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Abstract. Forced vibration of non-uniform beam with nonlinear boundary condition is 

studied in this paper by proposing an iterative model combining Adomian Decomposition 

Method and modal analysis. An exponentially tapered beam with a hardening nonlinearity 

spring boundary is simulated as a case study. The model accuracy is proved by comparing 

iteration results and analysis solutions with linear and weakly nonlinear boundary 

conditions. Sin-weep nonlinear frequency spectrum is then obtained by the proposed model. 

The influence of boundary nonlinearity on the vibration response of non-uniform beam is 

analyzed. And the effect of different excitation amplitudes on nonlinearity in the vibration 

response is studied. The mathematical model and numerical solutions proposed in this 

paper can be used to solve and analysis broad vibration problems on general non-uniform 

beams with different nonlinear boundary conditions under various excitations. 

Key words: Nonlinear boundary, Non-uniform beam, Iterative method, Adomian 

Decomposition Method, Duhamel integral, Vibration characteristics 

1. INTRODUCTION 

In practical engineering applications, non-uniform beam structures, including functionally 

graded material (FGM) beam structures are widely used because they can optimize weight and 

change strength by changing cross-sectional area and material properties. Over the years, many 

experts and scholars have studied the dynamics of non-uniform beams [1-4], including 

vibration characteristic analysis (natural frequency and modal shape solution) and vibration 

utilization (energy harvester and stability analysis) [5-9]. At the same time, the dynamics of 

structures with nonlinear boundary (including multi segment linear boundary condition) is a hot 

topic that has been studied in recent years. In real life, spring [10,11], rubber bearing [12,13], 
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concrete and elastic material and foundation [14] and soil [15,16] all have nonlinear 

characteristics, which have been taken into account in the static analysis of structures, but the 

nonlinearity of boundary is usually ignored in the dynamic analysis of structures. For the 

vibration governing equation of beam structure, the boundary condition determines the result of 

solution. In order to obtain more accurate structural dynamic characteristics, it is necessary to 

consider the nonlinearity of boundary condition, so it is meaningful to study the dynamic 

characteristics of non-uniform beam structure with nonlinear boundary. 

At present, there are many methods to solve the dynamic problems of uniform beam 

structure with nonlinear boundary condition. Iterative method is one of the effective methods. 

Ma and Silva solved the fourth order differential vibration equation of uniform beam with 

nonlinear boundary by iterative method [17]. Sun and Wang studied the existence of monotone 

positive solutions for a class of elastic beam equations with nonlinear boundary conditions by 

monotone iterative method [18]. Dang and Huong reduced the nonlinear fourth-order problem 

to a series of second-order linear problems with linear boundary conditions, and proposed an 

iterative method for solving the fourth-order nonlinear equations of beam structures with 

nonlinear boundary conditions [19]. Liu and Li proposed a fast iterative method to transform 

ordinary differential equations into integral equations to solve nonlinear beam equations with 

nonlinear moment boundary conditions [20]. Alves et al. studied the existence of monotone 

positive solutions for a class of beam equations with nonlinear boundary conditions by 

monotone iterative method [21]. At present, the iterative method to solve the dynamic problem 

of uniform beam structure with nonlinear boundary condition is to solve the nonlinear 

equations about deflection. The deflection here has no practical physical significance, and it is 

more about solving a mathematical problem. In addition to the iterative method, the 

reproducing kernel method and the expansion method can be used to solve the nonlinear 

boundary problems of beam structures. In [22] and [23], the analytic approximate solutions of a 

class of fourth order differential equations with nonlinear boundary conditions are studied by 

using the iterative reproducing kernel method and reproducing kernel Hilbert space method, 

respectively. Geng and Cui obtained a series solution to solve the singular nonlinear 

second-order periodic boundary value problem in the reproducing kernel space [24]. Sedighi et 

al. redefined the preloading nonlinearity as the boundary condition of cantilever beam with a 

new exact equivalent function (EF) of preloading nonlinearity, and obtained the corresponding 

analytical solution by using the parameter-expansion method (PEM) [25]. Li and Zhang 

studied the existence and uniqueness of monotone positive solutions for a class of elastic beam 

equations with nonlinear boundary conditions based on a new fixed point theorem of 

generalized concave operators [26]. Sedighi et al. used the newly introduced equivalent 

function to model the preloaded nonlinear boundary conditions of the beam, and obtained the 

analytical solution of the nonlinear vibration equation of the beam by He’s parameter 

expanding method [27]. Wang et al. considered the nonlinear fourth-order two-point boundary 

value problem (BVP) of elastic beam equation, and studied the existence, nonexistence and 

uniqueness of convex monotone positive solution of elastic beam equation with parameter   

by using the fixed point theorem of cone expansion [28]. In addition to the above methods, 

there are also a series of methods to solve the dynamic problems of uniform beam with 

nonlinear boundary. Song uses the theorem of infinitely many critical points to study the 

existence of infinitely many solutions to the boundary value problem of elastic beam deflection 

on a fourth-order nonlinear elastic foundation that depends on two real parameters [29]. Mao et 

al. studied the nonlinear response of flexible structures with nonlinear general support 

conditions by using the modal revision method [30]. Rahman et al. studied the forced nonlinear 
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vibration of Euler Bernoulli beam on nonlinear elastic foundation by using the improved 

multilevel residual harmonic balance method [31]. Li and Xu proposed an accurate Fourier 

series method for vibration analysis of multi span beam systems under arbitrary boundary 

conditions [32]. Bai and Wang discussed the existence of positive solutions for a class of 

nonlinear fourth order beam equations by using fixed point theorem and degree theory [33]. 

Wu proposed an iterative numerical method to solve the exact forced vibration of a cracked 

beam by considering the multiple modes and bilinear characteristics of the cracked beam [34]. 

For the non-uniform beam structure with linear boundary, especially for the general 

non-uniform beam with both cross-section width and thickness changing along the beam 

length, Adomian Decomposition Method (ADM) is a very effective method to solve its 

natural frequencies and mode shape functions [5]. The specific solving process of ADM is 

to decompose the solution of the equation and express it in the form of infinite series sum 

[35]. It is not necessary to use linearization, perturbation, iteration, model simplification, 

difference method and finite element method to solve the vibration differential equation 

with nonlinear term. Keshmiri et al. has used ADM to do the research work on solving the 

nature (mode shape functions and nature frequencies) and energy harvesting of non-uniform 

beam with introducing Taylor series [5-7]. But it is hard to obtain the general vibration response 

solution of non-uniform beam with nonlinear boundary because the boundary varies with time 

during the vibration process for the nonlinear vibration system. Furthermore, the mode function 

and natural frequency also change with the boundary. Even though, there are also some 

literatures on the dynamic problem of non-uniform beam with nonlinear boundary condition. 

Based on the Hamiltonian principle, Lin derived the governing differential equations for the 

non-uniform time-varying elastic boundary conditions of the pre-twisted non-uniform beam 

with coupled bending vibration and solved them by the method of separation of variables 

[36]. Kuo and Lee et al. transformed the governing differential equations into a set of 

self-adjoint linear fourth-order ordinary differential equations with variable coefficients by 

using the perturbation method, and studied the static deflection of a general elastic 

end-constrained non-uniform beam on nonlinear elastic foundation bearing axial and transverse 

forces [37]. Lee et al. extended the Mindlin-Goodman method and used the exact solution of 

the general elastic constraint non-uniform beam given by Lee and Kuo to study the dynamic 

and static responses of the non-uniform beam with non-uniform elastic boundary conditions 

[38]. Tsiatas proposed a boundary integral equation method for solving nonlinear problems of 

non-uniform beams on nonlinear three parameter elastic foundation [39]. Jang proposed an 

analysis method of moderately large deflections, which effectively considered the geometric 

nonlinearity caused by the moderately large deflections and the non-uniformity of the beam, 

and successfully and completely solved the moderately large deflections of the infinitely 

large non-uniform beam on the base of nonlinear elasticity question [40]. Lohar et al. assumed 

that the beam is on an elastic foundation and bears uniformly distributed loads. Considering 

different boundary conditions, static and dynamic parts are used to solve the large-amplitude 

free vibration behavior of axially functionally graded beams with different tapers [41]. These 

methods are used to transform or approximate the vibration governing equations of 

non-uniform beam with nonlinear boundary. The transformation process is complex, and some 

transformed equations cannot be solved directly, so numerical approximation method have to 

be used to solve them anyway.  

From the literature review, different models and methods were proposed to study the 

vibration characteristics of uniform and non-uniform beam structure with nonlinear boundary, 

but to the best of authors’ knowledge, the solution without transforming the vibration 
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governing equation to solve the vibration response of general non-uniform beam (linearly 

or nonlinearly tapered along both width and thickness of beam cross-section) with a 

nonlinear taper function describing the variation of both width and thickness along the length 

direction (including non-uniform cylinder beam) and nonlinear boundary has not been 

proposed. In this paper, the ADM method and an iteration process are introduced to solve, 

simulate and study the vibration response of non-uniform beam with nonlinear boundary 

condition. Under solid spring properties, the vibration response of the non-uniform beam can 

be solved by ADM and Duhamel integral. In the numerical example section, the influences of 

different excitation amplitudes and frequencies on boundary nonlinearity are studied. When 

the properties of the spring are determined, the proposed iterative method can be used to 

solve the vibration response of the non-uniform beam with nonlinear boundary.  

2. THEORETICAL MODEL 

In this section, general mathematical model and numerical progress describing and 

solving the vibration of a non-uniform beam sitting on a non-linear boundary are presented. 

The nonlinear boundary condition is considered to be with multi-linear elastic properties, 

while ADM method is used to solve the natures of the non-uniformed beam with different 

linear elastic foundation, and the iteration numerical method is applied to solve the vibration 

response considering the linear boundary condition in each short time iteration step.  

2.1. Vibration model of non-uniformed beam sitting on elastic foundation 

The equation of free vibration of a non-uniform beam without considering damping is 

given below, 
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where x is the position variable along the beam length, ρ is the mass density, A(x) is the 

cross-sectional area, w(x, t) is the deflection function, t is time, E is the modulus of 

elasticity, I(x) is the second moment of area. 

The general boundary condition of the beam is defined as, 
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where 1Lk  and 2Lk  are the tension spring constants on the left end, 1Tk  and 2Tk  are the 

torsional spring constants on the right end.  

In this study, a sample non-uniform beam structure with exponentially varied circular 

cross section sitting on a nonlinear tension spring foundation is analyzed and shown in Fig. 

1. At the left fixed position, kL is a tension spring, which has a nonlinear property. Other 

non-uniform beam with general nonlinear boundary conditions can also be solved by the 

progress described below. 

With the multi-linear assumption of the non-linear spring stiffness, the vibration in each 

linear domain of kL can be solved by treating the system as a linear one. The whole 

nonlinear vibration response can be solved by iteration process with small iteration time 

step, while in each time step, the system is considered as linear with non-change spring 

stiffness constant. 

d

Left end

Free end

d

L

0
L

Lk

 

Fig. 1 Main and right views of an exponentially increasing tapered beam with nonlinear 

boundary condition 

For the above sample structure, its boundary condition can be expressed as below, 
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By using mode superposition method, w(x, t) in Eq. (1) can be decomposed into two parts, 
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where Wi(x) is the i-th mode shape and qi(t) is the i-th corresponding generalized coordinate of 

the free vibration response or external force. Substituting Eq. (6) into Eq. (1), one ordinary 

differential equation is obtained as, 
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where ωi is the i-th natural frequency. In order to solve the above equation, ADM is applied 

[5]. The operator form of the Eq. (7) is rewritten as, 
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where Lx is the fourth order differential operator. 

Lx
-1 is applied on the both sides of Eq. (8) at the same time, where Lx

-1 is the fourth-order 

integral operator. 
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where C1 to C4 are constants that can be determined by boundary conditions, the detailed 

progress defining C1-C4 can be found in [5]. 

Wi(x) is written in series form, 
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where k is the number of terms in series form. The larger the value of k is, the more accurate 

the solution is. A precise solution is often obtained with very small values of k [35]. 

Substituting Eq. (10) into Eq. (9), we have 
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For each term in the series, we can have 
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Substituting Eq. (12) and Eq. (13) into Eq. (11), the i-th mode shape function, Wi(x), can 

be obtained. With different boundary conditions and structural design, the mode shape 

function from ADM can be different and hence not given here. The natural frequency can 

be obtained by introducing the mode function into the boundary condition and solving the 
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eigenvalue problem. The detailed solving process of the mode shape functions and nature 

frequencies of the non-uniform beam with general linear boundary conditions can be found 

in references [5-7] and is hence not provided here.  

After the natures (natural frequencies and modes shapes) of the structure vibration are 

solved by free vibration analysis and ADM, the forced vibration response can be solved using 

the modal analysis. The forced vibration governing equation of non-uniform beam structure 

considering damping under action of F(x, t), which is from a base motion, Y sin(  t), is given 

below, 
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where C(x) is the strain rate damping coefficient. Y is the amplitude of the base displacement 

and   is the angular frequency of the base vibration.  

Substituting Eq. (6) into Eq. (14), the following equation can be obtained, 
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Based on the understanding from the free vibration governing equation, for the i-th 

mode of free vibration, we have 
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With the understanding from the relationship given in the above equation, both sides of 

Eq. (15) multiplied by Wj(x) (i=j) and integrated from 0 to L in space domain leads to, 
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Since in general, the damping function does not possess the orthogonality property, it is 

assumed that the structural damping is in the form of C(x)=αE where α is a constant. 

According to the orthogonality of normal vibration modes, Eq. (18) can be obtained, while 

αωi
2=2ξiωi is defined, 
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where ξi is the modal damping ratio of the corresponding i-th order natural mode. 
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Eq. (18) can be solved by Duhamel integral, and the final time domain solution for i-th 

mode is, 
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where 
id  is the damped frequency corresponding to the i-th vibration mode, 2= 1-

id i i   , 

Fi() is the force coefficient corresponding to the i-th vibration mode.  

According to Eq. (12), Eq. (13) and Eq. (19), the response of the beam structure is, 
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2.2. Iteration process considering nonlinear boundary condition 

An iteration process is proposed in this section with multi-linear assumption for the 

nonlinear foundation of non-uniform beam. It is assumed that the elastic foundation in each 

short period iteration step is linear with constant stiffness constant, while the stiffness 

constant changes between different iteration steps. The premise of iterative method is that 

at t=0 s, the initial condition of vibration is known, and there is no force applied to the beam. 

At this time, the beam is considered to be at rest, and the deflection and velocity at any 

position of the beam are, 
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The step length of each iteration is Δt=tn+1-tn, 1≤n<∞, and n is the number of iteration steps. 

The initial condition for time t1 (t1=0 s) is, 
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Because some variables, like time, vibration natural frequencies, mode shape functions, 

in each iteration step are different in the process of iteration of the nonlinear system, they 

are defined by iteration step subscripts. The subscript 1 represents these variables in the 

first time period/iteration step in period t1-t2. The subscript 2 represents these variables in 

the second time period/iteration step in period t2-t3 and so on. The subscript n represents 
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these variables in the n-th time period/iteration step in period tn-tn+1. Detailed specific 

presentation method of variables in the iteration section is shown in Table 1. i and j in Table 

1 represents the i-th and j-th vibration modes, respectively. 

Table 1 Representation of variables in the iterative process 

Time period Variable (1≤i<∞, 1≤j<∞)  
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To simulate the nonlinearity of spring stiffness, kL is divided into n sections by different 

deflection intervals at the spring boundary location. It is considered that the value of kL 

corresponding to each deflection interval is the same, and kL, the mode shape functions and 
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natural frequencies in different deflection intervals are different. By bringing each kL into 

the boundary condition, following the progress described in section 2.1, mode shape 

functions and natural frequencies can be obtained for the n-th time step (tn-tn+1) during 

iteration. The value of kL in the boundary condition of solving Wni(x) at time tn-tn+1 is the 

value of kL corresponding to the deflection at the spring boundary location, wn(x,t), x=0 for 

the sample structure shown in Fig. 1, at time tn. 

To clarify the iteration progress, we start the derivation from the second time step, t2-t3, 

while the first step vibration solutions is only from the Duhamel integral assuming the 

structure is at rest before excitation as described in Eq. (23). During the period, t2-t3, when 

the value of kL does not change from the one in the previous period, t1-t2, we have W1i(x) = 

W2i(x), 1i(x) = 2i(x), the free vibration response from the initial condition at t2 is, 
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2i
A  and 2i

B  can be obtained by the above formula, 
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During the period, t2-t3, the total vibration response is, 
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( 2 3t t t  ). (29) 

where qfree2i
(t) is i-th corresponding generalized coordinate of free vibration during t2-t3, 

qforce2i
(t) is i-th corresponding generalized coordinate of the external force induced vibration 

during t2-t3. 
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On the other hand, when the value of kL at time t2-t3 is different from that of t1-t2 with 

relative large boundary deflection, w(0, t), at t=t2 reaching to a different deflection interval, 

the corresponding vibration mode shape functions and generalized coordinates of free 

vibration at time t2-t3 also change. In order to calculate the generalized coordinates of free 

vibration at time t2-t3, the deflection function at time t2 need to be reassigned, 
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=   (30) 

where w1(x,t2) is the deflection at time t2 from the previous iteration period, t1-t2.. wfree2(x,t2) 

is the response of the free vibration at time t2, 2 ( )
i

W x  is the mode shape function of the 

structure starting at time t2, 
2 1( ) ( )

i i
W x W x , qfree2i

(t2) is the i-th generalized coordinate of 

free vibration at time t2. 

Both sides of Eq. (30) are multiplied by 2 ( )
j

W x  and integrated on 0-L giving 
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Considering the significant vibration natural frequencies and mode shapes changes due 

to the different boundary conditions with varying kL and the inevitable error in the mode 

shape functions derived by ADM method, when 
2 2( )
i

freeq t (i=1,2,3) are solved, mode shape 

functions 2 ( )
j

W x  (j=1,2,3) are introduced in Eq. (31), respectively. Through Eq. (31), if 

only the generalized coordinates of first three orders are taken consideration as an example, 

we can then obtain, 
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where  
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21
2( )freeq t , 

22
2( )freeq t  and 

23
2( )freeq t  are the first 3-th generalized coordinates of free vibration 

at time t2.  

We assume the free vibration response function during time t2-t3 to be, 
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where A2i and B2i here are determined by the initial conditions of the current iteration step 

at t=t2, 2 2( )
i

freeq t  and 
2

2

( )
i
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t t

dq t

dt
=

, which can be obtained from Eqs. (32-36). 
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 A2i and B2i can hence be obtained by the above formula, 

22 2

2 2 2 2 2

2

2

2 2 2 2 2

2

( )
(( ( ) )cos( ) ( )sin( ))

=

i ii

i i i i i i

i

i

freet

i free d d free d

t t

d

q t
e q t t q t t

dt
B

 
    



=

 + +
; (40) 

 

2 2

2 2

2

2 2 2

2

2

( ) sin( )
=

cos( )

i i

ii i

i

i

t

free d

d

q t e B t
A

t

 




 −
; (41) 

When kL changes from the previous iteration, during the second time step, t2-t3, the total 

vibration response is hence, 
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For general vibration solution during the iteration, when the time is tn-tn+1, if the value 

of kL is equal to the one in previous period tn-1-tn, the total vibration response is hence, 
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where ( )
ni

freeq t  is i-th corresponding generalized coordinate of free vibration during tn-tn+1, 

( )
ni

forceq t  is i-th corresponding generalized coordinate of the external force during tn-tn+1. 

inA  and 
inB are given as follow with known 1 ( )

in nq t−  from the previous iteration step, 
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On the other hand, if the value of kL during the time period tn-tn+1 changes from that of 

tn-1-tn, the total vibration response is, 
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Ani and Bni can be obtained by the above formula with the known vibration response, 

-1( , )n nw x t , at t=tn from the previous step, 
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where the first 3-th generalized coordinates of free vibration at time tn, ( )
ni

free nq t (i=1,2,3), 

are given as below, 
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where we have,  
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3. NUMERICAL STUDIES, RESULTS AND DISCUSSION 

As shown in Fig. 1, a non-uniform cylindrical beam with positive exponential cross-section 

variation function is chosen for numerical case studies. The length of the beam is L=0.2 m and 

the diameter of the left end of the non-uniform beam is d=0.01 m. The diameter at x position 

along the length of the beam is ( ) n xd x d e =  , with the taper ratio as n=2.0. The material of 
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the beam is 6061 aluminum alloy with the elastic modulus as E =70×109 N/m2 and the 

density as ρ=2.7×103 kg/m3. The cross-section area and bending moment of inertia are 
2( ) ( / 2)n xA x d e =   and 4( ) 1/ 64 ( )n xI x d e =   , respectively. The sampling interval is 

0.0001 s. The relationship between spring force and deflection is shown by a diagram in 

Fig. 2. In this paper, the continuous nonlinear boundary is treated as a multi- segment linear 

approximation. k1, k2, ..., in a diagram shown by Fig. 2 represent the kL values after the 

multi-linear segmentation. It is seen that the multi-linear assumption cannot present the 

exact nonlinear behavior/property of the reality nonlinear material with certain error 

leading to ‘slower’ hardening process with displacement increment. Considering certain 

number of linear segments, more obvious error can be noticed while the nonlinearity is 

more significant. However, such error can be further limited by introducing more refined 

multi-linear segments leading to more precise spring force considered during the calculation. 

In this work, we consider 10 segments for the case study to present the theory. The deflection 

intervals are determined according to the deflection range calculated by all kL values, and the 

left bound of deflection interval is defined to be smaller than the amplitude of steady state 

deflection. And it is more reasonable to define the interval according to the steady state 

amplitude to ensure that all kL values can be obtained during the vibration under harmonic 

excitation. When the deflection of the left end of the beam is greater than the maximum 

value in the interval of deflection, the elastic stiffness coefficient kL will change. There are 

many kinds of relationships between the tension (torsion) coefficient and deflection for 

different nonlinear springs, we just study one of them here.  

Deflection

S
p

ri
n

g
  
fo

rc
e

Real deflection and 

spring force curve

Deflection and spring 

force curve in calculation

k1

k2

k3

k4

k5

 

Fig. 2 Relationship of deflection and spring force 

3.1. Verification of mathematical model 

In this section, the accuracy of the proposed mathematical model is verified by using 

the iterative and non-iterative method to calculate the vibration response of non-uniform 

beam with linear boundary, and the iterative method to calculate the vibration response of 

beam with weakly nonlinear boundary defined by that kL changes within a small range 
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(kL=20000-21800 N/m). The excitation angular frequency of  =672 rad/s and the base 

motion amplitude of Y=0.005 m are chosen for the verification. For the kL values with weak 

nonlinearity, the amplitudes of steady state deflections and their corresponding sectional 

intervals are shown in Table. 2. When values of kL are different, the mode functions and 

natural frequencies of the beam are different, and the amplitudes of steady state deflections 

at left end are also different. The amplitudes of steady state deflections at left end shown in 

Table. 2 will be larger closer to resonance. Since the variation range of kL is very small, it is 

considered that the values of kL change linearly with deflections variation at the left end of 

the beam. When the deflection at the left end is larger than the corresponding range of 

sectional intervals, the value of kL will change. Vibrations of the non-uniform beam at its 

free end in time domain are shown in Fig. 3. 

Table 2 kL values, amplitudes of steady state deflection and corresponding sectional intervals  

kL values  

(N/m) 

Amplitudes of steady state 

deflections at left end (m) 

Sectional intervals of 

deflection at left end (m) 

20000 0.008154417514000 0-0.000855 

20200 0.008205248588000 0.000855-0.00171 

20400 0.008256681170000 0.00171-0.002565 

20600 0.008308729902000 0.002565-0.00343 

20800 0.008361411807000 0.00343-0.004275 

21000 0.008414724816000 0.004275-0.00513 

21200 0.008468682431000 0.00513-0.005985 

21400 0.008523295153000 0.005985-0.00684 

21600 0.008578582863000 0.0684-0.007695 

21800 0.008634553316000 0.007695- 

 

Fig. 3 Deflections of non-uniform beam solved by iterative and non-iterative method in 

time domain 
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It can be seen from Fig. 3 that the results of vibration response of non-uniform beam 

with linear boundary obtained by the iterative and non-iterative method are consistent with 

each other which preliminarily proves the accuracy of the iterative process. The difference 

between the vibration response of the beam with weakly nonlinear boundary and that with 

linear boundary solved by the iterative method is very small, which further proves the 

correct consideration of the nonlinearity with the iterative method. 

3.2. Sin-sweep curves 

The vibration of the non-uniform beam with nonlinear boundary condition under 

different excitation frequencies are studied in this section. For the varying frequency of the 

base-motion excitation from 200 to 850 rad/s, the magnitude of the base-motion induced 

inertia force is kept equal. The kL values, the amplitudes of steady state deflections and 

their corresponding sectional intervals are the same as the values given in Table. 3. The 

value of kL is determined by the deflections at the left end and varies nonlinearly. It only 

represents one of the cases that the spring coefficient changes with the deflection. Maximum 

steady state vibration deflection at free end of non-uniform beam under a harmonic sweep test 

with different excitation frequencies are shown in Fig. 4. 

Table 3 kL values, amplitudes of steady state deflections and corresponding sectional intervals  

kL values  

(N/m) 

Amplitudes of steady state 

deflections at left end (m) 

Sectional intervals of 

deflection at left end (m) 

20000 0.008154417514000 0-0.002 

22759 0.008912748913000 0.002-0.004 

31594 0.012528617870000 0.004-0.006 

41120 0.020219170700000 0.006-0.008 

50863 0.026634596390000 0.008-0.01 

60702 0.017120586210000 0.01-0.012 

70591 0.010843838260000 0.012-0.014 

80511 0.007735876899000 0.014-0.016 

90450 0.005971986427000 0.016-0.018 

100402 0.004850948731000 0.018- 

It can be seen from Fig. 4 that for a beam with hardening nonlinear spring boundary (kL 

value changes following the deflection interval given in Table 3) under the increase of 

excitation frequency, the maximum steady state of the deflection will continue to increase 

and then suddenly drop. As a common nonlinear vibration phenomenon, this is because the 

natural frequencies of the beam with nonlinear boundary is varying during the vibration at 

different excitation frequencies and vibration amplitudes. Through the sin-sweep frequency 

progress, the deflection will become larger when the excitation frequency is close or equal to 

the higher natural frequency of the structure with hardening nonlinear spring boundary. 

When the excitation frequency is passing the range of the natural frequencies, the deflection 

will decrease significantly. At the same time, with the larger the excitation amplitude 

(0.0005-0.01 m), the stronger the level of the boundary nonlinearity can be noticed leading to 

wider frequency range with high vibration amplitude in the spectrum as shown in Fig. 4 

(200-550 rad/s-200-765 rad/s). 
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Fig. 4 Steady state vibration amplitude at free end of non-uniform beam under different 

excitation frequencies 

3.3. Influence of the degree of boundary nonlinearity on non-uniform beam vibration 

Based on the proposed iterative method, further studies on the vibration response of 

non-uniform beam under nonlinear boundary condition are carried on. In order to study the 

influence of boundary nonlinearity on the vibration characteristics of non-uniform beam, 

the vibration response at the free end of the beam in time and frequency domain with fixed 

spring stiffness kL of 20000 N/m (linear boundary condition), 20000-31594 N/m, 

20000-60702 N/m and 20000-90450 N/m are simulated. The excitation angular frequency 

is  =672 rad/s and the base motion amplitude is Y=0.005 m. Under this certain excitation, 

the multi-linear kL values, the amplitudes of steady state deflections at the left end of the 

beam and their corresponding sectional intervals are shown in Table. 3. The relationship 

between deflection and kL in Table. 3 is used for different degrees of nonlinear boundary. 

For kL  in the ranges of 20000-31594 N/m, 20000-60702 N/m and 20000-90450 N/m, when 

the deflection is larger than the maximum value of deflection intervals (0.006 m, 0.012 m 

and 0.018 m) during vibration, the kL  keeps unchanged.  The vibration response at free end 

of the beam is shown in Fig. 5 (normalization was done in Fig. 5 (b)). The normalization 

process is to divide the magnitude by the maximum magnitude value to make the magnitude 

between 0-1. 
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(a) 

 
(b) 

Fig. 5 Vibration response of non-uniform beam at free end with different degree of boundary 

nonlinearity ((a) time domain, (b) frequency domain) 

From Fig. 5, while the spring constant at the boundary is changing during vibration, 

compared with the linear boundary, with the increment of time, the deflection of the beam 

with nonlinear boundary will only approach a semi-steady state with variable amplitude in 

the time domain signal and clear wide bandwidth in frequency domain. This phenomenon is 

more obvious for stronger nonlinearity case with larger spring constant variation range (such 

as kL=20000-80511 N/m as given in Table 3). From the Fig. 5(b) it can be seen that for the 
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beam with kL=20000 N/m, the frequency corresponding to the first peak and second peak 

are the natural frequency and excitation frequency. For the beam with kL=20000-31594 N/m, 

20000-60702 N/m and 20000-80511 N/m, there are only one obvious peak. This is because 

the beam with linear boundary just has one natural frequency close to the excitation 

frequency. The natural frequencies of the beam with nonlinear boundary will change with 

the boundary conditions. The range of natural frequencies is relatively wide and includes 

excitation frequency, so from the Fig. 5(b), there will only be one peak at excitation frequency, 

and the peaks at natural frequencies are not very obvious. 

 

Fig. 6 Time periods of the system vibration staying at different kL values with different 

levels of boundary spring nonlinearity 

 It is also interesting to see that when ranges of kL are 20000-60702 N/m, with the chosen 

base motion excitation constants,  =672 rad/s and Y=0.005 m, the beam experiences 

relatively larger vibration amplitude. But when the range of kL becomes 20000-31594 N/m or 

20000-80511 N/m, the vibration amplitude decreases. This phenomenon is mainly due to the 

longer period of vibration close to resonance when the kL is between 20000 and 60702 N/m. 

From Table 3, it is noted that the beam steady state vibration amplitude reaches to relatively 

higher value, when the spring support stiffness, kL, is between 41120-60702 N/m leading to 

the natural frequency of the beam close to the excitation frequency,  =672 rad/s. Fig. 6 

shows the times periods of the beam vibration staying at different spring support constants in 

different nonlinearity cases (in total 0.6 s). From Fig. 6, it can be seen that the beam 

experiences longer period of vibration at kL =60702 N/m closer to resonance, when kL is 

between 20000 and 60702 N/m compared with other two cases. Although the above values 

are just obtained from one specific case study, it can be concluded that if higher boundary of 

the hardening nonlinear spring stiffness leads to the resonance or close to resonance vibration, 

the vibration amplitude of the whole system can be larger, while the exact responses will differ 

with different system constants especially different nonlinear spring intervals.  
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3.4. Influence of excitation amplitudes on boundary nonlinearity  

It is noticed that different excitation amplitudes may introduce different level of 

linearity (different nonlinearity spring stiffness variation range) in the vibration of the 

structures with nonlinear boundary. In this section, the excitation angular frequency is 

fixed as =672 rad/s. The kL values, the amplitudes of steady state deflections and their 

corresponding sectional intervals are shown in Table. 3. When the excitation amplitudes 

are 0.0005 m, 0.0025 m, 0.005 m and 0.01 m, respectively, the times periods of the beam 

vibration staying at different kL values (in total 1 s) are shown in Fig. 7. 

 

Fig. 7 Time periods of the system vibration staying at different kL values under different 

excitation amplitudes 

It can be seen from Fig. 7 that when the excitation amplitude is 0.0005 m, the beam 

vibration at the spring boundary is with extremely low amplitude (<0.002 m), and the spring 

stiffness does not change during the vibration with the linear boundary. With the increment 

of excitation amplitude, the range of the spring stiffness variation and level of the nonlinearity 

increases. When the amplitude becomes 0.01 m, the level of the boundary nonlinearity is the 

strongest covering all the kL variation range. At the same time, with different amplitudes, the 

vibration period of the beam staying at each kL is also different. Following the given the 

deflection intervals in Table 3, with different excitation amplitudes, the beam deflections at 

the spring boundary falling into each interval are different, and the vibration period on each kL 

is naturally not the same. When the spring properties are known, the vibration period of the 

beam staying at a certain kL can be controlled by changing the excitation amplitude, and then 

the vibration state of the beam can be adjusted. On the other hand, while the excitation 

frequency and amplitude are known, by adjusting the nonlinearity spring property (spring 

stiffness variation intervals), the vibration status can be controlled as well.  
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4. CONCLUSIONS 

In this paper, an iterative method is proposed to accurately solve the force vibration 

response of non-uniform beam with nonlinear boundary. Taking time node as iteration 

step, considering the change of natural frequencies and mode shape functions in the 

iteration process, the vibration response of beam in each short time period/iteration step is 

calculated by ADM and Duhamel integral considering both the transient and steady 

response. The influences of different excitation amplitudes and frequencies on boundary 

nonlinearity of non-uniform beam are studied. The results of numerical examples reveal 

the following conclusions: 

(1) Comparing iteration numerical results and analysis solutions with linear boundary 

condition, ADM method is found to be accurately combined with iteration progress solving 

non-uniform beam structural vibration with the nonlinear boundary condition, although 

inevitable minor error can be noticed in the calculated vibration mode shape functions from 

ADM leading to imperfect vibration modes’ orthogonality. 

(2) Through sin-sweep simulations, clear nonlinear spectrum with the hardening nonlinear 

boundary support can be noticed. With the increase of excitation frequency, the maximum 

steady state of the deflection will continue to increase and then suddenly drop because of 

non-resonance. Checking spectrums with different excitation amplitudes, the maximum steady 

state beam deflection will be larger and the frequency range with high vibration amplitude in 

the spectrum will be wider with the increase of the excitation amplitude.  

(3) Under the same base motion excitation, the beam vibration amplitude and the vibration 

period staying at a certain boundary stiffness range varies with different level of boundary 

nonlinearity. While the excitation frequency and amplitude are known, by adjusting the 

nonlinear spring property, the vibration status can be controlled. 

(4) Under the fixed nonlinear supported spring properties, the degree of nonlinearity 

reflected in the vibration response varies with different base excitation amplitudes. For 

vibration under harmonic excitation, the time staying at a certain range of boundary stiffness 

can be controlled by changing the base excitation amplitude. 

Acknowledgement: The study was funded by National Natural Science Foundation of China (No. 

51775097). 

REFERENCES 

1. Shabani, S., Cunedioglu, Y., 2020, Free vibration analysis of functionally graded beams with cracks, Journal of 

Applied and Computational Mechanics, 6(4), pp. 908-919. 
2. Esmaeili, M., Tadi, B.Y., 2019, Vibration and buckling analysis of functionally graded flexoelectric smart beam, 

Journal of Applied and Computational Mechanics, 5(5), pp. 900-917. 

3. Akbaş, Ş.D., 2019, Hygro-thermal nonlinear analysis of a functionally graded beam, Journal of Applied and 
Computational Mechanics, 5(2), pp. 477-485. 

4. Chen, W.R., Chen, C.S., Chang, H., 2020, Thermal Buckling Analysis of Functionally Graded Euler-Bernoulli 

Beams with Temperature-dependent Properties, Journal of Applied and Computational Mechanics, 6(3), pp. 
457-470. 

5. Keshmiri, A., Wu, N., Wang, Q., 2018, Free vibration analysis of a nonlinearly tapered cone beam by Adomian 

decomposition method, International Journal of Structural Stability and Dynamics, 18(07), 1850101. 
6. Keshmiri, A., Wu, N., Wang, Q., 2018, Vibration analysis of non-uniform tapered beams with nonlinear FGM 

properties, Journal of Mechanical Science and Technology, 32(11), pp. 5325-5337. 



 Study on Vibration Response of a Non-Uniform Beam with Nonlinear Boundary Condition 803 

 
7. Keshmiri, A., Wu, N., Wang, Q., 2018, A new nonlinearly tapered FGM piezoelectric energy harvester, 

Engineering Structures, 173, pp. 52-60. 

8. Esmailzadeh, E., Ohadi, A.R., 2000, Vibration and stability analysis of non-uniform Timoshenko beams under 

axial and distributed tangential loads, Journal of sound and vibration, 236(3), pp. 443-456. 
9. Keshmiri, A., Wu, N., 2019, Structural stability enhancement by nonlinear geometry design and piezoelectric 

layers, Journal of Vibration and Control, 25(3), pp. 695-710. 

10. Sedighi, H.M., Shirazi, K.H., 2012, A new approach to analytical solution of cantilever beam vibration with 
nonlinear boundary condition, Journal of Computational and Nonlinear Dynamics, 7(3), 034502. 

11. Wang, Y.R., Fang, Z.W., 2015, Vibrations in an elastic beam with nonlinear supports at both ends, Journal of 

Applied Mechanics and Technical Physics, 56(2), pp. 337-346. 

12. Jankowski, R., 2003, Nonlinear Rate Dependent Model of High Damping Rubber Bearing, Bulletin of 

Earthquake Engineering, 1(3), pp. 397-403. 

13. Ryan, Keri, L., Kelly, James, M., Chopra, Anil, K., 2005, Nonlinear Model for Lead–Rubber Bearings Including 
Axial-Load Effects, Journal of Engineering Mechanics, 131(12), pp. 1270-1278. 

14. Rysaeva, L.K., Korznikova, E.A., Murzaev, R.T., Abdullina, D.U., Kudreyko, A.A., Baimova, J.A., 

Lisovenko, D.S., Dmitriev, S.V., 2020, Elastic damper based on the carbon nanotube bundle, Facta 
Universitatis-Series Mechanical Engineering, 18(1), pp. 1-12. 

15. Trifunac, M.D., Todorovska, M.I., 1998, Nonlinear soil response as a natural passive isolation mechanism—the 

1994 Northridge, California, earthquake, Soil Dynamics & Earthquake Engineering, 17(1), pp. 41-51. 
16. Hartzell, S., Bonilla, L.F., Williams, R.A., 2004, Prediction of nonlinear soil effects, Bulletin of the 

Seismological Society of America, 94(5), pp. 1609-1629. 

17. Ma, T.F., Da, S.J., 2004, Iterative solutions for a beam equation with nonlinear boundary conditions of 
third order, Applied Mathematics and Computation, 159(1), pp. 11-18. 

18. Sun, J.P., Wang, X.Q., 2011, Monotone positive solutions for an elastic beam equation with nonlinear 

boundary conditions, Mathematical Problems in Engineering, 3, pp. 34-35. 
19. Dang, Q.A., Huong, N.T., 2013, Iterative Method for Solving a Beam Equation with Nonlinear Boundary 

Conditions, Adv. Numerical Analysis, pp. 44-58. 

20. Liu, C.S., Li, B.A., 2017, Fast New Algorithm for Solving a Nonlinear Beam Equation under Nonlinear 
Boundary Conditions, Ztschrift Für Naturforschung A, 72(5), pp. 397-400. 

21. Alves, E., Ma, T.F., Maurício, L.P., 2009, Monotone positive solutions for a fourth order equation with 

nonlinear boundary conditions, Nonlinear Analysis Theory Methods & Applications, 71(9), pp. 3834-3841. 
22. Geng, F., 2012, Iterative reproducing kernel method for a beam equation with third-order nonlinear 

boundary conditions, Mathematical Sciences, 6(1), pp. 1-4. 

23. Geng, F., 2009, A new reproducing kernel Hilbert space method for solving nonlinear fourth-order 
boundary value problems, Applied Mathematics & Computation, 213(1), pp. 163-169. 

24. Geng, F., Cui, M., 2007, Solving singular nonlinear second-order periodic boundary value problems in the 

reproducing kernel space, Applied Mathematics and Computation, 192(2), pp. 389-398. 
25. Sedighi, H.M., Reza, A., Zare, J., 2011, Dynamic analysis of preload nonlinearity in nonlinear beam 

vibration, Journal of Vibroengineering, 13(4), pp. 778-787. 
26. Li, S., Zhang, X., 2012, Existence and uniqueness of monotone positive solutions for an elastic beam 

equation with nonlinear boundary conditions, Computers & Mathematics with Applications, 63(9), pp. 

1355-1360. 
27. Sedighi, H.M., Shirazi, K.H., Reza, A., Zare, J., 2012, Accurate modeling of preload discontinuity in the 

analytical approach of the nonlinear free vibration of beams, Proceedings of the Institution of Mechanical 

Engineers, Part C: Journal of Mechanical Engineering Science, 226(10), pp. 2474-2484. 
28. Wang, W., Zheng, Y., Yang, H., Wang, J., 2014, Positive solutions for elastic beam equations with 

nonlinear boundary conditions and a parameter, Boundary Value Problems, 2014(1), pp. 1-17. 

29. Song, Y., 2014, A nonlinear boundary value problem for fourth-order elastic beam equations, Boundary 
Value Problems, 2014(1), 191. 

30. Mao, X.Y., Ding, H., Chen, L.Q., 2017, Vibration of flexible structures under nonlinear boundary 

conditions, Journal of Applied Mechanics, 84(11), 111006. 
31. Rahman, M., Hasan, A.S., Yeasmin, I. A., 2019, Modified Multi-level Residue Harmonic Balance Method 

for Solving Nonlinear Vibration Problem of Beam Resting on Nonlinear Elastic Foundation, Journal of 

Applied and Computational Mechanics, 5(4), pp. 627-638. 
32. Li, W.L., Xu, H., 2009, An exact fourier series method for the vibration analysis of multispan beam systems, 

Journal of computational and nonlinear dynamics, 4(2), pp. 710-733. 

33. Bai, Z., Wang, H., 2002, On positive solutions of some nonlinear fourth-order beam equations, Journal of 
Mathematical Analysis and Applications, 270(2), pp. 357-368. 



804 P. WANG, N. WU, H. LUO, Z. SUN 

 
34. Wu, N., 2015, Study of forced vibration response of a beam with a breathing crack using iteration method, 

Journal of Mechanical Science and Technology, 29(7), pp. 2827-2835. 

35. Adomian, G., 1988, A review of the decomposition method in applied mathematics, Journal of 

mathematical analysis and applications, 135(2), pp. 501-544. 
36. Kuo, Y.H., Lee, S.Y., 1994, Deflection of nonuniform beams resting on a nonlinear elastic foundation, 

Computers & structures, 51(5), pp. 513-519. 

37. Lin, S.M., 1998, Pretwisted nonuniform beams with time-dependent elastic boundary conditions, AIAA 
journal, 36(8), pp. 1516-1523. 

38. Lee, S.Y., Wang, W.R., Chen, T.Y.F., 1998, A general approach on the mechanical analysis of nonuniform 

beams with nonhomogeneous elastic boundary conditions, Journal of Vibration & Acoustics, 120(1), 164. 

39. Tsiatas, G.C., 2010, Nonlinear analysis of non-uniform beams on nonlinear elastic foundation, Acta 

Mechanica, 209(1-2), 141. 

40. Jang, T. S., 1967, A general method for analyzing moderately large deflections of a non-uniform beam: an 
infinite Bernoulli–Euler–von Kármán beam on a nonlinear elastic foundation, Acta Mechanica, 225(7), pp. 

1967-1984. 

41. Lohar, H., Mitra, A., Sahoo, S., 2016, Geometric nonlinear free vibration of axially functionally graded 
non-uniform beams supported on elastic foundation, Curved and Layered Structures, 3(1), doi: 

10.1515/cls-2016-0018. 


