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Abstract. During the operation process of a system its technical state is changed. The 

changes take place because of the wearing factors impact. The impact depends on the 

flow and intensity of the operation process what is characterized by the time histories of 

the working parameters. Simultaneously, the changes of the technical state are correlated 

with the changes of the amount of the operational potential included in a system. In order 

to avoid the inability state occurrence the amount of this potential should be higher than 

the boundary value. The amount of the operational potential included in a system is 

determined by the values of the cardinal features of it but in the case of the real technical 

system the values cannot always be measured. Therefore, the amount of the operational 

potential and the technical state of the system cannot always be determined online. To 

solve this problem the model of the operational potential consumption process was 

created and presented in the paper. The model uses artificial intelligence techniques to 

calculate the change of the operational potential amount by determining the changes of 

the cardinal features of the system on the basis of the time histories of the working 

parameters. The verification of the model quality was performed using the pulverized 

boiler OP-650k-040 operating in the power plant. The description of the conducted 

research and the results of the verification were presented in the end of the paper proving 

the adequacy of the model implementation in the case of industrial objects. 
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1. INTRODUCTION 

The object under consideration is a crucial technical system of the strategic importance. 

In the case of such systems the main objective of the operation and maintenance control is to 

perform the operational tasks and avoiding the failure occurrence [1,2]. This is a very 

important issue because the consequences of a failure can be very costly or can pose a health 

risk. In order to avoid failure the operation processes should be stopped and the service 

activities should be performed. Unfortunately, when the operation processes are stopped 

the technical system user does not obtain any effect of the system operation. Thus, the 

service activities should be started at the proper moment. The main question of the 

research is how to determine that moment.      

The failure is defined as a transition of the technical state of the system from the area 

of the ability states to the area of the inability states [3]. The technical state is determined 

by the values of the cardinal features of the system [4] and is correlated with the amount 

of the operational potential included in it. The inability state occurs when the amount of 

the operational potential included in a system is lower than the amount corresponding to 

its boundary state [5]. In order to avoid the inability state occurrence it is necessary to 

know the amount of the operational potential of the system at every moment of the system 

operation. This amount, similarly to the technical state, is determined by the values of the 

cardinal features of the system. But not always it is possible to measure the values online. 

The changes of the values take place during the operation processes because of the forcing 

factors influence. The forcing factors can be divided into two groups dependent on and 

independent of the system operation [6]. The first group of the factors acts as a result of the 

operation process execution while the second characterizes the impact of the environment 

[7]. Thus, the level of the forcing factors influence is determined by the way of the operation 

process execution and the intensity of the environment impact. If the intensity of the 

environment impact is assumed as an independent variable then the forcing factors influence 

is determined only by the operation process flow which is described by the values of its 

parameters. In fact, the intensity of the operation process is described by the time histories 

of the working parameters. So, it was stated that in order to avoid the inability state 

occurrence it is necessary to apply the model of the operational potential consumption 

process which can calculate the change of the potential as a function of the time histories of 

the working parameters. Therefore, the analysis of the existing models of the operation and 

maintenance processes was performed [8-11] in order to identify their adequateness in the 

case of crucial, complex technical systems of the strategic importance. As a result it was 

stated that in the case of complex technical objects changes of operational potential amount 

could not be given with proper accuracy thanks to analytical models usage. Therefore, in this 

paper, the system fuzzy model is proposed to model the process under consideration. In 

Chapter 2 the main idea of fuzzy model application is presented. Its structure and the way of 

operation are described in details in Chapter 3. Subsequently, in Chapter 4 the industrial 

research is presented which was performed in order to identify the model parameters values 

(described in Chapter 5) and to verify prepared model accuracy (described in Chapter 6). 

Finally, in Chapter 7, some conclusions can be found. 

The main contribution and the novelty of the proposed solution are the universal 

creation method of the system model of the operation potential consumption process. The 

result of the proposed method is the fuzzy model. Thanks to the fuzzy sets theory 
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implementation the uncertainty of the initial technical state identification and the approximation 

of the time histories of the operation parameters are taken into consideration.    

2. THE IDEA OF THE FUZZY MODEL OF THE OPERATIONAL POTENTIAL  

CONSUMPTION PROCESS 

It was decided that the designed model will estimate the levels of the forcing factors 

influence on the basis of the time histories of the working parameters. Subsequently, on 

the basis of the levels of the forcing factors influence the changes of the cardinal features 

values will be identified. Eventually, on the basis of the changes of the cardinal features 

values the change of the operational potential amount will be determined Eq. (1) 
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where: MPu - the model of the operational potential consumption process, poi - i-th 

parameter of the operation process i = 1,...,aop, aop - the working parameters amount,  

poi(t) - the time dependent value of i-th working parameter, 
1

2
)(
t

t
tpoi  - the time history of 

i-th working parameter in period [t1, t2], 
j

df f  - j-th forcing factor depended on the system 

operation j = 1,...,n, k

idf f  - k-th forcing factor independent of the system operation 

k=1,...,r, xl - the change of the value of l-th cardinal feature of the system l = 1,...,s, 

Pu - the change of the amount of the operational potential of the system. 

The application of the constructed model will be used to determine the technical state 

of the system in t2 moment taking into account the technical state of the system in t1 moment 

and time histories of the parameters of the operation process in period [t1, t2] Eq. (2). 
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where: s(t) - the technical state of the system for time t. 

The first input value of the model is the technical state of the system in moment t1. It 

results from the Markov characteristic of the technical state [12]. According to it, the state 

of the system in moment t2 is unequivocally determined by the state in moment t1 and 

known input values for t⸦[t1,t2] and is independent of the system state and input values 

before t1 moment. 

The operating point of the technical object is expressed by the values of the object 

features. In the case of complex technical systems operating in the industry the values of 

the part of the measurable features still can be identified only by destructive testing [13]. 

Therefore, they cannot be identified at given moment in which the operation processes are 
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performed. Simultaneously, because of immeasurable features presence, it is impossible 

to accurately determine the technical state of the system. Even though, the moment of the 

object installation in the operation place is treated as initial moment t1, the technical state 

depends on conditions during the production phase and pre-operation processes execution. 

In the course of the technical object designing calculations isotropic structure of the material 

is assumed. In reality this assumption is fulfilled only approximately. For example, as far as 

metal is concerned, its non-uniform structure causes up to 20% differences in the mechanical 

characteristics values. Additionally, during the assembling the designing calculations 

requirements can be violated. What is more, because of the lack of the equipment required to 

perform non-destructive testing, the majority of the producers of the machinery, devices and 

constructions do not support the full quality tests at the end of the production phase [14,15]. 

Usually, the partial tests are executed (about 5%) and on this basis the decision about the 

correctness of the whole series of the products is made [16]. As a result, the devices of 

approximately identified technical state are designated to operation. Subsequently, during 

the pre-operation processes execution the devices are under the influence of forcing 

factors. This impact depends on the storage conditions and the intensity of the environment 

influence, which are tested periodically [17]. Therefore, it was stated that the technical state 

of the system at the start moment of the operation process can be identified only 

approximately. 

Next group of the input data of MPu model are the time histories of the parameters 

describing performed operation processes. Its values, just like those of the system features, can 

be measurable or immeasurable. And similarly to the system features, the values can be 

determined only approximately. 

Inaccuracy of the working parameters values and the approximation of the technical 

condition of the system make it impossible to accurately transform the initial state of the 

system s(t1) in resultative state s(t2). Therefore, the designed MPu model has to take into 

consideration the approximate character of the input data. 

This type of inaccuracy consists in the lack of the possibility to categorize the given 

phenomenon as true or false [18]. To model this type of inaccuracy the fuzzy sets theory is 

widely used [19,20]. The application of fuzzy logic is especially appropriate in the case when 

the mathematical model describing the phenomenon does not exist, the existing model is 

strongly nonlinear, the existing model is irresolvable or the calculation time required to obtain 

the resolution is too long to fulfill the demands about the model response time [21]. 

Modeling of the operational potential consumption process can be treated as a case 

when adequate mathematical model does not exist and tries of the model construction face 

the problems arising from not clear enough process description and approximate character 

of the input data. In such cases the fuzzy modeling implementation can be found in 

industrial application [22-25] as well as in theoretical research papers [26-28]. Thus, on 

the basis of the research conducted by the author and the literature analyze it was decided 

that the MPu model will be constructed by the fuzzy modeling implementation. 

The formulated model of the operational potential consumption is the model of the 

Multi Input Single Output (MISO) type. The calculation process performed by the model 

consists of three sequential transformations given in Eq. (1) where the last one is executed 

according to Eq. (3) [5]: 
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where: Pu(t) - the change of the operational potential amount due to the operation 

process execution in period t = [t1, t2], xi(t1) - the value of i-th feature for time t1, xi(t2) -

 the value of i-th feature for time t2. 

Therefore, the task of creation of the fuzzy MPu model was decomposed into 

creation the ncf fuzzy models performing transformation Eq. (4), where ncf is the amount 

of the cardinal features of the system. 
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where: Mxl - the model of the change of l-th cardinal feature value, 
1

2
)(
t

t
tpoi  - the time history 

of the i-th working parameter in period [t1, t2], 
j

df f  - j-th forcing factor depended on the system 

operation j = 1,...,n, k

idf f  - k-th forcing factor independent of the system operation 

k = 1,...,r,xl - the change of the value of l-th cardinal feature of the system l = 1,...,s. 

The input data of the models are the time histories of the working parameters in period 

of the operation process execution while the output is the change of the value of the 

system cardinal feature. 

It was decided that the considered models will be constructed and verified using the 

measurement collections recorded during the conducted operational test, subsequently 

analyzed and transformed to the form of Eq. (5) according to the method proposed by the 

author in the papers [29,30]. 

 1 2( ) :[ , ,..., , ]j l nipo lmmc x po po po x    (5) 

where: xl - l-th cardinal feature of the system, poi - i-th working parameter i = 1,...,nipo(xl), 

nipo(xl) - the number of the important working parameters for feature xl, mmcj - j-th major 

measurement collection, poi - the distance between the time history of i-th working 

parameter and its zero time history (ZTH - the time history of the working parameter for 

which the difference between the initial and final value of the feature is the minimum 

one), xl - the change of the value of l-th feature of the system. 

3. STRUCTURE AND THE OPERATION OF THE MODEL OF THE OPERATIONAL POTENTIAL 

CONSUMPTION PROCESS 

Each of the models of the system feature value change is of MISO type describing the 

unknown in shape solution space. Major measurement collections expressed in the form 

presented above Eq. (5) describe the relation between the models output data (change of 

the feature value) and the models input data (distances between time histories of the 
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significant working parameters and their zero time histories). So, the collections are the 

inputs-output samples of the considered models. The inputs-output models are 

constructed employing the fuzzy sets theory. They can use inference of Mamdani type 

[31], of Takagi-Sugeno-Kang type [32] or be of relational type [33]. In order to solve the 

issue under consideration the fuzzy models with use of the Mamdani type inference are 

chosen because thanks to their generalized structure the accurate knowledge about the 

structure of the modeled object is not required [34]. Moreover, the inference rules of the 

models are not uniformly distributed along the solution space. Regions where the solution 

space changes its shape are modeled by a bigger number of the rules than the regions 

where the space is of fixed shape. Owing to this, in the Mamdani models the amount of 

the inference rules can be decreased. The structure and the general scheme of the worked 

out models operation are presented in Fig. 1. 

 

Fig. 1 The general scheme of the fuzzy model operation 

The input data of the models are crisp values of the distance between the working 

parameters time histories and their zero time histories: 

 ]...[ 21 nipFM popopopo    (6) 

where: poFM - the input data of the fuzzy model, poi - the crisp value of i-th input 

parameter, nip - the number of the input parameters of the fuzzy model. 

The first step of the fuzzy model operation is the fuzzification process. It is 

transformation of the crisp values to the fuzzy ones. Fuzzification is accomplished using 

knowledge base of the model [35]. The knowledge base consists of groups of the fuzzy 

sets defined for each input and output parameter of the model. These fuzzy sets cover the 

domain of the parameter in a way presented in Fig. 2. 

 

Fig. 2 The exemplary group of the fuzzy sets for the input parameter of the fuzzy model 
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The fuzzy sets which cover the domain of the parameter are their linguistic values. 

First of the sets is of L type, Eq. (7) while the last one is of  type, Eq. (8). The 

remaining sets are of  type, Eq. (9). 
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where: FSL(x) - the membership function of the L type fuzzy set, x - the argument of the 

fuzzy set, rrk - the right range (the maximum value) of the kernel of the fuzzy set, rrs - the 

right range (the maximum value) of the support of the fuzzy set. 
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where: FS(x) - the membership function of the  type fuzzy set, x - the argument of the 

fuzzy set, lrs - the left range (the minimum value) of the support of the fuzzy set, lrk - the 

left range (the minimum value) of the kernel of the fuzzy set. 
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where: FS(x) - the membership function of the type fuzzy set, x - the argument of the 

fuzzy set, lrk - the left range (the minimum value) of the kernel of the fuzzy set, lrs - the 

left range (the minimum value) of the support of the fuzzy set, rrs - the right range (the 

maximum value) of the support of the fuzzy set. 

During the fuzzification process for each crisp value of the considered input parameter 

the values of the membership functions of each of its linguistic values are determined: 
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where: zi - the fuzzy value of i-th input parameter of the model, poi - the crisp value of 

i-th input parameter of the model, )( iL
poj

ipo




 - the value of the membership function of 

j-th linguistic value of i-th input parameter for poi value, 
j

poi
L  - j-th linguistic value of 

i-th input parameter of the model, nlv - the amount of the linguistic values defined for the 

parameters of the model. 
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The second step of the models operation is the fuzzy inference. It is performed using 

the rule bases of the models. The rule base of each model consists of the inference rules 

described by Eq. (11), which should be read according to the notation from Eq. (12): 
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where: FMRi - i-th inference rule of the fuzzy model, poi - the crisp value of i-th input 

parameter of the model, 
j

poi
L  - j-th linguistic value of i-th input parameter of the model, 

yi - the fuzzy output value of i-th inference rule,
n

xFM
L  - n-th linguistic value of the output 

parameter of the model, xFM - the output parameter of the fuzzy model. 
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where: zi - the fuzzy value of i-th input parameter of the model, iout - the number of the 

linguistic value of the output parameter of the model. 

The fuzzy inference consists in the premises aggregation, implication and resulting 

sets accumulation [36]. For each of the rules present in the rule base of the model the 

premises aggregation is performed according to the formula: 

 ))(),...,(),(min()( 21 mzkzjzFMRAGR nipi   (13) 

Subsequently, the implication is executed according to formula: 

 nvliiyFMRAGRiy outoutiiouti ,...,2,1))(),(min()(   (14) 

where: FMRi - i-th inference rule of the fuzzy model, AGR(FMRi) - the value after 

premises aggregation of i-th inference rule, yi(iout) - the value of the membership function 

of the linguistic value on position iout for fuzzy value of the output parameter of i-th rule, 

nvl - the amount of the linguistic values defined for the parameters of the model. 

The final step of the fuzzy inference process is the resultant sets accumulation. The 

step consists in determination of the fuzzy value of the output parameter according to 

formula: 

 nvliiyiyiyiy outoutnrbroutoutout ,...,2,1))(),...,(),(max()( 21   (15) 

where: y(iout) - the value of the membership function of the linguistic value from position 

iout for fuzzy value of the output parameter, yi(iout) - the value of the membership function 

of the linguistic value from position iout for fuzzy value of the output parameter of i-th 

rule, iout - the number of the linguistic value of the output parameter of the model, 

nrbr - the amount of the rules in the rule base of the model. 

Thus, the fuzzy value of the output parameter can be expressed in the following form: 

 ]...[ 21 nvl

FMxlxlx LLL
yyyy


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where: y - the fuzzy value of the output parameter of the model, i

lxL
y

  - the maximum 

value of the membership function of i-th linguistic value of the output parameter, 
i

xFM
L  - i-th linguistic value of the output parameter, nvl - the amount of the linguistic 

values defined for the parameters of the model. 
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The expression above should be interpreted as a fuzzy set with support equal to the 

output parameter domain. The value of the membership function of this set ought to be 

calculated according to the formula: 
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where: (xFM) - the membership function of the output parameter, , xFM - the output 

parameter of the fuzzy model, i

FMxL
y


 - the maximum value of the membership function of i-th 

linguistic value of the output parameter, i

FMxL

 - the value of the membership function of i-th 

linguistic value of the output parameter, i

xFM
L

- i-th linguistic value of the output parameter, 

nvl - the amount of the linguistic values defined for the parameters of the model. 

The output of the fuzzy model is the crisp value of the output parameter. It is 

calculated in the defuzzification process. In the process the fuzzy value of the output 

parameter determined in the inference process is defuzzified by the centre of gravity 

defuzzification operator application: 
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where: xFM - the output parameter of the fuzzy model, COG - the centre of gravity 

defuzzification operator, (xFM) - the membership function of the output parameter, 

xFM_min - the minimum value of the output parameter domain, xFM_max - the maximum 

value of the output parameter domain. 

4. THE PERFORMED INDUSTRIAL RESEARCH 

In the described studies it was decided to construct the considered fuzzy model using 

learning data registered during the industrial research. There are two main groups of the 

learning techniques which can be used to solve this issue. First of them is the connection 

of artificial neural networks and fuzzy systems which is widely applied decision-making 

and data classification problems [37-39]. The second one is connection of genetic 

algorithms and fuzzy logic which is implemented in automatic fuzzy model generation 

and data classification problems solutions [40,41].   

The task of creating models as described by Eq. (4) was solved using the automatic 

iterative method of the Mamdani fuzzy model generation [42]. The applied method 

generates the models using the sample data in input/output form. Exactly, the sample data 

were prepared in the form depicted by Eq. (5). In order to collect the data the operational 

tests were carried out on the biggest Polish hard coal fired power plant in Kozienice. The 

production system of the plant includes 8 - 200MW power units, 2 - 500MW power units 
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and 1 - 1000MW power unit [43]. The tests were limited to 8 - 200MW production units. 

Main parts of the units were OP-650k-040 pulverized coal fired boilers [44] and 13K215 

steam turbosets. The performed operational tests lasted fifteen months and consisted in 

collecting the working parameters of the units. After the preliminary analysis of the data 

correctness 23 parameters were selected for further considerations (Table 1). As a result 

of the collecting process 5440008 values for each parameter were obtained. 

The technical state of the OP-650k-040 boiler is described by the values of the system 

features. These features also describe the quality of the whole system operation. Therefore, to 

identify the cardinal features of specified element of the system the TKE method was taken into 

consideration. TKE is a common analysis method of an operation quality of power units’ 

devices. As a result of the completed analysis deviations q3 (the deviation of the heat 

consumption caused by the temperature of the reheated steam [kJ/kWh]), q4 (the deviation of 

the heat consumption caused by the pressure in the secondary reheater of the reheated steam 

[kJ/kWh]), q5 (the deviation of the heat consumption caused by the water injections to the 

reheated steam [kJ/kWh]) and q8 (the deviation of the heat consumption caused by the reduced 

efficiency of the boiler [kJ/kWh]) were chosen as cardinal features determining the technical 

state of the boiler [1]. On the basis of the measurements sets collected during the operational 

tests, the momentary values of the deviations were calculated. Applying the polynomial 

approximation the time functions of each deviation were formulated. 

Table 1 The set of the selected working parameters of the research object (RAP - rotary 

air preheater, HP - high pressure, MP - medium pressure) 

No Value Medium Side Unit Symb. 

1. Temperature Main steam left °C t0l 

2. Temperature Main steam right °C t0p 

3. Pressure Main steam both MPa p0 

4. Pressure Outgoing steam of HP turbine  both MPa psahp 

5. Temperature Outgoing steam of HP turbine  left °C tahpl 

6. Temperature Outgoing steam of HP turbine  right °C tahpr 

7. Temperature Reheated steam left °C tssl 

8. Temperature Reheated steam right °C tssr 

9. Pressure Incoming steam of MP turbine  both MPa tsbmp 

10. Temperature Feed water both °C tfw 

11. Temperature Flue gasses 1 °C teg1 

12. Temperature Flue gasses 2 °C teg2 

13. Contents O2 in flue gasses before RAP 1 % o2bp1 

14. Contents O2 in flue gasses before RAP 2 % o2bp2 

15. Contents O2 in flue gasses after RAP 1 % o2ap1 

16. Contents O2 in flue gasses after RAP 2 % o2ap2 

17. Amount Injected water left t/h wsil 

18. Amount Injected water right t/h wsir 

19. Amount Burned mazut both t/h ma 

20. Amount Burned coal both t/h ca 

21. Amount Active load both MW P 

22. Amount Main steam left t/h m0l 

23. Amount Main steam  left t/h m0r 
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Using the calculated values of the boiler’s cardinal features as well as recorded 

measurements sets 874 intervals of equal time length (24 hours) were obtained for each 

distinguished deviation. The measurement collection was formulated for each interval. 

The collection consisted of the time histories of 23 working parameters in range from the 

start to the end time of the interval and the difference between the values of the specified 

deviation for the start and the end time of interval. 

Among the formulated measurement collections for each deviation one measurement 

collection was selected. It was the collection corresponding to the smallest change of the 

deviation value. On this basis, according to the method presented in literature [29] the 

measurement collections were transformed into the form described by expression Eq. (5) 

but comprising all 23 parameters. 

Subsequently, according to the method proposed by the author [30], the most significant 

working parameters in term of the operational potential change have been selected. For 

deviation q3 parameters 3, 12 and 17 have been selected and so have, for deviation q4, 

parameters 1, 13, 14 and 15; for deviation q5 parameters 8 and 10 are selected and so are, 

for deviation q8, parameters 17 and 18. The numbers are used according to Table 1. 

Thus, as a result of the performed studies, for each of 4 models of the cardinal feature 

change as a function of the most significant working parameters time histories, 874 major 

measurement collections in form described by Eq. (5) were obtained. 

5. THE IDENTIFICATION OF THE PARAMETERS OF THE OPERATIONAL POTENTIAL 

CONSUMPTION PROCESS MODEL 

In order to generate the models of the working parameters time histories impact on the 

system features values, for each deviation the learning and testing data sets were prepared. 

Each of the sets consisted of the major measurement collections which included input and 

output data of the model. The form of the learning and testing data for each deviation is 

presented in tables (Table 2 - Table 5). 

Table 2 The structure of the major measurement collections for q3 deviation (Names of 

the fields according to the symbols from Table 1) 

No. Field name Symbol Unit 

1. The distance from ZTH - p0 p0db MPa 
2. The distance from ZTH - teg2 teg2db °C 
3. The distance from ZTH – wsil wsildb t/h 
4. The change of the deviation value - object dq3r kJ/kWh 
5. The change of the deviation value - model dq3e kJ/kWh 

Table 3 The structure of the major measurement collections for q4 deviation (Names of 

the fields according to the symbols from table 1) 

No. Field name Symbol Unit 

1. The distance from ZTH - t0l t0ldb °C 
2. The distance from ZTH - o2bpl o2bp1db % 
3. The distance from ZTH - o2bp2 o2bp2db % 
4. The distance from ZTH - o2apl o2ap1db % 
5. The change of the deviation value - object dq4r kJ/kWh 
6. The change of the deviation value - model dq4e kJ/kWh 
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Table 4 The structure of the major measurement collections for q5 deviation (Names of 

the fields according to the symbols from Table 1) 

No. Field name Symbol Unit 

1. The distance from ZTH – tssr tssrdb °C 

2. The distance from ZTH – tfw tfwdb °C 

3. The change of the deviation value - object dq5r kJ/kWh 

4. The change of the deviation value - model dq5e kJ/kWh 

 

Table 5 The structure of the major measurement collections for q8 deviation (Names of 

the fields according to the symbols from Table 1) 

No. Field name Symbol Unit 

1. The distance from ZTH – wsil wsildb t/h 

2. The distance from ZTH – wsir wsirdb t/h 

3. The change of the deviation value - object dq8r kJ/kWh 

4. The change of the deviation value - model dq8e kJ/kWh 

Table 6 The values of the parameters of the fuzzy model generation process 

No. Parameter Value 

1. Coverage degree of the measurement collection 1.0 

2. Compatibility limit of measurement collection and inference rule - z 0.05 

3. Incompatibility limit of inference rule and learning data set - kicFMR 0.1 

4. Threshold value of the compatibility degree - sFM 0.25 

5. T-norm used in generation process MIN 

6. Amount of the genetic algorithm generations in one iteration 50 

7. Amount of useless mutations of evolution strategy until the process stop 25 

8. Amount of the chromosomes exposed to the evolution strategy 20% 

9. The parameter of the value mutation used in evolution strategy 0.9 

10. Amount of generations of simplification step 500 

11. Amount of generations of tuning step 1000 

12. Population size of simplification step 61 

13. Population size of tuning step 61 

14. Parameter of non-uniform mutation 5 

15. Crossover probability of generation process 0.6 

16. Crossover probability of simplification process 0.6 

17. Crossover probability of tuning process 0.6 

18. Mutation probability of generation process 0.004 

19. Mutation probability of simplification process 0.003 

20. Mutation probability of tuning process 0.005 

21. Coefficient of arithmetic MIN-MAX crossover operator - g 0.35 

22. Aggregation operator of the fuzzy model  MIN 

23. Implication operator of the fuzzy model MIN 

24. Accumulation operator of the fuzzy model MAX 

25. Defuzzification operator of the fuzzy model  COG 

 

The learning data set comprised 582 measurement collections (first two-thirds of all 

measurement collections) while the testing data set comprised remaining 292 measurement 
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collections. Subsequently, on the basis of learning data set the automatic generation of the 

model was performed. The generation procedure consisted of preliminary generation, 

simplification and tuning steps. The adopted values of the model generation process can be 

found in Table 6. 

As a result of the calculations four models of the working parameters time histories 

influence on the values of the system features were obtained. Each of the model in the 

aggregation process used MIN operator, in implication process MIN-MAX operator, in 

accumulation process MAX operator and in defuzzification process COG operator, Eq. 

(18). The rule bases of the obtained models included the groups of fuzzy sets defined for 

each input and output parameter of the model. Below, as an example, the group of fuzzy 

sets defined for p0db - the first input parameter of the model for q3 deviation is presented 

(Fig. 3), Eqs. (19-25). 

The model obtained for q3 deviation consisted of 63 inference rules, the model obtained 

for q4 deviation consisted of 82 inference rules, the model obtained for q5 deviation 

consisted of 20 inference rules and the model obtained for q8 deviation consisted of 40 

inference rules. The exemplary form of the obtained inference rule is presented below Eq. 

(26). In all expressions describing the rule and knowledge bases of the fuzzy models the 

symbols were used in accordance with tables (Table 2 - Table 5). The linguistic variables of 

input and output parameters of the models are marked by subscript meaning the parameter 

and superscript meaning the number of the linguistic variable. 

 
Fig. 3 The group of the fuzzy sets of first input parameter p0db of the model for q3 deviation 
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6. THE ANALYSIS OF THE MODEL ACCURACY AND THE RESULTS OF SIMULATION EXPERIMENTS 

Finally, the verification of the generated fuzzy models was performed. To do it, for each 

model the following measures of the operation quality were determined: the relative 

minimum error, Eq. (27), the relative maximum error, Eq. (28), the relative mean error, 

Eq. (29), the relative mean square error, Eq. (30), and the value of the correlation function, 

Eq. (31). The values of the measures were determined taking into consideration the values 

calculated using the real collected data and the values calculated by the models for testing 

data set. 
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where: dqmin - the relative minimum error [%], dqr(mmci) - the value of the output 

parameter of the model for i-th major measurement collection, dqe(mmci) - the value of 

the output parameter of the object for i-th major measurement collection, mmci - i-th 

major measurement collection, ammc - the amount of major measurement collections. 
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where: dqmax - the relative maximum error [%]. 
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where: dqmean - the relative mean error [%]. 
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where: dq
2

mean - the relative mean square error [%]. 
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where: corr(y) - the value of the correlation function [%]. 

The values of the operation quality measures of each model are presented in Table 7. 

Table 7 The values of the operation quality measures of the models 

Measure of the operation quality  model - 

deviation q3 

model - 

deviation q4 

model - 

deviation q5 

model – 

deviation q8 

Relative minimum error [%] 0.2498 1.2772 1.2606 1.3084 

Relative maximum error [%] 155.3265 92.9864 92.0827 84.574 

Relative mean error [%] 13.8125 5.129 9.4532 11.4643 

Relative mean square error [%] 1.1368 0.6205 0.8314 0.9089 

Correlation function value [%] 63.2596 60.7267 60.7023 82.1394 
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Analyzing the calculated values of the operation quality measures of the models of the 

working parameters time histories influence on the values of the system features it was 

decided that the proposed method of the models generation is efficient enough to apply it 

to the conducted research. It was also stated that the loss of the amount of the operational 

potential would be calculated as a length of the vector given by Eq. (3) and the estimated 

changes of the deviations values would be the vector components. 

In order to verify the adequacy of the constructed model of the operational potential 

consumption process in case of the real complex technical system the simulation experiments 

were carried out. The experiments covered 14 days period of OP-650k-040 steam boiler 

operation. The calculations were performed for 25 selected initial states spread uniformly in the 

range of the disposed amount of the operational potential calculated for all initial states. 

The time histories of the most significant working parameters for the considered 14 days 

period and the initial values of the deviations determined on the basis of the data recorded 

during the operational tests were used as input values of the models of the working 

parameters time histories influence on the values of the system features. As a result of the 

models operation the estimated values of the deviations for the end of the simulated 

operation period were obtained. Having determined real initial values of the deviations and 

estimated final values of them the estimated change of the disposed amount of the 

operational potential was calculated according to expression Eq. (3). Similarly, using real 

initial and real final values of the deviations (obtained as a result of the operational tests) the 

real change of the disposed amount of the operational potential was calculated. 

In Table 8 for each one of the 25 initial states considered during the simulation 

experiments the initial values of the deviations, the initial value of the disposed amount of 

the operational potential and real and estimated final values of the disposed amount of the 

operational potential can be found. Additionally, in the table the values of the relative 

error of the model operation calculated according to formula Eq. (32) are presented. 

 %100)( 
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
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realest

rel
Pu

PuPu
PuMErr  (32) 

where: Errrel(MPu) - the relative error of the operation of the MPu model [%], 

Puest - the change of the operational potential amount estimated by the model, Pureal - 

the real change of the operational potential amount. 

Analyzing results of the model operation in case of 25 selected periods of the OP-650k-

040 steam boiler operation it was stated that the accuracy of the estimation of the operational 

potential consumption process by the generated model is very high (up to 99%). 

Thus, it was proved that the presented model can be successfully used to estimate the 

loss of the operational potential in the case of complex technical systems. Therefore, it is 

planned to apply the proposed solution to the control of the complex technical systems 

operation in order to decrease the loss of not exploited operational potential and avoid the 

failure of the system. 
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Table 8 Results of the MPu model operation (P - disposed amount of the operational 

potential [kJ/kWh]) 

No. 

Initial values of the deviations 

[kJ/kWh] [q3;q4;q5;q8] 
Initial P Final P - 

estimated 

value 

Final P - 

real value 

Relative 

error [%] 

1. [-19.3074;-5.8577;-8.5227;-405.9765] 638.8881 128.118 120.1735 6.61 

2. [-39.0666;4.4073;56.2565;-263.0552] 490.3015 137.7455 138.8941 0.83 

3. [-27.5759;8.9035;59.6207;-223.0393] 449.131 103.6373 99.0042 4.68 

4. [-36.0886;8.9555;57.9187;-156.9477] 384.6197 111.7565 111.1584 0.54 

5. [-17.9859;4.1348;27.6282;-103.3115] 335.065 115.4199 115.7112 0.25 

6. [-13.8601;1.3529;42.9267;-90.7771] 319.9943 115.3871 114.5998 0.69 

7. [-9.9071;1.5013;44.2801;-79.7246] 308.6944 118.2544 116.392 1.60 

8. [-30.7651;11.8714;70.5773;-64.6891] 291.6223 116.3791 114.7306 1.44 

9. [-22.9398;-21.7261;36.5607;-18.2813] 255.517 114.4198 113.0098 1.25 

10. [-10.7811;-19.3661;36.2806;17.0488] 220.7192 113.5734 115.2506 1.46 

11. [-24.7443;-16.0588;62.7121;39.1986] 195.0298 112.5225 112.5837 0.05 

12. [-23.6838;-15.0915;63.2691;48.5913] 185.6962 113.0006 112.6729 0.29 

13. [-15.2574;25.7487;75.0135;70.5717] 155.21 112.9432 112.3101 0.56 

14. [-10.5887;21.7895;42.7999;78.6968] 154.5821 112.3773 111.9687 0.36 

15. [-9.8674;24.6442;44.6542;94.1526] 139.3418 99.1767 98.7857 0.40 

16. [-9.5275;25.5339;45.6591;101.7391] 131.903 94.7355 95.0247 0.30 

17. [-9.2861;25.9666;46.4051;106.8706] 126.8706 87.563 87.0652 0.57 

18. [-18.5995;9.2839;46.0432;118.2013] 120.3831 76.1608 75.7769 0.51 

19. [-7.7767;26.9908;50.5532;124.9305] 108.5901 76.0057 76.0297 0.03 

20. [-28.3647;19.5421;74.9466;130.5547] 101.4431 72.5974 72.6728 0.10 

21. [-1.2134;9.3858;70.4222;138.4202 91.0723 70.2585 70.1301 0.18 

22. [-15.15119.2709;67.0263;151.5864] 82.7258 56.9301 56.825 0.19 

23. [-0.5087;10.4719;74.4923;157.4561] 72.1249 53.7195 53.81 0.17 

24. [-0.3174;10.7947;75.6293;162.7304] 66.9231 50.0816 50.0096 0.14 

25. [-0.04222;11.2884;77.2998;170.4669] 59.3524 44.0658 43.9252 0.32 

7. SUMMARY AND CONCLUSIONS 

In the paper the studies in the field of the complex industrial technical systems 

operation and maintenance were presented. As a result of the studies the model of the 

operation process of the power boiler was prepared. Below some conclusions and 

highlights from the research can be found: 

1. The prepared model of the operational potential consumption process should be 

designed to take into consideration inaccuracy of the working parameters values 

and approximated knowledge of the technical condition of the considered object, 

2. The modeling of the operational potential consumption process is the issue when 

the adequate mathematical model does not exists and attempts of the development 

the model come across the problems arising from not enough clearly defined 

description of the process and the approximate character of the input data, 

3. The fuzzy modeling was used to develop the system model MPu of changes of 

the operational potential included in a technical object, 
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4. The task of the fuzzy MPu model creation was decomposed into creation of ncf 

fuzzy models of the influence of the working parameters time histories on the 

changes of the values of the system features, where ncf is the amount of the 

cardinal features of the system, 

5. The set of the working parameters can be very large; thus the set of the parameters of 

the highest influence on the change of the specified feature value should be defined, 

6. During the operational tests of the OP-650k-040 steam boiler the list of the most 

significant parameters in term of the operational potential changes was specified, 

7. The fuzzy models of the influence of the working parameters time histories on the 

values of the features of the considered boiler were generated using the inputs-

output samples according to the iterative method of the automatic generation of the 

Mamdani models,   

8. The quality of the models operation was verified using the set of the major 

measurement collections recorded during the conducted operational tests, 

9. Analyzing the values of the measures of the models operation quality it was 

decided that the iterative method of the models generation is efficient enough to 

implement it into the conducted research, 

10. Considering the results of the simulation experiments performed it should be 

stressed that thanks to the implementation of the developed MPu model in the 

case of the selected technical system very high accuracy (mean error about 1%) of 

the process estimation was obtained. 

The major benefit that accrues from the described method application to the complex 

technical system is the development of a very accurate model of the operational potential 

consumption process (mean efficiency about 99%) according to the universal manner. Its 

novelty consists in the universal system approach which can be used in the case of a wide 

range of the technical systems. Prior to the application of the proposed method the 

operation parameters time histories should be registered. Additionally, all cardinal 

features should be identified and their values at the beginning and the end of the operation 

parameters collecting period have to be accessible for measurement. These two elements 

are the main limitations of the described solution. 

The research on the problems of complex technical system operation and maintenance 

control will be continued. The first direction of future studies will cover the verification of the 

proposed method in the case of different technical systems. It is planned to construct the model 

of the operational potential consumption process for systems where the number of the cardinal 

features is significantly higher than four and to check the method usefulness in the case of the 

systems with a limited number of cardinal features (less than 4).  

The second issue is the application of the created model to control the complex technical 

systems operation in order to decrease the loss of not exploited operational potential and avoid 

the failure of the system. It is supposed to be achieved by using the model described in the 

paper and the reverse model of the operational potential consumption process.  
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