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Abstract. The modeling of the friction heat generation has become increasingly 

important in product design process including areas such as electronics, automotive, 

aerospace, railway (e. g. wheel and rail rolling contact, braking systems, and so on), 

medical industries, etc. Determination of generated friction heat in the contact of wheel 

and rail is important for understanding the damage mechanisms on these two bodies 

such as wear. This paper presents a method to determine the friction generated heat in 

contact of wheel and rail during normal operation using transient structural-thermal 

analysis in ANSYS software. 
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1. INTRODUCTION

Today, computer simulation has allowed engineers and researchers to optimize product 

design process efficiency and explore new designs, while at the same time reduce costly 

experimental trials. Generated friction heat in some physical processes like contact of rail and 

wheel during operation is an influential factor for damage forms and other processes.  

There are a great number of studies and research papers dealing with a rail/wheel 

contact problem.  

Ertz and Knothe [1] have concluded that the contact of wheel and rail can be investigated 

very efficiently with Hertzian contact with polynomial approximation. They have also 

presented methods for the calculation of contact temperatures using Blok’s flash temperature 

formula. The bulk temperature of the wheel increases with time by continuous friction 

heat. He has shown that the wheel temperature during normal operating condition cannot 

be more than double the average temperature of the cold wheel. Lyu et al. [2] have 
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analyzed wheel/rail contact including the influence of temperature and humidity on the 

friction coefficient and wear. 

Gallardo-Hernandez et al. [3] have compared temperature in a twin-disc wheel/rail 

contact in simulation and in experiment using a thermal camera. They have used two 

methods to calculate temperatures and he has carried out an experiment with 0.5 – 5 % 

slip. They have also given a diagram of the friction coefficient in the function of slip 

where the friction coefficient varies up to 0.6. 

Wu et al. [4] analyzed wheel/rail contact using thermal-elastic-plastic deformation and 

residual stress after wheel sliding on a rail. They have simulated a sliding contact process 

by translating the normal contact pressure and the tangential traction across the rail 

surface. The results indicate that the friction thermal load of contact between wheel and 

rail has a significant influence on the residual deformation, plastic strain and residual 

stress at the rail surface. 

Since the friction coefficient plays an important role in study of wheel/rail contact, 

there is a large number of papers which describe methods for friction measurement. 

Tomeoka et al. [5] have performed  friction control between wheel and rail. Firstly, 

fundamental tests with two-roller-rigs were carried out to evaluate the friction 

performances of several types of friction modifiers. Then, for the purpose of realizing the 

friction control with them, authors developed an on-board system, which sprayed friction 

modifier from a bogie to the top of rail accurately. Areiza et al. [6] did experimental 

measurement of coefficient of friction in rails using a hand-pushed tribometer. 

Numerical simulations can be used to check the old and to develop new and more efficient 

designs [7]. Milošević et al. [8] have presented the procedure of modeling thermal effects in 

braking systems of railway vehicles. Miltenović et al. [9] have presented the basic procedure for 

determination of friction heat generation in the wheel/rail contact using FEM. 

2. WHEEL-RAIL GEOMETRY 

2.1 Rail profile 

There are 23 rail profiles specified in the Standard EN 13674-1:2011 [10]. This 

European Standard specifies Vignole railway rails of 46 kg/m and a greater linear mass 

for conventional and high speed railway track usage. 

The two classes of the rail straightness are specified, differing in requirements 

for straightness, surface flatness and crown profile. Moreover, the two classes of profile 

tolerances are specified. Fig. 1 represents rail profile 50E2 which is used in further analyses. 

2.2 Wheel profile 

UIC CODE 510-2 [11] contains the conditions relating to the design and maintenance 

of wheels and wheel sets for coaches and wagons used on international services. It covers 

wheel diameters from 330 to 1000 mm and indicates the permissible axle loads from the 

standpoint of stresses of the metal used for the wheel and the rail. 

UIC CODE 510-2 contains detail coordinates of the wheel rim line. It is valid for a 

nominal track gauge of 1435 mm and cannot be readily transposed to apply to other track 

gauges. Fig. 2 represents the wheel profile which is used in further analyses. 
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Fig. 1 Rail profile 50E2 [12] Fig. 2 Wheel profile  

3. ANALYSIS SETUP 

For analysis purposes the simplest case is taken where the wheel speed is constant and 

when there is only one contact point between wheel and rail. In a case like this slip and 

friction are also constant. To estimate the generated heat amount is a challenging task that 

requires a multidisciplinary approach as well as analysis of many influencing factors [12] 

and the authors of this article offer an approach to simplify the case study. 

The basic model of the wheel/rail contact was made in SolidWorks before being 

exported in ANSYS. For the FEM analysis only the upper part of the rail 10 meters long 

and the outer ring of the wheel were used.  

In the following analyses the ANSYS elements SOLID 226 (3-D 20-Node Coupled-

Field Solid, Fig. 3) and SOLID 227 (3-D 10-Node Coupled-Field Solid) were used that 

support the thermoplastic effect which calculate temperature based on plastic deformation 

by partial conversion of work into heat. 

 

Fig. 3 Element SOLID 226 used in analyses 
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For meshing of the rail the body SOLID 226 was used. The complete geometry of the 

wheel body was meshed with SOLID 227 instead of 226 (Fig. 4). Table 1 shows numbers 

of elements and nodes in the meshed wheel/rail model. 

 

Fig. 4 Mesh of wheel and rail 

Table 1 Number of elements and nodes  

 Wheel Rail Sum 

Elements 76502 62400 138902 

Nodes 114735 94820 209555 

 

The properties of the material used in the analysis are listed in Table 2. 

Table 2 Material properties used in this study  

Parameter Unit Value 

Density  [kg/m
3
] 7850 

Coefficient of Thermal Expansion  [C
-1

] 1.2∙10
-5

 

Young’s Modulus  [Pa] 2∙10
11

 

Poisson’s Ratio [-] 0.3 

Tensile Yield Strength  [Pa] 2.5∙10
8
 

Tensile Ultimate Strength  [Pa] 4.6∙10
8
 

Isotopic Thermal Conductivity  [W/mC] 60.5 

Specific Heat  [J/kgC] 434 

The analysis of the friction heat generation in the wheel/rail contact was defined as a 

direct coupled transient structural-thermal analysis. The rate of frictional dissipation of 

contact elements in ANSYS is evaluated using the frictional heating factor and is given by: 
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 vFGHTq    (1) 

where τ is the equivalent frictional stress,  is sliding rate and FGTH is fraction of 

frictional dissipated energy converted into heat (the default value of 1 was used).[13] 

 

Fig. 5 Analysis setup of wheel and rail for case with sliding 1% and speed 30 km/h 

Due to limited computer resources, analyses were limited on 0.6 sec which is enough 

for wheel to make more than one whole rotation. During normal operation there is sliding 

between the wheel and the rail. In order to take into account the sliding effect, the rail was 

translated during an analysis in the same time with the wheel in the same direction 1%, 

2% or 3%, which represent some of slip ratios [14]. This moving of the rail represents the 

sliding that is expected during the normal train operation. For analyses purposes, the 

wheel was analyzed with the speeds of 30 km/h and 60 km/h. However, because of the 

slip ratio, the exact speeds of the wheel during the simulation were 29.7 km/h and 59.4 

km/h in the case when the sliding was 1%, 29.4 km/h and 58.8 km/h for 2% sliding and 

29.1 km/h and 58.2 km/h for 3% sliding. At the same time, the pressure load on the wheel 

was 5 t and 10 t representing the weight of the wagon. The friction coefficient between 

the wheel and the rail was 0.1 or 0.3. 

5. RESULTS 

Tables 3 and 4 present the results for generated temperatures of the analyzed friction 

heat generation of the wheel and the rail in the contact area. These results represent 

relative increase of the temperature, since, for the simulation circumstances, the atmosphere 

temperature was 22 °C and weight of 5 t. In Table 3 temperatures for speed 30 and 60 km/h 

and the friction coefficient 0.1 are given, while Table 4 gives temperatures for 30 and 60 

km/h and the friction coefficient 0.3.  

Table 5 gives temperatures on wheel and rail for the speed 30 km/h, the friction 

coefficient 0.3 and with different weights (5 and 20 t). Temperatures in the tables are 

average values of the highest temperatures of wheel or rail area.  
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Table 3 Relative temperatures increase [K] on wheel and rail  

for speed 30 and 60 km/h and friction coefficient 0.1 

 Wheel  Rail 

30 km/h 60 km/h 30 km/h 60 km/h 

Sliding  

1% 6.4 8.1 4.4 5.7 

2% 13.1 16.1 8.8 10.4 

3% 19.7 21.5 13.3 16.2 

Table 4 Relative temperatures increase [K] on wheel and rail  

for speed 30 and 60 km/h and friction coefficient 0.3 

 Wheel  Rail 

30 km/h 60 km/h 30 km/h 60 km/h 

Sliding  

1% 7.5 8.9 4.9 6.3 

2% 15.2 16.6 9.6 11.6 

3% 20.8 22.9 15.7 17.8 

Table 5 Relative temperatures increase [K] on wheel and rail  

for speed 30 km/h, friction coefficient 0.3 and different weights 

 Wheel  Rail 

5 t 10 t 5 t 10 t 

Sliding  

1% 7.5 10.8 4.9 7.11 

2% 15.2 20.2 9.6 13.3 

3% 20.8 26.3 15.7 19.6 

Figs. 6 to 12 show comparisons of temperatures of the wheel/ rail contact areas for 

varying: speed 30 and 60 km/h, friction coefficient 0.1 and 0.3, sliding 1, 2 and 3 % and 

weight 5 and 10 t.  

Fig. 6 gives comparisons of the temperature increase for speeds of 30 and 60 km/h and 

the friction coefficient 0.1. Compared with temperatures on the rail, temperatures on the 

wheel are approximately 66 – 68 % higher for the speed of 30 km/h, also, for the speed of 

60 km/h temperatures on the wheel are approximately 70 – 75 % higher. 
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Fig. 6 Comparisons of the temperature increase for speeds of 30 km/h and 60 km/h  

and friction coefficient 0.1 

   

Fig. 7 Comparisons of the temperature increase for speeds of 30 km/h and 60 km/h 

and friction coefficient 0.3 

Fig. 7 represents comparisons of the temperature increase for speeds of 30 and 60 

km/h and the friction coefficient 0.3. Compared with temperatures on the rail, 

temperatures on the wheel are approximately 63 – 74 % higher for the speed of 30 km/h, 

also, for the speed of 60 km/h temperatures on wheel are approximately 69 – 77 % higher. 

   

Fig. 8 Comparisons of the temperature increase on the wheel and rail for speeds 

of 30 km/h and 60 km/h and friction coefficient 0.1 
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Fig. 8 shows comparisons of the temperature increase on the wheel and rail for speeds 

of 30 and 60 km/h and the friction coefficient 0.1. Compared for the cases of the speed of 

30 km/h, temperatures on the wheel are approximately 16 % higher for the speed of 

60 km/h, also, for the rail, temperatures are approximately 19 % higher for the speed of 

60 km/h. 

   

Fig. 9 Comparisons of the temperature increase on the wheel and rail for speeds of  

30 km/h and 60 km/h and friction coefficient 0.3 

Fig. 9 gives comparisons of the temperature increase on the wheel and rail for speeds 

of 30 and 60 km/h and the friction coefficient 0.3. Compared for the cases of the speed of 

30 km/h, temperatures on the wheel are approximately 12 % higher for the speed of 

60 km/h, also, for the rail, temperatures are approximately 17 % higher for the speed of 

60 km/h.  

Similarly, Fig. 10 represents comparisons of the temperature increase on the wheel for 

the same speed and friction coefficients 0.1 and 0.3. Compared with the temperatures for 

the case with the friction coefficient 0.1, temperatures on the wheel for the speed of 30 

km/h are approximately 10 % higher for the friction coefficient 0.3, also, for the speed of 

60 km/h temperatures on the wheel are some 6 % higher for the friction coefficient 0.3.  

   
a) 30 km/h    b)  60 km/h 

Fig. 10 Comparisons of the temperature increase on the wheel for the same speed 

and friction coefficients 0.1 and 0.3 
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a) 30 km/h    b)  60 km/h 

Fig. 11 Comparisons of the temperature increase on the rail for the same speed 

and friction coefficients 0.1 and 0.3 

   
a) 5 t     b)  10t 

Fig. 12 Comparisons of the temperature increase on rail and wheel for speed 30km/h, 

friction coefficient 0.1 and different weights 

Fig. 11 gives comparisons of the temperature increase on the rail for the same speed 

and friction coefficients 0.1 and 0.3. Compared with the temperatures for the case with 

the friction coefficient 0.1, temperatures on the rail for the speed of 30 km/h are some 

14 % higher for the friction coefficient 0.3, also, for the speed of 60 km/h temperatures on 

the wheel are approximately 10 % higher for the friction coefficient 0.3. 

Finally, Fig. 12 depicts comparisons of the temperature increase on the rail and the wheel 

for the speed of 30 km/h, the friction coefficient 0.1 and for different weights. Compared with 

the temperatures for the case with the weight of 5 t, temperatures on rail are approximately 

31 % higher for the weight of 10 t and for the wheel the temperatures are some 32 % higher. 

6. CONCLUSION 

The paper presents an approach to determine the friction generated heat in the wheel/rail 

contact by using of the FEM transient structural-thermal analysis in ANSYS software.  

The performed research shows that temperatures on the wheel are greater than 

temperatures on the rail (66-75%) in all the cases of slip ratios, speeds and friction 

coefficients. Moreover, the increase of the sliding leads to increase of friction generated 

temperature on the wheel/rail contact surface.  
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The increase of the speed (30 to 60 km/h) leads to 12 – 16 % increase of the temperature on 

the wheel and 17 – 19 % on the rail. The increase of the friction coefficient (0.1 to 0.3) leads to 

6 – 10 % increase of the temperature on the wheel and 10 – 14 % on the rail contact surface. 

The increase of the weight (5 t to 10 t) leads to 31 – 32 % higher temperatures on the rail 

and wheel. 

Further research should compare temperatures obtained by means of simulation with real 

temperatures in the exploitation. Also, it would be very interesting to calculate friction 

generated heat in the wheel rail contact in the cases of acceleration and braking of trains, as 

well as in the cases when there are two contact points between the wheel and rail. 
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