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Abstract. In the present-day manufacturing environment, the modeling of a machining 

process with the help of statistical and machine learning techniques in order to 

understand the material removal mechanism and study the influences of the input 

parameters on the responses has become essential for cost optimization and effective 

resource utilization. In this paper, using a past CNC face milling dataset with 27 

experimental observations, a random forest (RF) regressor is employed to effectively 

predict the response values of the said process for given sets of input parameters. The 

considered milling dataset consists of four input parameters, i.e. cutting speed, feed 

rate, depth of cut and width of cut, and three responses, i.e. material removal rate, 

surface roughness and active energy consumption. The RF regressor is an ensemble 

learning method where multiple decision trees are combined together to provide better 

prediction results with minimum variance and overfitting of data. Its prediction 

performance is validated using five statistical metrics, i.e. mean absolute percentage 

error, root mean squared percentage error, root mean squared logarithmic error, 

correlation coefficient and root relative squared error. It is observed that the RF 

regressor can be deployed as an effective prediction tool with minimum feature 

selection for any of the machining processes. 
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1. INTRODUCTION 

In the manufacturing domain, machining is the process of removing unwanted material 

from a given workpiece to provide the desired shape geometry while fulfilling the 

requirements of better surface quality and close dimensional tolerance. In the milling 

process, the material is removed from the workpiece with the help of an advancing 

multiple-teeth cutter. As the milling cutter enters the workpiece, its cutting edges 

repeatedly cut into and exit from the materials, removing material from the workpiece 
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with each pass due to shear deformation. The milling operation generally consists of four 

indispensable components, i.e. milling machine, workpiece, fixture and a suitable cutter. 

From small individual components to large heavy-duty products, the paradigm of milling 

covers a wide variety of operations. Based on the motion of the rotary cutter, milling 

operations can largely be divided into two categories, i.e. face milling and peripheral 

milling. In the face milling, the rotary cutter is placed perpendicular to the workpiece 

while generating a surface normal to the axis of rotation [1]. On the other hand, in the 

peripheral milling, the cutter is placed parallel to the workpiece so that its sides always 

come into contact with the top of the workpiece. A large variety of materials, like 

aluminum, brass, magnesium, nickel, steel, zinc etc. can be machined in conventional 

milling machines; but when high precision and close dimensional tolerance are required, 

computer numerical control (CNC) milling machines may be employed. As the dynamic 

nature of the face milling operation requires close control, investigation of the material 

removal mechanism, modeling of the interrelationship between the milling parameters and 

responses, prediction of the responses and optimization of the process have been found to 

be of utmost importance [2]. 

Like all other machining operations, the process outputs (responses) of a face milling 

operation, like material removal rate (MRR), average surface roughness (Ra), directional 

cutting force (Fc), active energy consumption (AEC) etc. are also observed to be 

influenced by its various input parameters, such as spindle speed (s), cutting speed (N), 

depth of cut (ap), width of cut (ae), feed rate (f), cutting power, etc. These process outputs 

usually determine the quality of the end products in order to satisfy the consumers’ 

requirements. For this reason, it has become essential for the designer/process engineer to 

have a close control and better understanding of various milling parameters along with 

their interactions with the responses. Based on the available experimental dataset, these 

interrelationships between the milling parameters and responses can be effectively 

modeled with the help of various statistical and machine learning techniques [3]. The 

developed models would also act as the prediction tools to envisage the tentative values 

of the considered responses for the given sets of different milling parameters. 

The main advantage of machine learning techniques lies with their ability to solve 

complex problems while reducing the complicacy of the dataset and making the models 

more interpretable [4]. With the help of these techniques, predictive monitoring of the 

process outputs has become easier, while integrating customers’ demands and taking care 

of other external factors affecting the process under consideration [5]. They also provide 

a broader scope for continuous improvement while automating the related decision-

making tasks by efficiently manipulating the huge volume of available dataset. There are 

mainly two types of machine learning techniques, i.e. supervised machine learning and 

unsupervised machine learning. In supervised learning technique, the learning algorithm 

is usually trained on the basis of labeled data, and when the training data are not labeled, 

it is called unsupervised learning technique. Classification and regression are the two 

popular examples of supervised learning technique, while unsupervised learning 

technique primarily encompasses clustering and association. In general terms, regression 

deals with quantitative anticipation of the responses, whereas, prediction of a qualitative 

response is termed as classification. In real time manufacturing environment, supervised 

learning algorithms are usually preferred due to availability of huge experimental datasets 

which would finally help in quantitative prediction of different responses based on the 
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given sets of various machining parameters. In the domain of milling operation, the past 

researchers have already applied various statistical and machine learning techniques, 

mainly in the form of linear regression, k-nearest neighbors (KNN) regression, support 

vector regression (SVR), artificial neural network (ANN), adaptive neuro-fuzzy inference 

system (ANFIS) etc. for predictive modeling of the considered processes. Although all of 

those techniques have provided satisfactory results, they also have their own limitations 

which often hinder their widespread applications as effective prediction tools. The main 

disadvantages of different statistical and machine learning techniques are summarized in 

Table 1. 

Table 1 Disadvantageous features of some popular statistical and machine learning 

techniques 

Method Disadvantages 

Linear regression 

It assumes normal distribution of the input variables, and 

presence of a linear relationship between the dependent and 

independent variables. In reality, these assumptions are often 

not valid. It is also quite sensitive to the presence of outliers. 

KNN regression 

It is highly sensitive to the scale of the data. It also does not 

perform well for large datasets and widely varying dimensional 

data. 

Ridge regression 
It includes bias in the model output. Selection of hyper- 

parameters may also affect its accuracy.   

Lasso regression 

Its prediction performance largely depends on the variability of 

the data under consideration. The selected features may result 

in higher bias. 

SVR 

In this technique, selection of the appropriate kernel influences 

its prediction performance. It is also not at all suitable for large 

datasets and suffers from poor interpretability. 

ANN 

Its performance greatly depends on the system configuration 

and volume of the training data. Being a black box type 

approach, it has poor interpretability. Selection of the right 

activation function along with the number of hidden layers and 

number of nodes per layer affects its prediction accuracy.  

ANFIS 

It is highly sensitive to the number and type of the membership 

functions selected. Cross-validation error would largely differ 

from the actual error for a smaller dataset. 

Decision tree 

regressor 

Being a highly unstable technique, a small change in the 

dataset may cause a significant change in the developed tree 

structure. It cannot be employed for continuous numerical 

variables. 

 

From Table 1, it can be clearly noticed that all the considered statistical and machine 

learning techniques have some deficiencies, especially with respect to either flexibility or 

interpretability. Thus, a trade-off has become essential between prediction accuracy and 
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model interpretability. Many of the machine learning algorithms are unstable, showing 

high variance resulting in poor prediction for the test datasets. Using ensemble learning, 

these unstable and weak learners can be combined together to bring stability in the 

prediction process. The random forest (RF) regressor is based on ensemble learning, and 

can effectively bridge the gap between prediction accuracy and model interpretability. It 

is an aggregation of decision trees having more stability and capability to deal with 

continuous numerical variables. The RF is an example of the bagging method, which is an 

amalgamation of tree predictors that operates by constituting a profusion of decision trees, 

making it less prone to bias. Despite having a wide range of flexibility, it has not been 

specifically applied to predict responses for any of the machining processes. This paper 

lays down a framework to model a CNC face milling process using the RF regressor. 

Unlike linear regression, it does not assume the presence of any existent relationship 

between the dependent and independent variables, and also does not need the dataset to 

be normally distributed. Its prediction accuracy would suppose to increase with large 

datasets, unlike SVR or KNN regressor. Its application does not require any super-

sophisticated hardware configuration (like ANN); neither is there any need to choose any 

membership function (like ANFIS). There is also no requirement to scale the training and 

testing data before its application. All these advantageous features of the RF regressor 

make it a suitable machine learning technique having good prediction accuracy without a 

convoluted feature selection process. In this paper, an endeavor is thus put forward to 

explore the application potentiality of the RF regressor to predict values of MRR, Ra and 

AEC based on 27 experimental observations with N, f, ap and ae as the input CNC face 

milling parameters. 

This paper is organized as follows: Section 2 presents a brief literature survey on the 

applications of different statistical and machine learning techniques in face milling 

operation. In Section 3, the experimental details are presented, while in Section 4, the 

theoretical and application framework for the RF regressor is laid down. Section 5 

introduces different statistical metrics along with the prediction results. Conclusions are 

drawn in Section 6. 

2. LITERATURE SURVEY 

It has already been mentioned that different statistical and machine learning techniques 

have been deployed by the past researchers as effective prediction tools for milling 

operation. Table 2 provides a comprehensive review of the past literature mainly focusing 

on different milling parameters, responses and prediction tools considered for milling 

operations. It has become quite clear that although several forms of regression analysis, 

ANN, ANFIS, SVR, etc. have been adopted by the past researchers, the literature 

seriously lacks the application of the RF regressor as an effective prediction tool in the 

machining domain. To the best of the authors’ knowledge, there is no application of the 

RF technique as a predictive and regressor model in CNC milling operation. In order to 

validate the performance of the previously adopted prediction tools, a limited number of 

statistical metrics has been considered by the past researchers. In this paper, five 

statistical metrics in the form of mean absolute percentage error (MAPE), root mean 

squared percentage error (RMSPE), root mean squared log error (RMSLE), correlation 
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coefficient (R) and root relative squared error (RRSE) are taken into account to evaluate 

the performance of the RF regressor as an effective prediction tool during CNC face 

milling operation. 

Table 2 List of milling parameters, responses and prediction tools considered by the past 

researchers  

Author(s) 
Milling 

parameters 
Response(s) Prediction model(s) 

Lo [6] s, f, ap Ra ANFIS 

Radhakrihnan and 

Nandan [7] 
s, f, ap Fc 

Regression analysis, 

ANN 

Ozcelik and 

Bayramoglu [8] 
s, ap, f, step over Ra Regression analysis 

Lela et al. [9] N, f, ap Ra 

Regression analysis, 

SVR, Bayesian 

neural network 

Rashid et al. [10] s, f, ap Ra Regression analysis 

Dave and Raval [11] N, f, ap 

Fx, Fy (cutting 

force along x and 

y directions) 

Regression analysis, 

ANN 

Sharkawy [12] s, f, ap Ra 

ANFIS, radial basis 

function network, 

genetically evolved 

fuzzy inference 

system 

Durakbaşa et al. [13] N, ap, f Ra Regression analysis 

Zhang et al. [14] s, f, ap Ra 
Gaussian process 

regression 

Rubeo and Schmitz 

[15] 

s, feed per tooth, 

radial immersion 
Fc Regression analysis 

Bandapalli et al. [16] s, f, ap Ra ANFIS 

Yeganefar et al. [17] 
s, f, axial and 

radial depth of cut 
Ra 

SVR, ANN, 

regression analysis 

Lin et al. [18] s, f, ap Ra 
Regression analysis, 

ANN 

This paper N, f, ap, ae MRR, Ra, AEC RF regressor 

Table 3 Milling parameters and their operating levels [19] 

Parameter Symbol Unit Level 1 Level 2 Level 3 

Cutting speed N  rev/min 1200 1700 2200 

Feed rate f  mm/min 220 270 320 

Depth of cut ap  mm 0.3 0.4 0.5 

Width of cut ae  mm 5 10 15 
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3. EXPERIMENTAL DATA 

Using a CNC machine tool (Carver 400M_RT) with a spindle power of 5.6 kW and a 

maximum rotational speed of 6000 rpm, Khan et al. [19] performed face milling operations 

on AISI-1045 steel material. A three-fluted carbide cutting tool with 24 mm diameter was 

deployed for the milling operations. During the milling operation, four input parameters, i.e. 

N, f, ap and ae were considered and their settings were varied at three different operating 

levels. Those input milling parameters and their varying operating levels are shown in Table 

3. Based on L27 orthogonal array, 27 experiments were conducted while treating MRR 

(mm3/min), Ra (µm) and AEC (kJ) as the process outputs/responses. The experimental plan 

and values of the measured responses are exhibited in Table 4. During the application of the 

RF regressor as a prediction tool for this CNC face milling operation, among the 27 

experimental runs, 21 trials are randomly selected for the training purpose and the remaining 

six trials are considered for testing of the developed model. 

Table 4 Experimental dataset [19] 

Sl. 

No. 
N F ap ae MRR Ra AEC Purpose 

1 1200 220 0.3 5 330 3.30 535.802 Training 

2 1200 220 0.4 10 880 2.95 184.929 Training 

3 1200 220 0.5 15 1650 1.41 88.519 Training 

4 1200 270 0.3 5 405 3.83 426.109 Training 

5 1200 270 0.4 10 1080 3.87 146.050 Testing 

6 1200 270 0.5 15 2025 1.68 69.823 Training 

7 1200 320 0.3 5 480 3.97 361.832 Training 

8 1200 320 0.4 10 1280 3.53 122.976 Testing 

9 1200 320 0.5 15 2400 2.29 53.988 Training 

10 1700 220 0.3 10 660 1.81 337.042 Training 

11 1700 220 0.4 15 1320 1.13 142.727 Testing 

12 1700 220 0.5 5 550 3.47 299.031 Training 

13 1700 270 0.3 10 810 2.85 269.604 Training 

14 1700 270 0.4 15 1620 1.41 113.648 Training 

15 1700 270 0.5 5 675 3.91 238.476 Training 

16 1700 320 0.3 10 960 2.55 213.559 Testing 

17 1700 320 0.4 15 1920 1.39 92.551 Training 

18 1700 320 0.5 5 800 4.12 193.109 Training 

19 2200 220 0.3 15 990 1.76 244.303 Training 

20 2200 220 0.4 5 440 3.33 425.797 Testing 

21 2200 220 0.5 10 1100 2.36 165.620 Training 

22 2200 270 0.3 15 1215 1.17 193.939 Training 

23 2200 270 0.4 5 540 3.72 338.579 Training 

24 2200 270 0.5 10 1350 2.58 131.343 Testing 

25 2200 320 0.3 15 1440 1.41 160.886 Training 

26 2200 320 0.4 5 640 3.86 286.850 Training 

27 2200 320 0.5 10 1600 2.76 108.147 Training 
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4. APPLICATION OF RF AS A PREDICTION TOOL  

During any machining operation, depending on the experimental plan employed, a 

large volume of useful dataset is usually generated. To better understand the machining 

operation and study the influences of the input parameters on the responses, a suitable 

model needs to be developed so as to extract valuable information from the experimental 

dataset. A subfield of artificial intelligence which mainly focuses on various ways of 

training the machines for having a better understanding of a problem/system, is called 

machine learning. As it can be interpreted, the goal of a machine learning algorithm is to 

better generalize an existing problem while providing the desired solutions. To achieve 

the desired outputs, a designer needs to train different learners. Often, due to presence of 

noise in the training data, the designed learners turn out to be occasionally weak. 

Ensemble learning is a machine learning archetype [20] where multiple learners are 

combined together to predict the response values. Two of the most commonly employed 

ensemble learning approaches are bagging and boosting [21]. Bagging or bootstrap 

aggregation is a parallel ensemble method, whereas boosting is considered as a sequential 

ensemble method. Ensemble learning models perform best for machine learning 

techniques that are generally unstable, like decision trees, ANNs etc. [22]. The main 

reason behind using unstable learners for ensemble learning is that they can produce 

different generalization patterns which help in minimizing variability to some extent [23]. 

The RF is an example of the bagging method [24], which is an amalgamation of tree 

predictors that operates by constituting a profusion of decision trees. It can be effectively 

employed for both classification and regression. The basic function of RF can be 

understood using the schematic diagram, as depicted in Fig. 1. 

  

Fig. 1 Schematic Diagram of a Random Forest 

From this diagram, it can be observed that, based on the training dataset, several 

decision trees are created which are assumed to be uncorrelated. Each of the decision 
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trees is developed based on subsets of variables and samples from the training data. 

Again, each of the subsets of variables is considered with replacement. In the RF 

regressor, the final prediction is performed after averaging the outputs of all the 

developed decision trees. While employing the RF regressor as an effective prediction 

tool, there are few parameters to be tuned by the concerned designer, mainly based on 

intuition [25]. In Table 5, some important parameters of the RF regressor are provided, 

where p is the number of input variables. 

Table 5 Parameters of a RF regressor  

Parameter Default value 

Number of decision trees 500 

Number of variables per split √p 

Maximum number of terminal nodes Unrestricted 

Resampling scheme With replacement 

While employing the RF regressor as a prediction tool for the CNC face milling 

operation, the number of decision trees generated plays a significant role. A smaller 

number of decision trees leads to underfitting of data, whereas a large number of decision 

trees are responsible for data overfitting. When each decision tree is framed, there is a 

scope of feature selection where the designer can choose all the input variables under 

consideration or set them accordingly. The maximum number of terminal nodes, as the 

name suggests, is the upper limit of number of nodes that each tree can have. Now, when 

a subset of training data is adopted to model the RF, the designer may wish to set features 

in such a way that if a subset is once used, it would not be used again. In this case, the 

resampling scheme needs to be considered without replacement. Among various 

parameters employed for modeling a RF regressor, number of decision trees and number 

of variables selected per split mostly affect the prediction accuracy. The default value for 

number of variables per split is the squared root of the number of input variables, but for 

datasets with a smaller number of input variables (preferably less than 13), number of 

variables per split is generally set equal to the number of input variables [25]. On the 

other hand, the optimal number of decision trees to be framed is identified after 

simulating the model for up to 500 decision trees and then selecting the number which 

would yield the lowest value of mean squared error (MSE). The variations of MSE value 

with changing number of decision trees for MRR, Ra and AEC are portrayed in Figs. 2-4, 

respectively. From these figures, the optimal number of decision trees for each RF is 

selected having the lowest MSE value for each of the responses under consideration. The 

optimal numbers of decision trees to be developed for MRR, Ra and AEC are provided in 

Table 6.  

Table 6 Optimal number of decision trees for each response  

Response Number of decision trees 

MRR 367 

Ra 25 

AEC 195 
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Fig. 2 Number of Decision Trees against MSE for MRR 

 
Fig. 3 Number of Decision Trees against MSE for Ra  
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Fig. 4 Number of Decision Trees against MSE for AEC 

In this paper, the entire modeling based on the past experimental data for the CNC 

face milling operation is performed with the help of Random Forest package available in 

the statistical programming software R [26], which is an open-sourced, robust and easy to 

apprehend language [19]. Based on the training dataset, the developed RF regressor 

generates a large number of decision trees (as mentioned in Table 6) for each of the 

responses under consideration which are finally aggregated to predict the corresponding 

response values. Some typical examples of the framed decision tress for MRR, Ra and 

AEC are respectively provided in Figs 5-7. In Fig. 5, for MRR, the RF regressor first 

treats width of cut (ae) as the predictor variable in the root node. Now, depending on its 

value, two branches emerge from the root node. When its value is observed to be greater 

than 5 mm, feed rate (f) is considered as the next predictor variable. The RF regressor 

predicts the MRR value as 1628.8 mm3/min for feed rate greater than 220 mm/min. 

On the other hand, when the corresponding feed rate is less than or equal to 220 

mm/min, it envisages the value of MRR as 1056 mm3/min. In the experimental dataset, 

there are eight observations satisfying the condition of width of cut greater than 5 mm and 

feed rate greater than 220 mm/min. Similarly, five observations fulfill the condition of 

width of cut greater than 5 mm and feed rate less than or equal to 220 mm/min. In this 

decision tree, when the value of width of cut is less than or equal to 5 mm, spindle speed 

(N) is considered as the succeeding predictor variable. 
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Fig. 5 A Sample Decision Tree for MRR 

 

 

Fig. 6 A Sample Decision Tree for Ra 
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Fig. 7 A Sample Decision Tree for AEC 

When the corresponding spindle speed is noticed to be greater than 1700 rev/min, it 

leads to a terminal node with the predicted MRR value as 590 mm3/min. But, for spindle 

speed less than or equal to 1700 rev/min, depth of cut (ap) is adopted to generate two 

more child nodes. The RF regressor predicts the MRR value as 675 mm3/min when the 

depth of cut is found to be more than 0.4 mm, and for depth of cut less than or equal to 

0.4 mm, the predicted value of MRR is 405 mm3/min. The decision tress for Ra and AEC, 

in Figs. 6 and 7, can also be similarly explained. 

5. PREDICTION PERFORMANCE OF THE RF REGRESSOR  

In this paper, the prediction performance of the proposed RF regressor is validated 

using five statistical metrics, i.e. MAPE, RMSPE, RMSLE, R and RRSE. The 

mathematical formulations of all these measures are presented as below: 
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where Ai and Pi are the actual and predicted response values, A  and P  are the means of 

all the actual and predicted response values, and n is the number of observations in the 

test dataset. The MAPE measures the absolute percentage error between the actual and 

predicted response values. Its main problem is that it introduces a heavy penalty when the 

actual value is close to 0. On the contrary, RMSPE provides an estimation of the standard 

deviation of the residuals. But its value is significantly affected by the presence of outliers 

in the dataset. This problem can be avoided to some extent by the application of RMSLE 

along with RMSPE. The degree of association between the actual and predicted response 

values is computed using R value. Finally, RRSE calculates the total squared error and 

normalizes it while dividing by the total squared error of the simple predictor. While 

taking the square root of the relative squared error, the error is reduced to the same 

dimension as the response being predicted. Among all these measures, a higher value is 

always preferable for R, while for the remaining measures, lower values would indicate 

better prediction performance of the RF regressor [27]. In Table 7, the predicted values of 

all the responses for the considered testing dataset are provided. On the other hand, Table 

8 shows the computed values of the five statistical metrics used to evaluate the prediction 

performance of the developed RF regressor.  

Table 7 Predicted response values using the RF regressor  

Sl. No. 

Response 

MRR Ra AEC 

Actual Predicted Actual Predicted Actual Predicted 

1 1080 1026.07 3.87 2.66 146.050 182.17 

2 1280 1173.09 3.53 2.67 122.976 174.08 

3 1320 1546 1.13 1.53 142.727 132.51 

4 960 1093.37 2.55 2.62 213.559 253.95 

5 440 626.87 3.33 3.46 425.797 320.95 

6 1350 1125.97 2.58 2.57 131.343 155.14 
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Table 8 Values of the statistical measures for the responses 

Statistical measure MRR Ra AEC 

MAPE 17.23 16.34 22.51 

RMSPE 21.00 21.78 24.77 

RMSLE 0.19 0.16 0.23 

R 0.85 0.78 0.92 

RRSE 0.53 0.7 0.5 

 

From Table 8, it can be noticed that although Ra has the lowest R value, its 

corresponding MAPE score is the best. For Ra, the model has overestimated and 

underestimated the true Ra value more frequently than the other responses. But, even after 

this, the relative deviation is the lowest. It can be noticed from both these tables that RF 

regressor performs satisfactorily while foreseeing the values of all the three responses of 

the CNC face milling operation under consideration. From the results of the test dataset, it 

can be noticed that the model has not overfitted the data. Otherwise, the outcome of the 

test dataset would have been far worse even after getting a good result from the training 

dataset. 

Non-parametric machine learning techniques do not assume anything about the 

dataset, whereas, in parametric techniques, some assumptions are made with respect to the 

underlying distribution of the dataset as well as the relationship between the dependent 

and independent variables. Thus, modeling of a machining operation and prediction of the 

corresponding responses using a non-parametric machine learning technique with a small 

dataset is quite challenging, but the proposed RF regressor yields satisfactory results even 

with a small experimental dataset for CNC face milling operation. While predicting the 

corresponding response values, it also employs minimum number of milling parameters as 

the predictor variables in the decision trees. 

6. CONCLUSIONS 

Over the years, application of different machine learning techniques in the 

manufacturing domain has increased exponentially. It has now become a challenging task 

to choose an appropriate machine learning technique to depict the relationship between 

the dependent and independent variables of any machining process. In this paper, an 

attempt is put forward to employ the RF regressor as an effective prediction model based 

on a small experimental dataset of CNC face milling operation. It has several 

advantageous features as compared to other statistical and machine learning models. Its 

main advantage is that it does not consider the inherent distribution of the input data or 

existent relationship between the dependent and independent variables. Number of 

optimal decision trees and number of input variables per split are enough to develop this 

prediction tool. Its robustness makes it suitable for generalizing different machining-

related applications. Machining conditions with binary or more than two categorical input 

variables can be accommodated in this tool without much effort. But, it has also some 

limitations. It fails in the cases when the data is outside the ‘scope’ of the model. Suppose 

that there is a training space where each input parameter has a particular range. If the test 
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data has some values totally outside the range, the model would fail. This problem would 

not occur for linear regression. The RF regressor would also perform poorly in the case of 

sparse data where certain expected values do not exist at all. As a future scope, the 

prediction performance of the RF regressor can be explored using large datasets, although 

it may lead to overfitting of data. Its application potentiality can also be validated based 

on experimental datasets from other metal removal processes, like CNC turning, CNC end 

milling, and especially non-traditional machining processes.  
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