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Abstract. The total exergy destruction occurring in a component is not only due to the 

component itself (endogenous exergy destruction) but is also caused by the inefficiencies 

of the remaining system components (exogenous exergy destruction). Hence care must be 

taken in using the total exergy destruction of a component for making decisions to optimize 

the overall energy system. In this paper, a complex industrial plant is analyzed by splitting 

the component’s exergy destruction into its endogenous part (the part resulting totally from 

the component’s irreversibilities) and its exogenous part (resulting from the irreversibilities 

of the other components within the system). It is observed that the steam generator has the 

dominant effect. From the total exergy destruction in the steam generator, 1,097.63 kW or 

96.95% come from internal irreversibilities in the component, while the influence of other 

components on the loss of useful work in the steam generator is only 3.05%. 
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1. INTRODUCTION 

With an increasing need to reduce the system waste impact on the environment and an 

ever increasing global demand for energy, especially in developing countries, it is 

becoming extremely important to develop even more accurate and systematic approaches 

for improving the design of energy systems [1]. 

Energy systems, i.e. industrial energy systems transforming some energy forms to 

others of which at least one is useful have been built since the eighteenth century. The 

continuously increasing complexity of the industrial systems has led to their construction 

and operation having a detrimental effect on natural resources and environment. It is, 
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therefore, necessary to develop and apply methods that will help in design, construction and 

operation of highly efficient, environmentally friendly and economically viable systems [2]. 

Exergy as a term related to the quality of certain types of energy represents the part of 

energy that could be converted to any other form of energy, i.e. produce work. Exergy 

can be successfully used as a reference tool for evaluating energy consumption, user and 

society satisfaction, environmental hazard and economic cost. Exergetic analysis is a key 

element in analyzing and drawing up a plan for sustainable development [3]. 

Conventional exergetic analysis reveals irreversibility within each component of a 

plant, but it has some limitations [4]. Advanced exergetic analyses are needed in order to 

determine which part of the inefficiencies is caused by component interactions (i.e. the 

structure of the plant), and which part can be avoided through technological improvements 

of the plant [5]. 

The aim of this paper is to explicitly identify the exergy destruction and separate it into 

endogenous and exogenous exergy destruction, on the example of a real complex industrial 

plant. 

2. TECHNICAL DESCRIPTION OF A COMPLEX ENERGY SYSTEM 

The energy system in a representative factory, Fig. 1, consists of four parts: Energy supply 

sector, Factory 1, Factory 2 (F2) and Engineering department (ED). 

The energy supply sector is a part of the factory complex where chemical and thermal 

treatment of water is being carried out while superheated steam is produced for the factory’s 

own use and supply of all other consumers. Furthermore, in this section, compressed air and 

cooling water are prepared for the whole factory complex. The boiler produces superheated 

steam at the pressure of 10 bars, which is then distributed to factories 1 and 2, and partly 

reduced at lower pressures in accordance with the needs of consumers. In this paper, it is 

assumed that the fuel used is pure methane. Compressed air at pressure of 7 bars is prepared 

in the compressed air station where electricity is used to drive the compressors. Consumers 

of compressed air are Factory 1, Factory 2 and Engineering department. 

Cooling water for factories 1 and 2 is prepared in the evaporative cooling tower. Hot 

water from factories 1 and 2 is pumped to the pool of hot water and then transported with 

pump 3 towards the cooling tower. A spray jet of cooling water, transported from the pool 

of hot water, spreads over the tube bundle of evaporative heat exchangers and is collected 

into the reservoir. Forced air flow is provided with the centrifugal ventilator, while water 

drops removal within the air flow is prevented with the droplet eliminator. The cooled water 

is collected and transported with the pump 4 to consumers in factories and the compressed 

air station. 

Factory 1 is the largest consumer of energy in the whole complex and it is supplied with 

energy using the superheated steam at the pressure of 10 bars, compressed air and cooling 

water. Electric energy is provided from a separate transformer station. 

Consumers in the factory use the steam at pressures of 10 and 4 bars. The condensate is 

collected in the condensate tank 2, and then transported with the pump 6 to the condensate 

tank 1. The sanitary hot water is prepared in the tank with the capacity of 3000 liters. The 

primary fluid is steam at 4 bars which, after energy is delivered to the secondary fluid, 

condenses and goes to the condensate tank 2. The secondary fluid is water with the 

temperature regime 12/60oC. 
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Thermal comfort in the manufacturing hall during winter months is maintained with 

convectors. The steam at 4 bars completely condenses in the convectors and the condensate 

is transported to the condensate tank 2. 

 

Fig. 1 Flow diagram of the representative industrial plant 
Legend: CA - Compress Air, CG - Combustion Gasses, CO – Condensate, CP - Circulation Pump, 

CT - Condensate Tank, CW - Cold Water, EA - Environmental Air, ED - Engineering Department, 

EP - Electric Power, FW - Flash Water, FP - Factory Products, F2 - Factory 2, IA - Indoor Air, HA 

- Hot Air, HO - Heavy Oil, HW - Hot Water, MA - Moist Air, PF - Primary Fuel, RV - Reduce 

Valve, RW - Return Water, SB - Steam Branch, SD - Steam Distributor, SW - Supply Water,  WA 

- Waste Air, WB - Water Branch, CAS - Compress Air Station, COP - Condensate Pipeline, CWD 

- Cold Water Distributor, CWT - Chemical Water Treatment, DEA – Deaerator, ECT - Evaporative 

Cooling Tower, FWT - Feed Water Tank, PFH - Primary Fuel Heating, STB - Steam Boiler, STP - 

Steam Pipeline, SHW - Sanitary Hot Water, TCH - Thermal Comfort Hall, TEC - Technologic 

Consumers, TSS - Thermal Substation, HWP - Hot Water Pool 

Electricity is used for the operation of the fans in the convectors. The total power of the 

fans is 19.2 kW. In the thermal substation, the energy is transferred from the steam at 

pressure of 4 bars to hot water, which is used for the radiator heating system in the 

temperature regime 90/70oC. Technology customers produce the final product. Technology 

consumers are using the steam at 10 and 4 bars. For technological reasons, the condensate 

at 4 bars is discharged into the sewer. The production technology requires the use of 

compressed air, which is rejected to the environment after use. Also, the cooling water in 
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the factory is used for technological needs. During the production process, the temperature 

of cooling water increases. All consumers of the electricity in the factory, as well as 

technological consumers, are supplied with the electricity from a separate transformer station. 

Factory 2 is supplied with the steam at pressure of 10 bars. The condensate from Factory 2 

returns to the condensate tank 1. 

The Engineering Department requires steam at 4 bars. The condensate from the 

Engineering Department is returned to the condensate tank in the full amount. 

In this paper, we have discussed in detail Factory 1. The effects of Factory 2 and the part 

that deals with the Engineering Department should be considered on the basis of real values of 

the superheated steam that they use. The representative system of the considered rubber 

factory is mathematically modeled with 33 components (k) and 70 streams (j). 

3. SPLITTING THE TOTAL EXERGY DESTRUCTION INTO ENDOGENOUS  

AND EXOGENOUS PARTS OF EXERGY DESTRUCTION 

Conventional exergetic analyses pinpoint components and processes with high 

irreversibility [1, 5]. The total exergy destruction occurring in a component does not result 

exclusively from the component but is also caused by the inefficiencies of the remaining 

system components. 

A part of the exergy destruction within a system component is generally caused by the 

inefficiencies of the remaining system components (exogenous exergy destruction). If no 

irreversible processes and exergy losses occur in all remaining system components, the 

exergy destruction is due exclusively to the component being considered (endogenous 

exergy destruction). The total exergy destruction within a k-th component ED,k is the sum 

of these two parts of exergy destruction [6]: 

 , , ,

EN EX

D k D k D kE E E   (1) 

where ,

EN

D kE  and ,

EX

D kE  endogenous and exogenous exergy destruction for  k-th component, 

respectively.  

The endogenous exergy destruction for k-th component is determined when this 

component operates under real conditions and all other components of the process are 

considered to operate without irreversibility (theoretically). The real and theoretical 

conditions for the most important components in the present industrial plant are shown in 

Table 1 [7]. When the endogenous part of exergy destruction of k-th component is 

known, the exogenous part of exergy destruction is obtained with Eq. (1). 

A change in the exergy destruction in one subsystem generally affects the exergy 

destruction in other sub-systems, too [8]. Thus, the change in the total exergy input to a 

system is usually different from the change in the exergy destruction in one system 

component [9]. In complex thermal systems, it is very difficult and time consuming to 

separate these two parts of exergy destruction within a system component. To better 

understand the interactions among components, the exogenous exergy destruction within k-th 

component is also split. The sum of all the terms is lower than the exogenous exergy 

destruction within k-th component. The difference is caused by the simultaneous interactions 

of all (n-1) components. This difference is call mexogenous exergy destruction, but it is not 

of interest in this paper. Exergetic analysis is used to evaluate the performance of energy 
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systems from thermodynamic aspect [10]. The essence of the exergetic analysis is that it 

provides information about the quality of energy [11]. 

Table 1 Diffusion coefficient and standard source term 
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4. RESULTS AND DISCUSSION 

Each segment of the system shown in Fig. 1 is separately analyzed and mass, energy 

and exergy balances are defined for each component. The results of the thermodynamic 

(mass flow rate mj, specific enthalpy hj and specific entropy sj) and exergetic analysis 

(exergy flow rate Ej) for the selected steams j are presented in Table 2. Input data for the 

calculation are pressures p and temperatures t in different points of the flows of streams 

obtained from the existing process of the referent plant. The official data on the lower 

heating values for the fuel are used.  

For solving the defined mathematical model, based on the equations in paragraph 2, a 

specialized software package, called Engineering Equation Solver, is used. The results of 

exergetic analysis at the component level are presented in Table 3. 

Having in mind that the reduce valves typically serve other elements, the reduce valve 

and the component it serves should be considered together [7]. In the manner of 

conventional exergetic analysis, exergy of fuel EF,k and product EP,k, exergy destruction ED,k, 

exergetic efficiency k, maximal exergetic efficiency max
k and exergy destruction ratio yD 

for the selected components are presented in this paper. Values of endogenous/exogenous 

exergy destruction are also presented for the selected components in the advanced exergetic 

analysis. Values of exergy of fuel, exergy of product, total exergy destruction and exergetic 

efficiency for overall system also presented in Table 3. 

When evaluating any energy system, we mainly focus on its avoidable exergy destruction 

because it represents the potential for improvement. Components PFH, SHW, TCH and TSS 

have the high values of specific unavoidable exergy destruction of 1.706, 2.512, 2.754 and 

1.152, respectively. 
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Table 2 Calculated variables for selected streams 

S
tr

. jm  
jp  

jt  
jh  

js  
jE  

 

S
tr

. jm  
jp  

jt  
jh  

js  
jE  

kg/s bar C kJ/kg kJ/kgK kW kg/s bar C kJ/kg kJ/kgK kW 

1 0.05 4.01 80.00 -2,255.30 2.207 2,412.10 36 27.79 4.51 21.00 88.44 0.310 82.38 

2 0.86 10.29 103.00 432.41 1.340 34.26 37 8.50 4.51 21.00 88.44 0.310 25.20 

3 0.86 10.29 182.66 2,782.63 6.584 1,117.55 38 27.79 4.51 28.00 117.71 0.409 80.98 

4 1.47 3.51 180.00 -1,477.62 7.038 238.53 39 8.50 4.51 27.00 113.53 0.395 24.47 

5 0.05 4.21 45.00 -2,323.15 2.004 2,411.76 40 41.80 1.01 27.41 114.91 0.401 106.20 

6 0.002 3.91 156.58 2,767.97 6.975 2.29  41 0.02 1.01 80.00 334.97 1.075 0.43 

7 0.002 3.91 142.85 601.51 1.769 0.16  42 0.17 1.01 50.00 209.40 0.704 1.16 

8 1.41 1.01 21.00 40.77 5.755 0.04  43 0.83 1.01 12.01 50.52 0.181 3.09 

9 0.25 10.29 181.91 2,780.70 6.580 325.78  44 0.48 1.01 12.01 50.52 0.181 1.79 

10 0.48 10.29 181.91 2,780.70 6.580 626.11  45 0.82 1.01 80.00 334.97 1.075 17.56 

11 0.13 10.29 181.91 2,780.70 6.580 165.09  46 0.82 1.51 80.01 335.03 1.075 17.60 

12 0.13 5.51 167.62 2,780.70 6.852 154.81  47 0.83 1.01 12.00 50.46 0.180 3.09 

13 0.02 5.51 165.07 2,774.88 6.839 24.40  48 0.83 1.51 12.00 50.52 0.180 3.13 

14 0.11 5.51 165.07 2,774.88 6.839 130.17  49 0.48 10.29 181.91 2,780.70 6.580 626.11 

15 0.11 3.91 159.74 2,774.88 6.991 125.32  50 0.39 10.29 181.44 2,779.49 6.578 514.57 

16 0.06 3.91 156.58 2,767.97 6.975 75.38  51 0.08 10.29 181.44 2,779.49 6.578 111.34 

17 0.04 3.91 156.58 2,767.97 6.975 47.42  52 0.08 4.61 164.18 2,779.49 6.929 102.39 

18 0.04 1.51 147.87 2,767.97 7.405 42.25  53 0.01 4.61 160.30 2,770.86 6.909 16.40 

19 0.01 1.51 147.87 2,767.97 7.405 9.93  54 0.04 4.61 160.30 2,770.86 6.909 45.06 

20 0.83 1.51 85.01 356.01 1.134 20.56  55 0.01 4.61 160.30 2,770.86 6.909 16.79 

21 0.03 1.51 147.87 2,767.97 7.405 32.31  56 0.02 4.61 160.30 2,770.86 6.909 23.91 

22 0.86 1.51 102.88 431.26 1.339 33.43  57 0.12 6.51 12.00 50.99 0.180 0.53 

23 0.002 1.51 111.64 2,693.77 7.220 2.52  58 0.12 6.31 60.00 251.67 0.831 1.37 

24 0.31 1.01 21.00 294.42 6.847 0.00  59 0.01 4.61 148.86 627.38 1.830 1.22 

25 5.51 4.51 21.00 88.44 0.310 16.33  60 3.68 1.01 18.00 291.40 6.836 0.31 

26 0.21 7.81 27.00 298.92 6.276 37.38  61 3.68 1.01 45.00 318.59 6.926 2.38 

27 0.10 7.81 27.00 298.92 6.276 17.47  62 0.04 4.61 148.86 627.38 1.830 3.34 

28 0.00 7.81 27.00 298.92 6.276 0.09  63 0.27 2.51 28.00 117.53 0.409 0.72 

29 5.51 4.01 24.50 103.03 0.360 15.44  64 0.27 2.31 55.00 230.42 0.768 2.27 

30 33.71 1.01 13.35 25.41 5.701 15.76  65 0.01 4.61 148.86 627.38 1.830 1.25 

31 0.35 1.01 12.01 50.52 0.181 1.30  66 0.02 4.61 148.86 627.38 1.830 1.77 

32 41.80 2.51 27.42 115.10 0.401 112.50  67 0.01 1.01 100.00 2,675.73 7.354 2.89 

33 41.80 1.01 20.97 88.00 0.310 109.30  68 0.08 1.01 100.00 419.07 1.307 2.90 

34 34.06 1.01 21.35 60.06 5.821 6.46  69 0.08 1.01 100.00 419.07 1.307 2.90 

35 41.80 4.51 21.00 88.44 0.310 123.91  70 0.08 1.01 100.00 419.07 1.307 2.90 

Essentially, all the components are heat exchangers, whose design allows the use of 

only the physical exergy. In these components, the superheated steam is used as a 

primary fluid, and it has a great potential to perform useful work in chemical exergy. 
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Table 3 Results of the exergetic analysis at the component level 

N
u
m

b
er

 

K 

Conventional EA Splitting ED EA evaluation 

,F kE
 ,P kE

 ,D kE
 ,

EN

D kE  
,

EX

D kE  
k  

max

k  ,D ky
 

kW kW kW kW kW % % % 

1 STB 2,185.50 1,053.29 1,132.21 1,097.6 34.58 48.19 52.69 43.66 

2 PFH 2.13 0.34 1.79 1.58 0.21 15.96 36.96 0.07 

3 DEA 7.24 2.78 4.46 4.33 0.13 38.37 100.00 0.17 

4 FWT 46.87 33.43 13.44 4.24 9.20 71.32 100.00 0.52 

5 CP1 0.98 0.83 0.15 0.15 0.00 84.42 96.03 0.01 

6 CP2 0.05 0.04 0.01 0.01 0.00 75.92 94.70 0.00 

7 SD1 1,117.55 1,116.98 0.57 0.58 -0.01 99.95 100.00 0.02 

8 SD2 
165.09 154.57 10.52 6.46 4.06 93.63 93.79 0.41 

9 RV1 

10 SD3 
130.17 125.09 5.08 2.80 2.28 96.10 96.28 0.20 

11 RV2 

12 STP 626.11 626.11 0.00 0.00 0.00 100.00 100.00 0.00 

13 CAS 82.70 54.84 27.86 27.86 0.00 66.31 71.29 1.07 

14 CP3 7.87 6.30 1.57 1.54 0.03 80.09 95.02 0.06 

15 ECT 32.83 4.80 28.03 22.75 5.28 14.62 81.52 1.08 

16 HWP 120.89 106.20 14.69 14.49 0.20 87.85 99.96 0.57 

17 CP4 18.32 14.61 3.71 3.44 0.27 79.75 94.76 0.14 

18 CWD 123.91 123.91 0.00 0.00 0.00 100.00 100.00 0.00 

19 CT1 79.61 15.51 64.10 63.55 0.55 19.48 100.00 2.47 

20 CWT 3.13 3.13 0.00 0.00 0.00 100.00 100.00 0.00 

21 CP5 0.05 0.04 0.01 0.00 0.01 77.01 100.00 0.00 

22 SD4 626.11 625.91 0.20 0.00 0.20 99.97 100.00 0.01 

23 SD5 
111.34 102.16 9.18 8.44 0.74 91.75 100.00 0.35 

24 RV4 

25 SHW 15.33 0.99 14.34 14.16 0.18 6.46 28.47 0.55 

26 TCH 60.92 2.07 58.85 58.76 0.09 3.40 26.64 2.27 

27 TSS 15.54 1.55 13.99 13.96 0.03 9.97 46.46 0.54 

28 CT2 4.69 2.90 1.79 2.18 -0.39 61.83 99.99 0.07 

29 RV3 47.45 42.25 5.20 0.00 5.20 89.04 89.04 0.20 

30 CP6 2.90 2.90 0.00 0.00 0.00 100.00 100.00 0.000 

31 COP 2.90 2.90 0.00 0.00 0.00 100.00 100.00 0.000 

32 SB1 42.25 42.24 0.01 0.00 0.01 99.98 100.00 0.000 

33 WB1 3.09 3.09 0.00 0.00 0.00 100.00 100.00 0.000 

Overall 2,582.59 920.27 1,411.77   35.90   

Value of exergy loss, EL,tot, for overall system is 250.56kW. 

However, that potential in these devices is not exploited. On the other hand, to obtain 

the superheated steam, a certain amount of primary fuel (resources) in the steam generator 

is consumed. 
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Fig. 2 presents the values of the current and maximum exergetic efficiency at the 

component level. It is observed that the most significant limits in the values of the 

maximum exergetic efficiency are in the heat exchangers: steam-fuel, steam-water and 

steam-air, or in components SHW, TCH and TSS. These limits are caused by high levels of 

specific unavoidable exergy destruction in these components. In addition, in the steam 

generator, from the total exergy destruction of 1,132.21kW, 83.53% is unavoidable, and 

even 96.94% of destroyed useful work comes from internal irreversibility in the component. 

Therefore, exergetic efficiency higher than 52.69% cannot be achieved in the steam 

generator. 

 

Fig. 2 Real and maximal exergetic efficiency 

The exergetic efficiency of the total plant indicates that some potential exists for the 

improvement of the overall efficiency and reduction of costs, see Table 3. Exergy losses are 

mainly associated with the exhaust gases as well as the exergy transfer to the environment. 

From the total exergy losses, the loss of exhaust gas is 95.19% or 238.53kW. All exergy 

losses account together for 10.39% or 250.56kW of the fuel exergy supplied to the overall 

plant. In the plant, the components destroyed 58.53% of the fuel exergy, or 1,411.77kW. 

The compressed air station has a higher improvement potential, 22.08kW or 79.25%. 

In the compressed air station, the entire amount of destroyed useful work comes from inside 

ireversibilities (endogenous exergy destruction 27.86kW). Exergy destruction in the 

deaerator is mainly caused by differences in temperature and pressure of the water streams 

being mixed. In the deaerator more than 97% or 4.33kW comes from irreversibilities in the 

component and 2.92% from the other components. 

Fig. 3 presents the total, endogenous and exogenous exergy destruction of the components 

of the energy system. It is observed that the steam generator has the dominant effect. 

However, from Fig. 3 we can unequivocally conclude that 1,097.63kW or 96.95% from the 

total exergy destruction of the steam generator comes from the internal irreversibility in 

components, while the influence of other components of destroyed useful work in the steam 

generator amounts only to 3.05%, or 34.58kW. Significantly, this 34.58kW of destroyed 

work capacity is the highest value among all the external exergy destruction in the energy 

system (Fig. 3 and Table 2). 
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Fig. 3 shows that the exergy destruction in components CT1, TCH, ECT and CAS is not 

so small, but the loss of ability originates primarily from the internal irreversibility of the 

components. 

 

Fig. 3 Endogenous and exogenous exergy destructions 

5. CONCLUSIONS 

The results of the conventional exergetic analysis are strongly supplemented by the 

advanced exergetic analysis. Irreversibilities identified in the conventional exergetic 

analysis have been split, according to their origins, in the advanced exergetic analysis.  

This paper presents the results of the splitting of the total exergy destruction into  

endogenous and exogenous parts for a real complex industrial plant. The highest exergy 

destruction is caused by the steam boiler. More than 80% of the total exergy destruction of 

the overall system comes from the boiler. Using the method presented in this paper we 

know that almost 97% of the total exergy destruction within this component results from 

the operation of the component itself (endogenous exergy destruction). The advanced 

exergetic analysis undoubtedly ranks the improvement priority of the steam boiler first, 

followed by the thermal comfort of the hall and the thermal substation.  

The combined splitting in advanced exergetic analysis will be investigated in the next 

step of this study. 
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