
FACTA UNIVERSITATIS 
Series: Mechanical Engineering Vol. 19, No 2, 2021, pp. 253 - 269  

https://doi.org/10.22190/FUME210111044B 

© 2021 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Review paper 

EXCEL VBA-BASED USER DEFINED FUNCTIONS FOR HIGHLY 

PRECISE COLEBROOK’S PIPE FLOW FRICTION 

APPROXIMATIONS: A COMPARATIVE OVERVIEW 

Dejan Brkić1, Zoran Stajić2 

1IT4Innovations, VSB – Technical University of Ostrava, Ostrava, Czech Republic 
2Research and Development Centre “IRC Alfatec”, Niš, Serbia 

Abstract. This review paper gives Excel functions for highly precise Colebrook’s pipe 

flow friction approximations developed by users. All shown codes are implemented as 

User Defined Functions – UDFs written in Visual Basic for Applications – VBA, a 

common programming language for MS Excel spreadsheet solver. Accuracy of the 

friction factor computed using nine to date the most accurate explicit approximations is 

compared with the sufficiently accurate solution obtained through an iterative scheme 

which gives satisfying results after sufficient number of iterations. The codes are given 

for the presented approximations, for the used iterative scheme and for the Colebrook 

equation expressed through the Lambert W-function (including its cognate Wright ω-

function). The developed code for the principal branch of the Lambert W-function has 

additional and more general application for solving different problems from variety 

branches of engineering and physics. The approach from this review paper automates 

computational processes and speeds up manual tasks. 

Key words: Hydraulic resistance, Colebrook flow friction, Lambert W-function, Excel 

Macro Programming, Visual Basic for Applications (VBA), User Defined 

Functions (UDFs) 

1. INTRODUCTION 

The Colebrook equation from 1939 [1], Eq. (1), is an informal standard widely accepted 

in engineering practice for calculation of turbulent Darcy’s fluid flow friction factor. It is 

an empirical equation based on an experiment with air flow through a set of smooth to fully 

rough pipes performed by Colebrook and White in 1937 [2]. The Moody diagram [3] in its 

turbulent part represents a graphical interpretation of the Colebrook equation. 

 
Received January 11, 2021 / Accepted April 08, 2021  

Corresponding author: Dejan Brkić 
IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, Czechia  

E-mails: dejan.brkic@vsb.cz, dejanbrkic0611@gmail.com 



254 D. BRKIĆ, Z. STAJIĆ 

 
1 

√f
= − 2 · log

10
(
2.51

Re
·
1 

√f
+

ε

3.71
) ≈ − 0.8686 · ln (

2.51

Re
·
1 

√f
+

ε

3.71
) (1) 

In Eq. (1), dimensionless turbulent Darcy flow friction factor is given as f, the 

dimensionless Reynolds number as Re, the dimensionless relative roughness of inner pipe 

surface as ε, while Briggsian decimal logarithm (to base 10) is given as log10 and Napierian 

natural logarithm (to base e, where e≈2.718) as ln. 

As shown in Eq. (1), the Colebrook equation is given in an implicitly entangled 

logarithmic form which cannot be solved in terms of elementary functions. It can be solved; 

1) iteratively (such solution can be treated as accurate after sufficient number of iterations) 

[4,5], or 2) using one-step approximate formulas specially developed for such purpose 

(maximal error of such formulas can be estimated in advance). Therefore, for solving the 

Colebrook equation, various explicit approximations [6-11] can be used to avoid long 

computing times caused by iterative schemes during the numerical simulations of pipelines 

for transport of various fluids [12,13]. Also, the Colebrook equation can be analytically 

expressed through the Lambert W-function [14-18], but anyway the Lambert W-function 

itself is an implicit function which can only be solved either iteratively or approximately 

using specially developed one-step formulas [19,20].  

Fast and accurate execution of codes during calculation of pipe flow friction is essential 

for calculation of pressure drop and flow rate in oil and gas industry, water distribution, in 

chemical engineering, etc. To facilitate use of the Colebrook equation in spreadsheet solver 

MS Excel [21,22], codes written in Visual Basic for Applications (VBA) based on the 

available highly precise explicit approximations [23-30] are given as User Defined 

Functions (UDFs) and compared in this review paper. Such approach automates computational 

processes and speeds up manual tasks. 

2. VISUAL BASIC FOR APPLICATIONS EXCEL USER DEFINED FUNCTIONS 

The codes for solving the Colebrook equation used in this review paper are shown 

through macros for MS Excel written in Visual Basic for Applications (VBA). In essence, 

a macro is a term that refers to a set of programming instructions that automates tasks by 

creating custom calculations that can be used repeatedly throughout workbooks and which 

can be called by the host application as User Defined Function (UDF). The VBA is closely 

related to Visual Basic programming language, but on the contrary, VBA codes can only 

run within a host application, and not as a standalone program. The here presented codes 

are compiled to a proprietary intermediate language that can be executed by MS Excel, 

which is the host application in this case. An UDF should be placed in module following 

the appropriate syntax of the VBA programming language as shown in Fig. 1. 

To prepare the UDFs for the explicit approximations of the Colebrook equation, the 

following steps in MS Excel need to be followed: 

1) Keyboard shortcut “ALT + F11” should be pressed to open the Visual Basic Editor 

(a screen similar as in Fig. 1 should appear), 

2) In the Visual Basic Editor, a Module for UDFs, should be opened using “Insert” 

button from the ribbon, and by choosing “Module” from the drop menu, 

3) In the opened module, the UDF should be written using appropriate syntax of the 

VBA programming language,  



 Excel VBA-Based User Defined Functions for Highly Precise Colebrook’s Pipe Flow Friction... 255 

4) Using “Debug” button from the ribbon, the current project should be compiled by 

choosing “Compile VBAProject” from the drop menu, and 

5) Finally, the current UDF should be saved with extension “xlam”, using “File” 

button and then “Save as” from drop menu (it will be saved by default in: 

'C:\Users\[user name]\AppData\Roaming\Microsoft\AddIns\[name of the 

document].xlam'). 

 

Fig. 1 Visual Basic Editor 

The syntax of any UDF for MS Excel written in VBA programming language has few 

main parts, such as: 

▪ Every function starts with “Function” and finishes with “End Function”, 

▪ Specific name of the function should be defined (designated by user and avoiding 

reserved names), 

▪ After the designated name of the function, inputs should be specified in parentheses, 

▪ Data type of inputs and output should be defined using “As” (the data type of other 

used parameters with “Dim” and “As”), 

▪ In the body of the function, after the part with calculation but before “End 

Function”, a return value should be assigned to the name of the function. 

▪ Like any other Excel function, an UDF can be called from any Excel cell (if it is 

properly loaded). 

The syntax of the MS Excel and of the VBA programming language are different. For 

example, in-built function which returns value for the Napierian natural logarithm, in the 

VBA programming language is “log” while in MS Excel is “ln” (“ln” is not reserved name 

in the VBA). However, until recently, reusable UDFs could be implemented only through 

scripts written using different syntax than for Excel formulas, using VBA or using 

JavaScript. Now, Excel users can use a new feature called “Lambda” which introduce the 

ability to create custom functions using Excel's formula language [31]. 



256 D. BRKIĆ, Z. STAJIĆ 

3. SOLUTIONS TO THE COLEBROOK EQUATION WITH THEIR SOFTWARE CODES 

Using iterative schemes [4,5,22], the Colebrook equation in its native implicit form can 

be solved with high accuracy after sufficient number of iterations. On the other hand, very 

accurate explicit approximations of the Colebrook equation introduce certain small error 

which can be predicted in advance [6-11] and which is analyzed in further text. 

Alternatively, the Colebrook equation can be transformed analytically in an explicit 

form through the Lambert W-function [14-18]. This approach provides the same accuracy 

as obtained through an iterative solution, but with a constraint that an overflow error can 

occur in certain computational approaches for the high values of the argument of the 

Lamber W-function if the calculation is performed as usually in a computer with standard 

registers [32,33].  

The Lambert W-function is itself an implicitly given function that needs to be further 

evaluated iteratively or using specially developed approximate formulas [34] (such solutions of 

the Lambert W-function have wide application in engineering and physics [19]). 

After thorough examination of the approximations of the Colebrook equation from available 

literature [6-11], nine most accurate explicit approximations [23-30] were selected for analysis 

and for comparisons performed in this review paper. The examined approximations are ranked 

in Table 1 in terms of 1) accuracy, and 2) time taken for execution: 

1) The relative error is calculated as │(f-fi)/fi│·100%, where fi is the friction factor 

from an iterative scheme, while f is calculated using the observed approximation.  

2) Approximations require computational resources in terms of the number of floating 

points for execution and therefore simpler approximations are faster in computer 

simulations [37-41] (speed of nine selected approximations are evaluated using 

methodology from [42,43]). Computational effort for the mathematical operations 

was determined by performing 100 million calculations for each mathematical 

operation using random input each repeated five times, with the average 

computational time recorded. The results are [44]: Addition-23.40sec, Subtraction-

27.50sec, Multiplication-36.20sec, Division-31.70sec, Squared-51.10sec, Square 

root-53.70sec, Fractional exponential-77.60sec, Napierian natural logarithm-63.00sec, 

and Briggsian decimal logarithm to base 10-78.80sec. 

Accuracy is checked using 2 Million quasi-random and as well 90 thousand and 740 

uniformly distributed samples, as in [9,23,35,36], which covers the whole domain of the 

Reynolds number, Re and of the relative roughness of inner pipe surface, ε, which are 

commonly used in engineering practice; 2320<Re<108 and 0<ε<0.05.  

Explicit approximations of the Colebrook equation should be not only accurate but also 

simple for computation (Fig. 2 shows error distribution for the four most accurate 

approximations). 

The approximations of the Colebrook equation from Table 1 are shown in further text, 

while the related algorithms and codes are given for the four most accurate approximations. 

The distribution of the maximal relative error is irregular for all available approximations of 

the Colebrook equation. 



 Excel VBA-Based User Defined Functions for Highly Precise Colebrook’s Pipe Flow Friction... 257 

 

 

 

 

Fig. 2 Distribution of the maximal relative error of the extremely accurate explicit 

approximations (the error less than 0.01%) 



258 D. BRKIĆ, Z. STAJIĆ 

Table 1 Results of accuracy and efficiency of the examined approximations with the 

relative error lower than 0.1%. 

Approximation Maximum 

relative error 

(%) 

Execution 

time (sec) 

Ratio of 

maximum 

relative error 

Ratio of 

execution time 

Praks and Brkić -sr1 [23] – Eq. (4) 0.001204 450.7 1 1.02 

Serghides [29] – Eq. (5) 0.002560 906.4 2.13 2.06 

Vatankhah [25] – Eq. (6) 0.005952 760 4.94 1.73 

Romeo et al. [28] – Eq. (7) 0.007468 817.2 6.20 1.86 

Buzzelli [27] – Eq. (8) 0.019944 667.8 16.56 1.52 

Praks and Brkić -se2 [23] – Eq. (9) 0.058517 573.9 48.60 1.30 

Offor and Alabi [26] – Eq. (10) 0.062704 477.1 52.08 1.08 

Shacham [30] – Eq. (11) 0.083068 567 68.99 1.29 

Lamri [24] – Eq. (12) 0.097438 440.2 80.93 1 
1sr - symbolic regression of the Wright ω-function, 2se - series expansion of the Wright ω-

function; Ratios are given in respect to the most accurate and fastest approximation. 

3.1. Iterative Solutions 

Iterative schemes are most suitable for the implicitly given types of equations, such as 

for the Colebrook equation [4,5]. The Lambert W-function which is used to express the 

Colebrook equation in explicit form, is also implicitly given and therefore is also suitable 

for evaluation using iterative methods [34]. 

3.1.1. Simple fixed-point iterative scheme 

The Colebrook equation for flow friction is suitable for calculation in its native form 

through an iterative method. A chosen simple starting point x0=5 for the fixed-point 

iterative scheme as from the algorithm in Fig. 3 is in the range of applicability of the 

Colebrook equation and can assure fast convergence, while the final solution can be 

reached after 2 to 11 iterations using xi = −0.8686 · ln (
2.51·xi−1

Re
+

ε

3.71
), where x =

1 

√f
. 

Yes

No

error

Yes

No

Simple fixed-point iterative scheme
 

Fig. 3 Algorithm for simple fixed-point iterative scheme for solving the Colebrook equation 



 Excel VBA-Based User Defined Functions for Highly Precise Colebrook’s Pipe Flow Friction... 259 

The VBA code for solving the Colebrook equation through simple fixed-point iterative 

scheme is given as follows: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑂𝐿𝐸𝐵𝑅𝑂𝑂𝐾𝐼𝑇𝐸(𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒, 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒) 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐷𝑖𝑚 𝑥, 𝑥𝑐𝑜𝑛𝑡 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐼𝑓 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 <  2320 𝑂𝑟 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 >  100000000# 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 <  0 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 >  0.05 𝑇ℎ𝑒𝑛 

𝐶𝑂𝐿𝐸𝐵𝑅𝑂𝑂𝐾𝐼𝑇𝐸 =  𝐶𝑉𝐸𝑟𝑟(𝑥𝑙𝐸𝑟𝑟𝑉𝑎𝑙𝑢𝑒) 
𝐸𝑥𝑖𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐸𝑛𝑑 𝐼𝑓 

𝑥𝑐𝑜𝑛𝑡 = 0 

𝑥 =  5 

𝐷𝑜 𝑈𝑛𝑡𝑖𝑙 𝐴𝑏𝑠(𝑥 −  𝑥𝑐𝑜𝑛𝑡)  <  0.000000001 

𝑥𝑐𝑜𝑛𝑡 =  𝑥 

𝑥 =  −2 / 𝐿𝑜𝑔(10)  ∗  𝐿𝑜𝑔(2.51 ∗  𝑥 / 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 +  𝐸𝑃𝑆𝐼𝐿𝑂𝑁 / 3.71) 
𝐿𝑜𝑜𝑝 

𝑥 =  𝑥 ^  − 2 

𝐶𝑂𝐿𝐸𝐵𝑅𝑂𝑂𝐾𝐼𝑇𝐸 =  𝑥 

𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

3.1.2. Lambert W-function 

To date, the only way to transform analytically the Colebrook equation from its native 

implicit form into an explicit form is through the Lambert W-function [18]. A version from 

[23,36] is given in Eq. (2), with the related algorithm in Fig. 4 and the code as follows (to 

use this code, additional UDF “LAMBERT” should be defined as explained in further text). 

 

1

√f
=

z

2.51
· (B+y)

z =
2·2.51

ln(10)

A =
Re

z
·

ε

3.71

B = ln(Re) − ln(z)
x = A + B

y = W(ex) − x }
 
 
 

 
 
 

 (2) 

Yes

No

error

Lambert W-based solution of the Colebrook equation
 

Fig. 4 Algorithm for solving the Colebrook equation expressed through the Lambert  

W-function 



260 D. BRKIĆ, Z. STAJIĆ 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑂𝐿𝐸𝐵𝑅𝑂𝑂𝐾𝐿𝐴𝑀𝐵𝐸𝑅𝑇(𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒, 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒) 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐷𝑖𝑚 𝑧, 𝐴, 𝐵, 𝑥, 𝑦, 𝑓 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐼𝑓 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 <  2320 𝑂𝑟 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 >  100000000# 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 <  0 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 >  0.05 𝑇ℎ𝑒𝑛 

𝐶𝑂𝐿𝐸𝐵𝑅𝑂𝑂𝐾𝐿𝐴𝑀𝐵𝐸𝑅𝑇 =  𝐶𝑉𝐸𝑟𝑟(𝑥𝑙𝐸𝑟𝑟𝑉𝑎𝑙𝑢𝑒) 
𝐸𝑥𝑖𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐸𝑛𝑑 𝐼𝑓 

𝑧 =  2 ∗  2.51 / 𝐿𝑜𝑔(10) 
𝐴 =  𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 ∗  𝐸𝑃𝑆𝐼𝐿𝑂𝑁 / (3.71 ∗  𝑧) 
𝐵 =  𝐿𝑜𝑔(𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆)  −  𝐿𝑜𝑔(𝑧) 
𝑥 =  𝐴 +  𝐵 

𝑦 =  𝐿𝐴𝑀𝐵𝐸𝑅𝑇(𝐸𝑥𝑝(𝑥))  −  𝑥 

𝑓 =  ((𝑧 / 2.51)  ∗  (𝐵 +  𝑦)) ^  − 2 

𝐶𝑂𝐿𝐸𝐵𝑅𝑂𝑂𝐾𝐿𝐴𝑀𝐵𝐸𝑅𝑇 =  𝑓 

𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

In some of the cases such as in [18,32], the argument of the Lambert W-function is fast-

growing and for the values of x>e709.7827, e≈2.718, an overflow error can occur [33] while 

the Colebrook equation expressed in that way cannot be solved always in a computer due 

to its limited capacity of registers (see Fig. 5). However, a version from [23,36] as given 

in Eq. (2) uses the Lambert W-function with a shifted argument which allows computation 

avoiding the explained overflow error. 

 

Fig. 5  Constraints for using the Lambert W-function for solving the Colebrook equation 

(based on [18,32]) 

The Halley iterative scheme, Eq. (3), is used here for evaluation of the principal branch 

of the Lambert W-function. The Lambert W-function function in suitable form is given as 

Li-1, with its first and second derivative given as L’i-1 and L”i-1. This solution is valid for 

real values for x>-1/e, where e≈2.718. 

To start the Halley iterative scheme for solving the principal branch of the Lambert W-

function, a simple and sufficient starting point x0=1 can be chosen, which makes the 

algorithm from Fig. 6 fast for execution. The principal branch of the Lambert W-function 

is used often in engineering and physics [19] meaning that the algorithm from Fig. 6 can 

have much wider application aside for the Colebrook equation. 



 Excel VBA-Based User Defined Functions for Highly Precise Colebrook’s Pipe Flow Friction... 261 

 

Wi(x) = Wi−1(x) −
Li−1

L′i−1−
Li−1·L"i−1
2·L′i−1

Li−1 = Wi−1(x) · e
Wi−1(x) − x = 0

L′i−1 = eWi−1(x)(Wi−1(x) + 1)

L"i−1 = e
Wi−1(x)(Wi−1(x) + 2) }

 
 

 
 

 (3) 

Yes

No
error

Yes

No

Principal branch of the Lambert W-function
 

Fig. 6 Algorithm for the principal branch of the Lambert W-function 

The code for solving the principal branch of the Lambert W-function is given as 

follows: 

Function LAMBERT(x As Double) As Double 
′ computes the principal branch for x > −Exp(−1) and for real values only 
Dim Wx,Wxcont, L, Lprim, Lsec As Double 
Dim iter As Integer 
If x <  −Exp(−1) Then 

LAMBERT =  CVErr(xlErrValue) 
Exit Function 

End If 
Wx =  1 

Do Until Abs(Wxcont −  Wx)  <  0.000000001 

Wxcont =  Wx 
L =  Wx ∗  Exp(Wx) –  x 
Lprim =  Exp(Wx) ∗  (Wx +  1) 
Lsec =  Exp(Wx) ∗  (Wx +  2) 
Wx =  Wx −  L / (Lprim − (L ∗  Lsec / (2 ∗  Lprim))) 
Loop 

LAMBERT =  Wx 
End Function 

3.2. Explicit Approximations of the Colebrook Equation 

Explicit approximations of the Colebrook equation which introduce a maximal relative 

error less than 0.1% are given in Table 1. Four of them, Praks and Brkić based on symbolic 

regression and on the Wright ω-function [23], Serghides [29], Vatankhah [25] and Romeo 

et al. [28], introduce a relative error of less than 0.01% and can be classified as extremely 

accurate, while those five, Buzzelli [27], Praks and Brkić based on series expansion of the 



262 D. BRKIĆ, Z. STAJIĆ 

Wright ω-function [23], Offor and Alabi [26], Shacham [30] and Lamri [24], with the 

maximal relative error between 0.01% and 0.1% can be classified as very accurate 

approximations. 

Algorithms and VBA codes are given here only for extremely accurate approximations 

while coding of the further approximations is not shown [44]. 

3.2.1. Praks and Brkić approximation based on the Wright ω-function  

and symbolic regression 

Praks and Brkić approximation [23], given in Eq. (4) with the algorithm in Fig. 7, is 

based on the Wright ω-function and on symbolic regression. The Wright ω-function is a 

cognate of the Lambert W-function where W(ex)-x=ω(x)-x, which is used to eliminate fast-

growing term ex from calculation. The shown approximation y of ω(x)-x is very accurate 

within the domain valid for the Colebrook equation, i.e., between 7.51<x<619 (symbolic 

regression is used to approximate ω(x)-x in this domain). 

 

1

√f
≈ 0.8685972 · (B + y)

A ≈
Re·ε

8.0897

B ≈ ln(Re) −0.779626
x ≈ A + B
C ≈ ln(x)

y ≈
C

x−0.5588·C+1.2079
− C }

 
 
 

 
 
 

 (4) 

Yes

No

error

Praks and Brkić (symbolic regression) - Eq. (4)
 

Fig. 7 Algorithm for the Praks-Brkić (symbolic regression) approximation 

  



 Excel VBA-Based User Defined Functions for Highly Precise Colebrook’s Pipe Flow Friction... 263 

The VBA code based on algorithm from Fig. 7 is given as: 

Function PRAKSBRKIC(REYNOLDS As Double, EPSILON As Double) As Double 
Dim A, B, x, c, y, f As Double 
If REYNOLDS <  2320 Or REYNOLDS >  100000000# Or EPSILON <  0 Or EPSILON >  0.05 Then 

PRAKSBRKIC =  CVErr(xlErrValue) 
Exit Function 

End If 
A =  REYNOLDS ∗  EPSILON / 8.0897 

B =  Log(REYNOLDS) −  0.779626 

x =  A +  B 

C =  Log(x) 
y =  C / (x −  0.5588 ∗  C +  1.2079) −  C 

f =  (0.8685972 ∗  (B +  y)) ^ − 2 

PRAKSBRKIC =  f 
End Function 

3.2.2. Serghides approximation 

The Serghides approximation [29] is based on Steffensen iterative scheme [4], and the 

shown version, Eq. (5) is improved by genetic algorithms [35,45,46]. It is given in Eq. (5), 

with related algorithm in Fig. 8. 

 

1

√f
≈ A −

(B−A)2

C−2·B+A

A ≈ −0.8686 · ln (
ε

3.71
+

12.585

Re
)

B ≈ −0.8686 · ln (
ε

3.71
+

2.51·A

Re
)

C ≈ −0.8686 · ln (
ε

3.71
+

2.51·B

Re
)}
  
 

  
 

 (5) 

Yes

No

error

Serghides - Eq. (5)
 

Fig. 8 Algorithm for the Serghides approximation 

  



264 D. BRKIĆ, Z. STAJIĆ 

The VBA code based on algorithm from Fig. 8 is given as: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆𝐸𝑅𝐺𝐻𝐼𝐷𝐸𝑆(𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒, 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒) 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐷𝑖𝑚 𝐴, 𝐵, 𝐶, 𝑓, 𝑙𝑛 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐼𝑓 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 <  2320 𝑂𝑟 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 >  100000000# 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 <  0 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 >  0.05 𝑇ℎ𝑒𝑛 

𝑆𝐸𝑅𝐺𝐻𝐼𝐷𝐸𝑆 =  𝐶𝑉𝐸𝑟𝑟(𝑥𝑙𝐸𝑟𝑟𝑉𝑎𝑙𝑢𝑒) 

𝐸𝑥𝑖𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐸𝑛𝑑 𝐼𝑓 

𝑙𝑛 =  2 / 𝐿𝑜𝑔(10) 
𝐴 =  −𝑙𝑛 ∗  𝐿𝑜𝑔(𝐸𝑃𝑆𝐼𝐿𝑂𝑁 / 3.71 +  12.585 / 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆) 
𝐵 =  −𝑙𝑛 ∗  𝐿𝑜𝑔(𝐸𝑃𝑆𝐼𝐿𝑂𝑁 / 3.71 +  2.51 ∗  𝐴 / 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆) 
𝐶 =  −𝑙𝑛 ∗  𝐿𝑜𝑔(𝐸𝑃𝑆𝐼𝐿𝑂𝑁 / 3.71 +  2.51 ∗  𝐵 / 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆) 
𝑓 =  𝐴 − (𝐵 −  𝐴) ^ 2 / (𝐶 −  2 ∗  𝐵 +  𝐴) 
𝑓 =  𝑓 ^  − 2 

𝑆𝐸𝑅𝐺𝐻𝐼𝐷𝐸𝑆 =  𝑓 

𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

3.2.3. Vatankhah approximation 

The Vatankhah approximation [25] is given in Eq. (6) with the related algorithm in Fig. 

9 (few versions of this approximation are available in [25], where for one of those 

approximations, Brkić and Praks [36] estimate its maximal relative error of no more than 

0.0028%). This approximation is related to [47,48]. 

 

1

√f
≈ 0.8686 · ln (

0.3984·Re

(0.8686·A)
A

A+B

)

A ≈ 0.12363 · Re · ε + ln(0.3984 · Re)

B ≈ 1 +
1

1+A

0.52·ln(0.8686·A)
−

A

1+A }
 
 

 
 

 (6) 

Yes

No

error

Vatankhah - Eq. (6)
 

Fig. 9 Algorithm for the Vatankhah approximation 

  



 Excel VBA-Based User Defined Functions for Highly Precise Colebrook’s Pipe Flow Friction... 265 

The VBA code based on algorithm from Fig. 9 is given as: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑉𝐴𝑇𝐴𝑁𝐾𝐻𝐴𝐻(𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒, 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒) 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐷𝑖𝑚 𝐴, 𝐵, 𝑓, 𝑙𝑛 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐼𝑓 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 <  2320 𝑂𝑟 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 >  100000000# 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 <  0 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 >  0.05 𝑇ℎ𝑒𝑛 

𝑉𝐴𝑇𝐴𝑁𝐾𝐻𝐴𝐻 =  𝐶𝑉𝐸𝑟𝑟(𝑥𝑙𝐸𝑟𝑟𝑉𝑎𝑙𝑢𝑒) 
𝐸𝑥𝑖𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐸𝑛𝑑 𝐼𝑓 

𝑙𝑛 =  2 / 𝐿𝑜𝑔(10) 
𝐴 =  0.12363 ∗  𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 ∗  𝐸𝑃𝑆𝐼𝐿𝑂𝑁 +  𝐿𝑜𝑔(0.3984 ∗  𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆) 
𝐵 =  ((1 +  𝐴) / (0.52 ∗  𝐿𝑜𝑔(𝑙𝑛 ∗  𝐴)))  −  (𝐴 / (1 +  𝐴)) 
𝐵 =  1 + (1 / 𝐵) 
𝑓 =  𝑙𝑛 ∗  𝐿𝑜𝑔(0.3984 ∗  𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 / ((𝑙𝑛 ∗  𝐴) ^ (𝐴 / (𝐴 +  𝐵)))) 
𝑓 =  𝑓 ^  − 2 

𝑉𝐴𝑇𝐴𝑁𝐾𝐻𝐴𝐻 =  𝑓 

𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

3.2.4. Romeo et al. approximation 

The Romeo et al. approximation [28] is given in Eq. (7) with the related algorithm in 

Fig. 10. Eq. (7) is improved by genetic algorithms [35,45,46]. 

 

1

√f
≈ −0.8686 · ln (

ε

3.7106
−

5·B

Re
)

A ≈ 0.4343 · ln ((
ε

7.646
)
0.9685

+ (
4.9755

206.2795+Re
)
0.8759

)

B ≈ 0.4343 · ln (
ε

3.8597
−

4.795·A

Re
) }

 
 

 
 

 (7) 

Yes

No

error

Romeo et al. - Eq. (7)
 

Fig. 10 Algorithm for the Romeo et al. approximation 

The VBA code based on algorithm from Fig. 10 is given as: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑅𝑂𝑀𝐸𝑂(𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒, 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒) 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐷𝑖𝑚 𝐴, 𝐵, 𝑓, 𝑙𝑛 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐼𝑓 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 <  2320 𝑂𝑟 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆 >  100000000# 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 <  0 𝑂𝑟 𝐸𝑃𝑆𝐼𝐿𝑂𝑁 >  0.05 𝑇ℎ𝑒𝑛 

𝑅𝑂𝑀𝐸𝑂 =  𝐶𝑉𝐸𝑟𝑟(𝑥𝑙𝐸𝑟𝑟𝑉𝑎𝑙𝑢𝑒) 
𝐸𝑥𝑖𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐸𝑛𝑑 𝐼𝑓 

𝑙𝑛 =  1 / 𝐿𝑜𝑔(10) 
𝐴 =  𝑙𝑛 ∗  𝐿𝑜𝑔((𝐸𝑃𝑆𝐼𝐿𝑂𝑁 / 7.646) ^ 0.9685 + (4.9755 / (206.2975 +  𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆)) ^ 0.8759) 
𝐵 =  𝑙𝑛 ∗  𝐿𝑜𝑔((𝐸𝑃𝑆𝐼𝐿𝑂𝑁 / 3.8597)  − (4.795 ∗  𝐴 / 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆)) 
𝑓 =  −2 ∗  𝑙𝑛 ∗  𝐿𝑜𝑔((𝐸𝑃𝑆𝐼𝐿𝑂𝑁 / 3.7106)  −  5 ∗  𝐵 / 𝑅𝐸𝑌𝑁𝑂𝐿𝐷𝑆) 
𝑓 =  𝑓 ^  − 2 

𝑅𝑂𝑀𝐸𝑂 =  𝑓 

𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 



266 D. BRKIĆ, Z. STAJIĆ 

3.2.5. Buzzelli approximation 

The Buzzelli approximation [27] is given in Eq. (8). 

 

1

√f
≈ A − (

A+0.8686·ln(
B

Re
)

1+
2.1018

B

)

A ≈
0.7314·ln(Re)−1.3163

1.0025+1.2435·√ε

B ≈
ε

3.71
· Re + 2.51 · A }

 
 

 
 

 (8) 

3.2.6. Praks and Brkić approximation based on the Wright ω-function  

and series expansion 

The Praks and Brkić approximation [23] are based on the Wright ω-function and on its 

series expansion. It is given in Eq. (9). 

 

1

√f
≈ 0.8686 · (B + y)

A ≈
Re·ε

8.0897

B ≈ ln(Re) −0.779626
x ≈ A + B
C ≈ ln(x)

y ≈ C · (
1

x−1
+

C−2

2·x2
) −  0.0014}

 
 
 

 
 
 

 (9) 

3.2.7. Offor and Alabi approximation 

The Offor and Alabi approximation [26] is given in Eq. (10). 

 

1

√f
≈ −0.8686 · ln (

ε

3.71
−

1.975·A

Re
)

A ≈ ln ((
ε

3.93
)
1.092

+
7.627

Re+395.9
)
} (10) 

3.2.8. Shacham approximation 

The Shacham approximation [30] is given in Eq. (11) and is known also as Zigrang and 

Sylvester approximation [49]. 

 

1

√f
≈ −08691 · ln (

ε

3.7027
+

5.0605·B

Re
)

A ≈ 0.4343 · ln (
ε

3.7027
+

12.543

Re
)

B ≈ 0.4343 · ln (
ε

3.7027
+

5.0605·A

Re
) }
 
 

 
 

 (11) 

3.2.9. Lamri approximation 

The Lamri approximation [24] is given in Eq. (12). 



 Excel VBA-Based User Defined Functions for Highly Precise Colebrook’s Pipe Flow Friction... 267 

 

1

√f
≈ A + 0.8686 · (

0.8686

B
− 1) · ln(B)

A ≈ 0.8686 · ln (
Re

2.51
)

B ≈ A +
Re·ε

9.3125 }
 
 

 
 

 (12) 

4. CONCLUSIONS 

Nine explicit approximations of the Colebrook equation are examined in this review paper. 

They are divided in two groups: 1) Extremely accurate approximations with the relative error 

of no more than 0.01% and 2) Very accurate approximations with the relative error between 

0.01% and 0.1%. The most complex approximation is executed using the here presented VBA-

Excel code only 2.06 times slower compared with the code for the simplest approximation of 

nine presented in this review paper. Therefore, using balance between the smallest relative error 

and the speed of execution in computers as a criterion for choosing the appropriate 

approximation for use in large computing simulations, the Praks and Brkić approximation [23] 

based on the Wright ω-function and on symbolic regression, given in this review paper in Eq. 

(4), is the most suitable and can be recommended for use. Almost equally suitable are 

approximations by Serghides [29], Vatankhah [25], and Romeo et al. [28]. 

UDFs written in the VBA, a common programming language for MS Excel spreadsheet 

solver prepared for the presented approximations to the Colebrook equation are suitable 

for use of those engineers who use spreadsheet solvers in their everyday work. Also, the 

shown UDF for the principal branch of the Lambert W-function [50] can find much wider 

use in engineering than those for solving of the Colebrook equation. 

Acknowledgement: The authors acknowledge a support from the Technology Agency of the Czech 

Republic through the project CEET –“Center of Energy and Environmental Technologies” TK03020027 

and the Ministry of Education, Science, and Technological Development of the Republic of Serbia. 

REFERENCES  

1. Colebrook, C.F., 1939, Turbulent flow in pipes, with particular reference to the transition region between 

the smooth and rough pipe laws, Journal of the Institution of Civil Engineers, 11(4), pp. 133-156. 

2. Colebrook, C.F., White, C.M., 1937, Experiments with fluid friction in roughened pipes, Proceedings of 
the Royal Society of London. Series A-Mathematical and Physical Sciences, 161(906), pp. 367-381.  

3. Moody, L., 1944, Friction factors for pipe flow, Transactions of the A.S.M.E., 66(8), pp. 671–684. 
4. Praks, P., Brkić, D., 2018, Choosing the optimal multi-point iterative method for the Colebrook flow 

friction equation, Processes, 6(8), 130. 

5. Praks, P., Brkić, D., 2018, Advanced iterative procedures for solving the implicit Colebrook equation for 
fluid flow friction, Advances in Civil Engineering, 2018, 5451034. 

6. Pimenta, B.D., Robaina, A.D., Peiter, M.X., Mezzomo, W., Kirchner, J.H., Ben, L.H., 2018, Performance 

of explicit approximations of the coefficient of head loss for pressurized conduits, Revista Brasileira de 
Engenharia Agrícola e Ambiental, 22(5), pp. 301-307. 

7. Winning, H.K., Coole, T., 2013, Explicit friction factor accuracy and computational efficiency for 

turbulent flow in pipes, Flow, Turbulence and Combustion, 90(1), pp. 1-27. 
8. Brkić, D., 2012, Determining friction factors in turbulent pipe flow, Chemical Engineering (New York), 

119, pp. 34-39.  

9. Brkić, D., 2011, Review of explicit approximations to the Colebrook relation for flow friction, Journal of 
Petroleum Science and Engineering, 77(1), pp. 34-48. 



268 D. BRKIĆ, Z. STAJIĆ 

10. Zigrang, D.J., Sylvester, N.D., 1985, A review of explicit friction factor equations, Journal of Energy 
Resources Technology, 107(2), pp. 280-283. 

11. Gregory, G.A., Fogarasi, M., 1985, Alternate to standard friction factor equation, Oil & Gas Journal, 

83(13), pp. 120-127. 
12. Zeyu, Z., Junrui, C., Zhanbin, L., Zengguang, X., Peng, L., 2020, Approximations of the Darcy–Weisbach 

friction factor in a vertical pipe with full flow regime, Water Supply, 20(4), pp. 1321-1333. 

13. Niazkar, M., Eryılmaz Türkkan, G., 2021, Application of third-order schemes to improve the convergence 
of the Hardy Cross method in pipe network analysis, Advances in Mathematical Physics, 2021, 6692067. 

14. Praks, P., Brkić, D., 2020, Suitability for coding of the Colebrook’s flow friction relation expressed through 

the Wright ω-function, Reports in Mechanical Engineering, 1(1), pp. 174-179. 

15. Brkić, D., 2012, Lambert W function in hydraulic problems, Mathematica Balkanica (New Series), 26(3-

4), pp. 285-292. 

16. Viccione, G., Tibullo, V., 2012, An effective approach for designing circular pipes with the Colebrook-
White formula, American Institute of Physics Conference Proceedings, 1479(1), pp. 205-208. 

17. Brkić, D., 2011, W solutions of the CW equation for flow friction, Applied Mathematics Letters, 24(8), pp. 

1379-1383. 
18. Keady, G., 1998, Colebrook-White formula for pipe flows, Journal of Hydraulic Engineering, 124(1), pp. 

96-97. 

19. Hayes, B., 2005, Why W? American Scientist, 93(2), pp. 104-108. 
20. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E., 1996, On the LambertW function. 

Advances in Computational mathematics, 5(1), pp. 329-359. 

21. Alfaro-Guerra, M., Guerra-Rojas, R., Olivares-Gallardo, A., 2020. Evaluación de la profundidad de 
recursión de la solución analítica de la ecuación de Colebrook-White en la exactitud de la predicción del 

factor de fricción, Ingeniería, Investigación y Tecnología, 21(4), Epub 20-Nov-2020. 

22. Brkić, D., 2017, Solution of the implicit Colebrook equation for flow friction using Excel, Spreadsheets in 
Education, 10(2). 4663. 

23. Praks, P., Brkić, D., 2020, Review of new flow friction equations: Constructing Colebrook explicit 

correlations accurately, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 
36(3), 41. 

24. Lamri, A.A., 2020, Discussion of “Approximate analytical solutions for the Colebrook equation”, Journal 

of Hydraulic Engineering, 146(2), 07019012. 
25. Vatankhah, A.R., 2018, Approximate analytical solutions for the Colebrook equation, Journal of Hydraulic 

Engineering, 144(5), 06018007. 

26. Offor, U.H., Alabi, S.B., 2016, An accurate and computationally efficient explicit friction factor model, 
Advances in Chemical Engineering and Science, 6(3), pp. 237-245. 

27. Buzzelli, D., 2008, Calculating friction in one step, Machine Design 80(12), pp. 54–55. 

28. Romeo, E., Royo, C., Monzón, A., 2002, Improved explicit equations for estimation of the friction factor 
in rough and smooth pipes, Chemical Engineering Journal, 86(3), pp. 369-374. 

29. Serghides, T.K., 1984, Estimate friction factor accurately, Chemical Engineering (New York), 91(5), pp. 
63–64. 

30. Schorle, B.J., Churchill, S.W., Shacham, M., 1980, Comments on: “An explicit equation for friction factor 

in pipe”, Industrial & Engineering Chemistry Fundamentals, 19(2), pp. 228–230. 
31. Gross, C.J., Campbell, J., Becker, A.J., Russo, C.V. Microsoft Technology Licensing LLC, 2020, 

Automatically creating lambda functions in spreadsheet applications, U.S. Patent Appl. 16/024,580. 

32. Sonnad, J.R., Goudar, C.T., 2004, Constraints for using Lambert W function-based explicit Colebrook–
White equation, Journal of Hydraulic Engineering, 130(9), pp. 929-931. 

33. Brkić, D., 2012, Comparison of the Lambert W‐function based solutions to the Colebrook equation, 

Engineering Computations, 29(6), pp. 617–630. 
34. Barry, D.A., Parlange, J.Y., Li, L., Prommer, H., Cunningham, C.J., Stagnitti, F., 2000, Analytical 

approximations for real values of the Lambert W-function, Mathematics and Computers in Simulation, 

53(1-2), pp. 95-103. 
35. Brkić, D., Ćojbašić, Ž., 2017, Evolutionary optimization of Colebrook’s turbulent flow friction 

approximations, Fluids, 2(2), 15. 

36. Brkić, D., Praks, P., 2019, Accurate and efficient explicit approximations of the Colebrook flow friction 
equation based on the Wright ω-function. Mathematics, 7(1), 34. 

37. Olivares, A., Guerra, R., Alfaro, M., Notte-Cuello, E., Puentes, L., 2019, Evaluación experimental de 

correlaciones para el cálculo del factor de fricción para flujo turbulento en tuberías cilíndricas, Revista 
Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 35(1), 15. 



 Excel VBA-Based User Defined Functions for Highly Precise Colebrook’s Pipe Flow Friction... 269 

38. Mileikovskyi V., Tkachenko T., 2020, Precise explicit approximations of the Colebrook-White equation 
for engineering systems, Proceedings of EcoComfort, Lecture Notes in Civil Engineering 

39. Muzzo L.E., Pinho D., Lima L.E.M., Ribeiro L.F. 2019, Accuracy/speed analysis of pipe friction factor 

correlations, Proceedings of INCREaSE 2019 
40. Biberg, D., 2017, Fast and accurate approximations for the Colebrook equation, Journal of Fluids 

Engineering, 139(3), 031401. 

41. Clamond, D., 2009. Efficient resolution of the Colebrook equation, Industrial & Engineering Chemistry 
Research, 48(7), pp. 3665-3671. 

42. Winning, H.K., Coole, T., 2015, Improved method of determining friction factor in pipes, International 

Journal of Numerical Methods for Heat & Fluid Flow, 25(4), pp. 941–949. 

43. Pérez-Pupo, J.R., Navarro-Ojeda, M.N., Pérez-Guerrero, J.N., Batista-Zaldívar, M.A., 2020, On the explicit 

expressions for the determination of the friction factor in turbulent regime, Revista Mexicana de Ingeniería 

Química, 19(1), pp. 313-334. 
44. Brkić, D., Praks, P., 2019, What can students learn while solving Colebrook’s flow friction equation? 

Fluids, 4(3), 114. 

45. Ćojbašić, Ž., Brkić, D., 2013, Very accurate explicit approximations for calculation of the Colebrook 
friction factor, International Journal of Mechanical Sciences, 67, pp. 10-13.  

46. Petrović, G., Mihajlović, J., Ćojbašić, Ž., Madić, M., Marinković, D., 2019, Comparison of three fuzzy 

MCDM methods for solving the supplier selection problem, Facta Universitatis-Series Mechanical 
Engineering, 17(3), pp. 455-469. 

47. Sonnad, J.R., Goudar, C.T., 2006, Turbulent flow friction factor calculation using a mathematically exact 

alternative to the Colebrook–White equation, Journal of Hydraulic Engineering, 132(8), pp. 863-867. 
48. Mikata, Y., Walczak, W.S., 2016, Exact analytical solutions of the Colebrook-White equation, Journal of 

Hydraulic Engineering, 142(2), 04015050. 

49. Zigrang, D.J., Sylvester, N.D., 1982, Explicit approximations to the solution of Colebrook's friction factor 
equation, AIChE Journal, 28(3), pp. 514-515. 

50. Kesisoglou, I., Singh, G., Nikolaou, M., 2021, The Lambert function should be in the engineering 

mathematical toolbox, Computers & Chemical Engineering, 148, 107259. 


