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Abstract. In machining of high hardness steel, vibration of cutting tool increases tool 

wear which reduces its life. Tool wear is catastrophic in nature and hence investigation of 

its assessment is important. This study investigates experimentally induced vibration 

during turning of hardened AISI52100 steel of hardness 54±2 HRC using coated carbide 

insert. In this context, cutting tool acceleration is measured and used to develop a novel 

mathematical model based on acquired real time acceleration signals of cutting tool. The 

obtained model is validated as R2= 0.93 while its residuals values closely follow the 

straight line. The predictions are confirmed by conducting conformity test which revealed 

a close degree of agreement with respect to the experimental values. The Artificial Neural 

Network (ANN) examination is performed to determine the model regression value. The 

study shows that the examined reports forecasts of ANN are more exact than regression 

analysis. The future directon of this investigation is towards developing a low-cost 

microcontroller-based hardware unit for in-process tool wear monitoring which could be 

beneficial for small scale industries. 
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1. INTRODUCTION 

In recent years dry machining for hard materials proved to be one of the promising 

and eco-friendly alternatives. Turning of high hardness material with hardness range 45-

70 HRC is carried out by a single point cutting tool and is referred to as hard turning. It is 

widely used in aviation, automotive industries for manufacturing components such as 
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shafts, bearings, camshaft gears and landing gear, engine attachment fittings and constant 

velocity joints, and so on [1]. The hardened steels are favored because of their special 

mechanical properties like high hardness, high wear opposition etc. Among hardened 

steel, AISI52100 steel is widely used for the production of bearing as it offers the 

advantages of high wear resistance and rolling fatigue strength [2-3]. 

Hard turning is made feasible because of cutting edge advancement in tool materials 

such as Cubic Boron Nitride (CBN), ceramic and coated carbide tools. As of late, carbide 

tools with different coatings are being utilized as a cheap substitution to expensive PCBN 

and ceramics tools. Several research studies conducted by Aurich et al. [4], Suresh et al. [5], 

Chinchanikar and Choudhury [6], Jiang et al. [7] have reported that the low-cost carbide 

cutting tools with different coatings can achieve the same performance as that of ceramic 

and CBN/PCBN. But in actual, tool wear is exposed to enormous mechanical burdens and 

in this way creates vibration all through the process. In hard turning, the cutting tool is 

subjected to massive mechanical loads and therefore produces vibration throughout the 

process. Vibration influences the machining performance and specifically tool wear, surface 

finish and tool life; it also creates unsavory noise in the workplace [8-9]. Therefore, the 

effect of cutting tool vibrations during the machining process must be studied.  

Many researchers have tried to contemplate and investigate the vibrations in metal 

cutting. Several research studies presented diverse mathematical/statistical predictive 

models for cutting force, surface roughness, tool vibrations, and tool wear , etc. Models 

dependent on cutting parameters give a specific estimation of tool wear regardless of 

tool condition and thus can only help in the selection of the process parameters. To obtain 

real-time value of tool wear during turning, the model should include a signal that could 

represent the condition of the tool. Dimla [8] presented tool wear analysis using vibration 

signals in the machining of EN24 steel. The vibration characteristics showed that the 

measured wear values correlated well with certain resonant peak frequencies. Salgado et al. 

[10] reported a significant relationship between surface roughness and tool vibration 

utilizing soft computing techniques. Abouelatta and Madl [11] reasoned that the thought of 

hardware vibration alongside cutting parameters expands the precision of a model. 

Chen et al. [12] pointed out that the relative vibrations between cutting tool and 

workpiece cause the poor machined surface quality and unusual tool wear which drops 

down the profitability. Suresh at al. [5] presented regression model experimental results 

showed that the cutting speed has higher influence on the tool wear than feed rate depth of 

cut. Upadhyay et al. [13] developed regression models and reported that feed is the main 

factor that influences surface roughness followed by acceleration in a radial direction. 

Hessainia et al. [14] inferred that the feed is the overwhelming component impacting the 

surface harshness, while vibrations on both radial and tangential have discovered an 

irrelevant impact on surface unpleasantness. Ghorbani et al. [15] reported tool life 

predictive models based on fatigue strength of tool material and parameters of tool 

vibrations for different combination of workpiece and cutting tool.   

DMello et al. [16] performed high speed turning experiments on Ti-6Al-4V material 

using uncoated carbide insert. It is seen that tool vibration in speed direction has a major 

influence on surface roughness parameter and, feed rate showed a significant effect on 

surface roughness with more than 70% contribution. Prasad et al. [17] developed multiple 

linear regression models for the displacement amplitude of the tool. The ANOVA result 

demonstrates that the displacement of the cutting tool is affected by the workpiece 

hardness and cutting speed.  
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Mir and Wani [18] reported regression model for tool wear and surface roughness 

during hard turning of AISI D2 steel using PCBN, Mixed ceramic and coated carbide 

tools. The results show that the tool cutting speed has the highest influence on tool wear. 

Zeqin et al [19] proposed surface roughness model considering the influences of tool-

work vibration components in feeding, cutting and in feed cutting directions as inputs. 

The developed model with three direction vibrations makes a better prediction for the 

single diamond turned surface. 

The majority of the studies focused on predicting surface roughness using vibration 

signals. Some of the research projects tried to predict tool wear for using vibration signals 

for workpiece hardness less than 45 HRC. However, less research work has been reported 

which takes the actual vibration acceleration for monitoring tool wear during hard 

turning. Thus, the objective of the present work is develop a new mathematical model to 

predict real-time tool wear based on real-time acceleration of cutting tool in dry turning 

of hardened AISI52100 steel. 

2. EXPERIMENTAL PROCEDURE AND METHOD  

2.1. Materials and machining conditions  

Hard turning experiments were performed on SimpleTurn5076 CNC lathe equipped 

with 7.5 kW spindle power. The workpiece material utilized in this examination was 

AISI52100 steel. The workpiece rod was heated at 8500C, then quenched in oil and then 

being tempered around at 2000C for two hours, thus producing a tempered martensitic 

microstructure with a hardness of 54±2 HRC. The workpiece was held in three jaws and 

supported by a center in the tailstock and all experiments were carried under dry 

conditions. The hardened steel rods have been trued, centered, and cleaned at a moderate 

machining speed and feed before conducting experiments. The chemical composition of 

the workpiece material is 1.03% C, 1.38% Cr, 0.35% Mn, 0.002% P, 0.16% Si, and 

0.005% S and remaining Fe. The machining condition, namely, cutting speed, feed and 

depth of cut are selected on the basis of preliminary experiments, work-piece hardness, 

literature review and the tool manufacturer’s recommendation. The cutting parameters 

ranges are cutting speed 60-180 m/min, feed 0.1-0.5 mm/rev, and depth of cut 0.1-0.5 mm. 

2.2. Measurement setup 

The setup used to measure vibration in feed, radial and, tangential directions, is 

schematically shown in Fig. 1. A Bruel & Kjaer 4535B001 Type-30859 tri-axial piezoelectric 

accelerometer with sensitivity 9.8mV/g was placed on tool holder (PCLNR 2525M12) close 

to the insert. The coated carbide tool insert was selected of ISO designation CNMG120408-

MF5 with TH1000 grade. The tool has a rhombic shape with an included angle of 800, 4.8mm 

thickness and nose radius 0.8mm with the following tool geometry: including angles = 800, 

back rake angle = 60, clearance angle = 50, approach angle = 950 and nose radius =0.8 mm. 

Dino-Lite Digital microscope model: AD4113ZTA with magnification rate 200X was 

employed to capture images of flank wear after each pass. 
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Fig. 1 Experimental setup 

2.3. Design of experiments (DOE) 

In this work, the Central Composite Rotatable Design (CCRD) technique was 

implemented for planning trial runs. The design suggested 20 experimental runs which 

include 8 factorials, 6 axial and 6 replications of center points. In CCRD, a central run was 

repeated six times to check the repeatability of the output variables. In order to maintain 

rotatability, the value of α depends upon number of factors in design and it varies in 

between -1.682 to +1.682 for five levels [20]. The cutting parameters and levels are 

illustrated in Table 1. 

Table 1 Machining parameter levels 

Levels 
Cutting Speed V  

(m/min) 

Feed f 

(mm/rev) 

Depth of cut d 

(mm) 

-1.682   60 0.1 0.1 

-1   90 0.2 0.2 

0 120 0.3 0.3 

1 150 0.4 0.4 

1.682 180 0.5 0.5 
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3. RESULTS AND DISCUSSION 

3.1. Vibration analysis 

The CCRD recommended 20 experimental runs to be conducted while accelerations in 

feed Vx, radial Vy and, tangential Vz directions are recorded and tool wear VB is measured. A 

new cutting edge is used for each cutting condition. Vibration signals are captured at three 

locations, at the start, middle, and end of the process. The tool is removed and its wear is 

measured with the help of a microscope after every pass. This process is repeated until the tool 

wear reached 0.2 mm. The tools wear images for some cutting parameters are presented in 

Figs. 2-4. 

 

 

Fig. 2 Tool wear at V= 120 m/min, f = 0.5 mm/rev, d = 0.3 mm 

 

Fig. 3 Tool wear at V=90 m/min, f=0.4 mm/rev, d= 0.4 mm 

 

Fig. 4 Tool wear at V=180 m/min, f=0.3 mm/rev, d= 0.3 mm 
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While conducting experiments, continuous chip formation was observed at cutting 

condition V = 150 m/min, f = 0.4 mm/ rev and d = 0.2 mm. The continuous types of chips 

came in contact with the accelerometer mounted near the insert. Therefore, the sudden 

rise and fall in acceleration values are observed as shown in Fig. 5. Such values are 

neglected in developing a mathematical model. The frequency response from FFT 

analyzer revealed fluctuation in vibration frequency in feed, radial, and tangential 

directions observed from 16 Hz to 15 kHz. The frequency response of cutting tool in 

tangential direction at cutting condition V = 120 m/min, f = 0.3 mm/ rev, d = 0.3 and V = 

120 m/min, f = 0.5 mm/ rev, d = 0.3 mm is shown in Figs. 6 and 7, respectively. It is 

observed that frequency started increasing onwards 5000Hz. The components of the tool 

vibration reflect various occurrences during turning in the frequency domain, including 

the tool holder vibration and machine self-vibration. Fig. 8 represents acceleration signals 

for a cutting condition at which no chip formations take place and hence the no sudden 

rise and fall in acceleration values are observed. The tool vibration frequency for 

different cutting conditions is shown in Table 2. The acceleration amplitude signals 

without cutting are also captured for a better understanding of the machine vibration level 

and the response without cutting is illustrated in Fig. 9. It is observed from the 

acceleration signals that the vibrations of cutting tool during cutting are higher than the 

vibrations without cutting. Signals acquired do not represent different concurrences of 

turning. This only shows the vibration of the machine; it is helpful in finding the natural 

frequency of a tool holder. 

Table 2 Tool Frequency at various conditions 

Cutting parameter Frequency range, Hz 

V  

(m/min) 

f  

(mm/rev) 

d  

(mm) 

Vx Vy Vz 

-- -- -- 14-745 19-600 15-1500 

150 0.2 0.2 44-9520 26-10695 65-10750 

150 0.4 0.2 121-8646 76-11180 96-12810 

180 0.3 0.3 16-11160 45-11940 16-10880 

  90 0.4 0.4 96-9562 35-14130 11-14260 

120 0.5 0.3 397-6453 353-6512 107-8342 

120 0.3 0.3 59-6550 76-6652 172-8970 

  60 0.3 0.3 42-8260 23-8760 32-9320 

120 0.3 0.3 397-6453 353-6512 107-8342 
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Fig. 5 Acceleration response for V = 150 m/min, f = 0.4 mm/ rev and d = 0.2 mm 

 

Fig. 6 Acceleration response for V = 120 m/min, f = 0.3 mm/ rev and d = 0.3 mm 

 

Fig. 7 Acceleration response for V = 120 m/min, f = 0.5 mm/ rev and d = 0.3 mm 

High-frequency zone  

High-frequency zone  
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Fig. 8 Acceleration response for V = 120 m/min, f = 0.3 mm/ rev and d = 0.1 mm 

 

Fig. 9 Acceleration Vs Frequency graph for without cutting 

 

Fig. 10 Acceleration vs. Flank wear at V=60m/min, f=0.3mm/rev, d=0.3mm 

No sudden change in acceleration  

Without cutting  
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The variation of tool acceleration for different values of tool wear at cutting speed 60 

m/min, feed f=0.3 mm/rev and depth of cut d=0.3 mm is shown in Fig. 10. The acceleration 

of the cutting tool in the tangential direction is observed as higher than that in the feed and 

radial directions. A similar trend is also observed for other cutting conditions. At the start of 

the cutting process, the acceleration signals increase for tool wear 0.05-0.08 mm. This is 

because of the sharp edge of the flank rapidly wears out due to a high initial pressure; it is 

accurately detected by an increase in acceleration amplitude in the feed, radial and, 

tangential directions. For tool wear 0.085-1.35 mm, the acceleration signals increases with 

the uniform rate. It is additionally observed that when the device wear is more than 1.35 

mm, the tool wear rate increases because of the increase in the interface temperature and the 

normal pressure on the flank. This ultimately results in a sub-surface plastic flow and 

sometimes leads to catastrophic tool failure. The tool vibration shows quick response with a 

higher rate of tool wear. Vibrations in the radial directions are observed as high when 

contrasted with those in the feed and radial directions. Fig. 11 shows the acceleration of the 

cutting tool at different stages of tool wear. 

 

Fig. 11 Acceleration Vs tool wear at V=120 m/min, f=0.3 mm/rev, d=0.3 mm 

Fig. 12 (a-c) shows the trend of acceleration amplitude with varying cutting speed, 

feed and, depth of cut. The vibration signals have an increasing pattern with an increase 

in cutting speed increase as appeared in Fig. 12(a). The cutting speed has a noteworthy 

effect on vibration in each of the three directions because frequency depends upon the 

rotational speed of the workpiece. Vibration amplitude in the tangential direction is found 

higher than in the feed and radial directions. Fig. 12(b) enlisted the feed rate effect at 100 

mm/min cutting speed and at 0.5 mm depth of cut. From the figure it is seen that the 

vibration signals are observed as high for low values of feed and decrease further with an 

increase in feed rate. Fig. 13(c) reports variation in acceleration with the varying depth of 

cut and for constant feed 0.3 mm/rev and cutting speed 100 mm/min. The tool acceleration 

observes an increase in the tangential direction with the increase of depth of cut followed by 

the radial and feed directions. This is in good agreement with Suresh et al [5]. 
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Fig. 12 Variation in acceleration for varying (a) cutting speed (b) feed (c) depth of cut  

3.2 Regression analysis (RA) 

A new multiple regression model is proposed as a function of cutting parameters and 

tool acceleration in three directions; it is described below, 

 1 2 3 4 5BV aX bX cX dX eX g= + + + + +  (1) 

where X1 is the cutting speed,  X2 the feed,  X3 the depth of cut, X4 the acceleration in 

feed direction(Vx), X5 the acceleration in radial direction (Vy), X6 the acceleration in 

tangential direction (Vz) and a, b, c, d, e, f, and g are constants. The statistical analysis 

treatment is performed on the obtained results using the Datafit Statistical customize tool. 

In the analysis, a confidence level of 95% is chosen. The analysis of variance (ANOVA) 

results shows that the statistical significance of the fitted model is evaluated by p-value 

(Prob>F) and F-value. All p-values less than 0.5 indicate the corresponding term is highly 

significant. Terms with a p-value higher than 0.05, are considered as insignificant for the 

model. The regression equation is obtained: 

 1 2 3 4 5 61.4055 0.1015 0.1348 0.3341 0.4192 0.1958 0.1277  BV X X X X X X= + + + + − −  (2) 
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The goodness of the model is checked by regression coefficient (R2) value. R2 value 

close to 1 is desirable. R2 value for the tool wear model is found as 0.93 which is fairly 

enough and which concludes that the factor cutting speed, feed and depth of cut, 

accelerations Vx, Vy and Vz have a significant effect on tool wear and can provide reliable 

estimates. The diagnostics checking of the model has been carried by examining the 

residuals. From the normal probability plot, it is observed that the residuals lie close to a 

straight line with maximum error 11% which illustrates that the error is normally 

distributed; the model does not indicate any inadequacy and it provides reliable 

prediction. Some experiments have been conducted for different cutting parameters 

which are not the part of a designed experimental set. The machining parameter used for 

the selected test and the corresponding output is presented in Table 3. Tool wear 

comparison between experimental and RA model is presented in Table 4. 

 

Fig. 13 Residual plot for tool wear 

 

Table 3 Confirmation test-cutting condition and acceleration values 

Run Conditions Vx 

mm/sec2 

Vy 

mm/sec2 

Vz 

mm/sec2 

1 

V=75m/min, 

f=0.15mm/rev, 

d=0.25mm 

0.0214 0.0325 0.0412 

2 

V=135m/min, 

f=0.45mm/rev, 

d=0.35mm 
0.01862 0.0235 0.0256 

3 

V=165m/min, 

f=0.15mm/rev, 

d=0.45mm 
0.0835 0.0723 0.07345 
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Table 4 Tool wear comparison between experimental and RA model 

Run Conditions VB-Experiment 

(mm) 

VB-Model 

(mm) 

Error % 

1 V=75m/min, f=0.15mm/rev, d=0.25mm 0.186 0.177 4.83 

2 V=135m/min, f=0.45mm/rev, d=0.35mm 0.195 0.199 -2.05 

3 V=165m/min, f=0.15mm/rev, d=0.45mm 0.201 0.194 3.48 

3.3. Artificial neural network  

Artificial neural networks (ANNs) are computation models intended to reproduce the 

way in which the human mind forms data. Artificial neural network modeling is found 

very useful in solving nonlinear and complex problems in the field of engineering. 

Typically an ANN network is comprised of three layers, namely, input layer, hidden 

layer, and output layer. ANN requires sufficient input and output data instead of a 

mathematical equation [20]. ANNs can combine and incorporate both literature-based 

and experimental data to solve problems. The conduct of a neural system is controlled by 

the exchange elements of its neurons, by the learning rule, and by the structure itself. In 

the ANN model, many input and target sets are utilized to set up a network. The network 

is re-adjusted on the basis of a comparison between output and target until the network 

output yields the target [21-22]. The neural network is created in MATLAB software of 

version R2012. The training data used during training of the neural network is collected 

from 20 experiments and back-propagation algorithm based on Levenberg- Marquardt 

back is used. To train the ANN model, V, f, d, Vx, Vy and Vz are considered as input 

data whereas tool wear VB is taken as an output parameter. The basic layout of the ANN 

model is as shown in Fig. 14. 

 

Fig. 14 ANN Network 
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Table 5 Tool wear comparison 

Run no. VB-Experiment (mm) VB-ANN (mm) Error % 

  3 0.184 0.168 8.69 

  7 0.193 0.189 2.07 

10 0.199 0.194 2.51 

18 0.186 0.179 3.76 

 

Fig. 15 Regression plot for tool wear 

 

Fig. 16 Tool wear comparison between experimental, RA and ANN approach 
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The optimal performance of the network is evaluated based on performance parameter 

correlation coefficient value (R) for both training and testing data for tool wear prediction 

in an ANN model. The correlation coefficient for the tool wear model is observed as 

0.98. The closeness of the ANN model predictions to the experimental results is high; the 

correlation coefficient between the ANN model predictions and the experimental results are 

close to 1. Fig. 15 shows regression curves ANN training, testing, validation, and the 

overall data set for VB. From Tables 4 and 5, it can be seen that the predicted values by RA 

and ANN approach, for tool wear (VB) are closer to each other with an acceptable margin of 

error. The maximum error found between ANN model predictions and experimental results 

are found 9.74%, and between ANN model predictions and experimental results is observed 

as 8.69% and comparison is shown in Fig. 16. Therefore, the proposed tool wear model can 

be effectively used for predicting tool wear. 

4. CONCLUSION 

In this paper, the attempt has been made to utilize vibration signals in order to 

evaluate tool wear in dry turning of hardened AISI52100 steel using PVD coated carbide 

insert CNMG120480 of coating layers TiSiN-TiAlN. This investigation proposes a new 

tool wear prediction model based on real-time acceleration signals which will provide 

real time tool wear. The advantage of the proposed model is examined by R2 value and is 

found as 0.89 which is close to one. Also, the diagnostics checking of the model has been 

carried by examining the residuals. It is observed that the residuals lie close to a straight 

line which illustrates that the error is normally distributed; the model does not indicate 

any inadequacy and it provides reliable prediction. Further, the ANN model is developed 

and the regression value for the model is found as 0.98. Both models anticipated the tool 

wear within reasonable accuracy making them suitable for real-time prediction. The 

vibration frequency is observed in the range 16-15kHz. The vibration in the tangential 

direction is found higher for the variable cutting conditions. The future work of this 

investigation is to develop a hardware unit for in-process tool wear monitoring suited for 

small scale factories. 
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