic MSH 

nanoparticles in oil, sedimental tests lasted 7 days from oil sample preparation were carried 

out (Fig. 2). AMs make MSH nanoparticles dispersed in oil homogeneously and stably, 

however, a layer of sediment at the bottom of bottle was formed when only added MSH 

nanoparticles in oil (Fig. 2(b)). 

 

Fig. 2 Oil-additive suspensions after 7 days from preparing (a) pure oil and (b) oil only 

added MSH and (c) oil added both MSH and AMs. In this sedimental test, pure oil 

only added synthetic MSH nanoparticles with a weight percentage of 2% (termed as 

oil+ MSH) prepared at the same time 

3.3 Friction and wear 

Fig. 3 shows the average wear scar diameters (WSDs) and the three-dimensional profiles of 

samples experimented in three oil samples under different conditions. Obviously, the 

anti-wear property of base oil was significantly improved by the addition AMs, and better 

results were further obtained after suspending synthetic MSH nanoparticles in oil under 

both experimental conditions. With respect to the average WSDs, the anti-wear rates of 

oil+ MSH+ AMs relative to pure oil were 45.56% and 32.44% under 200N and 600N, 

respectively. However, it can be seen from Fig. 3 (b) that there happened precious little 

wear when used synthetic MSH as additives in oil, meanwhile, the volume wear rate of 

friction specimens subjected to oil+ MSH+ AMs decreased by the order of magnitude with 

respect to that of specimens lubricated by pure base oil or oil+ AMs. Under the test 

condition of 200N and 400rpm, the average WSDs of 285.8m is close to the Hertz contact 

diameter of 240m calculated by Hertz contact radius formula (Eq. (1)) which also means 

little wear happened when lubricated by oil+ MSH+ AMs. This is because the four-ball 

friction and wear tests are based on a point contact mode, and the contact pressure is high to 
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gigapascals level attributed to the small lubrication area. Therefore, the surface deformation 

cannot be ignored. Hertz contact theory is one of the starting points of electrohydrodynamic 

lubrication (EHL) theory considering the elastic deformation of the surface. In our study, it 

is likely that the ball material will be removed due to the maximum experimental pressure 

of 2.91 or 3.71GPa, and the wear scar diameter is greater than that of Hertz contact 

diameter. Besides, the D-value between them can be used to evaluate the oil’s anti-wear 

property, that is, the smaller the difference, the higher the anti-wear. 
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Among them, a is the Hertz contact radius; F is the applied load; 1 and 2 are the Poisson's 

ratio of ball specimens; E1 and E2 are the Young's modulus of ball specimens; 1 and 2 are 

radius of ball specimens. 

Although the coefficient of friction (COF) value obtained by the four-ball friction and 

wear machine cannot be used seriously to explore the friction property of oil, the variation 

trend of COF with different oil samples under same conditions is of great significance. In 

this study, all sets of the experiment were repeated three times, and Fig. 4a shows the 

average COF value during friction tests for samples lubricated with different oil samples. 

Under the condition of 200N, if the error is considered, there is no significant difference in 

COFs of samples lubricated in pure oil, oil+ AMs and oil+ MSH+ AMs. With the load 

increased to 600N, oil only added AMs also had similar stable value of COF than that of oil 

added synthetic MSH particles. However, pure oil has a lower average stable COF value of 

0.062. To further analyze the friction property of three different oil samples, Figs.4b and c 

shows the evolution of the COF for one of the three repeated friction tests under experimental 

conditions of 200N, 400rpm and 600N, 400rpm. Both in Figs. 4b and c, at the loading 

stage, the COFs of the samples lubricated in pure oil increased first and then decreased 

 

Fig. 3 Average wear scar diameter values (a) and the three-dimensional profiles (b) of 

samples tested in pure base oil, oil+ AMs and oil+ MSH+ AMs under different test 

conditions 
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which means there happened severe wear and the actual contact area increased to a certain 

extent. In other words, the higher stable COFs of samples lubricated in oil+ MSH+ AMs do 

not mean oil containing MSH nanoparticles have worse friction-reduction property than 

that of pure oil, and it may be attributed to the distinctive frictional performance of 

tribofilm formed on worn surfaces.  

Fig. 5 shows the SEM morphologies of worn surfaces lubricated with base oil and oil+ 

MSH+ AMs under different loads. There are a great amount of scratches and furrows on 

the surfaces for pure base oil, which indicates severe wear occurred on the contact surfaces 

under all experimental conditions. In contrast, the furrows become shallower and less when 

adding synthetic MSH nanoparticles to oil. The sliding surfaces are extraordinary smooth 

under the experimental condition of 200N, which is in accordance with the anti-wear 

results in Fig. 3. Meanwhile, a dark tribofilm formed on the substrate surface when the 

experimental load increased to 600N. 

In Fig. 6, the EDS analyses of friction surfaces lubricated by oil+ MSH+ AMs show 

that the smooth worn surfaces under test condition of 200N mainly consist of Fe which 

agrees with EDS result of original substrate (Table 2). However, with the increase of 

experimental load to 600N, a dark tribofilm containing high content of O, Mg and Si 

elements formed on the sliding surfaces. Mg and Si elements come from synthetic MSH 

additives. Meanwhile, the chemical compositions (Table 2) reveal that the molar rates 

between Mg and Si are different from that of synthetic MSH nanoparticles, indicating a 

decomposition of MSH occurred under the combination of mechanical and thermal energy 

during the tribological tests. 

 

Fig. 4 (a) Average coefficient of friction (COF) value, and (b, c) evolutions COF during 

friction and wear tests for balls lubricated with pure base oil, oil+ AMs and oil+ 

MSH+ AMs under experimental condition of (b) 200N, 400rpm and (c) 600N, 

400rpm. Because the load of 600N was imposed stepwise from 200N with a step of 

100N every 2.5min, the experimental time in Fig. 4c is longer than that in Fig. 4b 
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Fig. 5 SEM morphologies of the worn surfaces lubricated with (a) (b) pure oil and (c) (d) 

oil +MSH+ AMs under experimental conditions of 200N and 600N (The red frames 

in this figure are the component analysis areas of EDS) 

 

Fig. 6 EDS spectra of the worn surfaces (marked areas in Fig. 5) lubricated with oil added 

both MSH and AMs under experimental conditions of (a) 200N (b) 600N 

Table 2 Chemical compositions of the worn surfaces for different experimental conditions 

Samples 
Content (at %) 

Fe O Mg Si 

Original substrate 82.3 - - 0.3 

Smooth area in Fig.5c 78.0   0.2 - 0.6 

Dark tribofilm in Fig. 5d 20.9 45.8 13.4 6.1 
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3.3 Nonequilibrium molecular dynamic simulations 

To fully understand the performance of lubricant molecule and additives, NEMD 

simulation including initial configuration composed of hexadecane molecules, stearic acid 

monolayers, and lamellate iron nanocluster confined between smooth steels was carried 

out. (100) surface of -iron, stearic acid molecules and iron nanocluster were used as 

sliding tribo-surfaces, AMs, and nanoparticles, respectively. Although silicate would be a 

more accurate representation of an additive in this system, there is no classical MD 

force-field. This size domain was optimized considering the effects of itself and the 

simulation time. A brief explanation of simulation setup and snapshots after 300ps of 

sliding are shown in Fig. 7. Periodic boundary conditions were applied in the x and y 

directions with size of 31.5331.53Å
2
 and z dimension varied from 94~135Å according to 

the initial setup of models. Both simulations were performed at 353K which is 

representative of experimental temperature and controlled by a Langevin thermostat. The 

density of lubricant liquid was 0.76g/cm
3
 and the surface coverage of stearic acid on all 

surfaces was 4.5nm
-2

. The applying load and shear rate were 3GPa and 10m/s, respectively. 

All-atom force fields were used in the NEMD simulations which enables the structure and 

large molecular systems to be reliably analyzed. COMPASS force field was applied for 

hexadecane and AMs molecules, and Embedded Atom Model (EAM) potential was 

represented the iron-iron interactions within the slabs. The Lennard-Jones (LJ) potential 

with cut-off distance of 12.5Å was used for van der Waals and long-range Columbic 

interactions between the lubricant and the surfaces. The potential parameters can refer to 

 

Fig. 7 Simulation setup and snapshots after 300ps of sliding (a) confined three layers of 

hexadecane molecules in between two stearic acid monolayers adsorbed on (100) 

surfaces of -iron (b) confined three layers of hexadecane molecules in between 

each pair of stearic acid monolayers adsorbed on (100) surfaces of -iron and 

lamellate iron nanocluster. Fe, C, O, and H atoms are presented as orange, cyan 

(terminal C in yellow), red, and white colors, respectively 
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literatures [25, 26]. The simulation procedure can be divided into three main stages: i) 

optimization of structure, ii) compression in z direction under applying load of 3Gpa, and 

iii) friction and wear in x direction with shear rate of 10m/s. A time relaxation constant of 

0.1fs was used and total simulations time was 550ps. 

Under the confinement and sliding motion of the slabs, stearic acid molecules formed a 

vertically arranged solid-like layer on both surfaces of slab and iron nanocluster which can 

improve the bearing capacity of base oil to a great extent [22, 27–29]. The thickness of oil 

added stearic acid and oil added both stearic acid and flake iron cluster reduced from initial 

55Å and 118Å to compressed 37.8Å and 82.8Å, respectively. Lamellate particle in 

lubricating oil provided a medium to the adsorption of Ams; meanwhile, one more pair of 

vertical arranged layers would be formed between the sliding surfaces as shown in Fig.7 b 

which isolated the friction surfaces completely to achieve “zero wear” (consistent with the 

three-dimensional profiles of test samples shown in Fig. 3b). However, with the increase of 

applying load or shearing velocity, these vertical arranged layers would be destroyed and 

lose their bearing capacity [22]. Under this situation, the features of nanoparticles and their 

tribological properties become substantially important.  

In the NEMD simulation, an iron nanocluster was used as the representation of 

nano-additive but this does not mean any flake nano-material combined with AMs has the 

same anti-wear effect as MSH. Because of the unique constitution and layered structure, 

MSH nanoparticles are easy to spread and decompose under the condition of certain 

pressure and temperature meanwhile forming a tribofilm consisting of Mg, Si, and O on the 

friction surface instead of acting as abrasive particles. This tribofilm will serve as a 

secondary anti-wear protection once the lubricant molecules and AMs have been crushed. 

4. CONCLUSIONS 

In conclusion, we have investigated the synergistic tribological properties of synthetic 

lamellate MSH nanoparticles combined with AMs in PAO base oil. This combination not 

only makes nanoparticles dispersed in oil homogeneously but also improves the anti-wear 

property of base oil substantially. Under relatively slight conditions, lamellate MSH 

particles provide media for the adsorption of AMs to form arranged layers, thus reducing 

the contact of rough peaks effectively. On the other hand, with the increase of applying 

load, a tribofilm containing element Mg, Si and O forms on the sliding surfaces and ensures 

a secondary anti-wear protection. 
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