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Abstract: The usage of Unmanned Aerial Vehicle (UAV) has grown rapidly in various 
fields, such as urban planning, search and rescue, and surveillance. Capturing images 
from UAV has many advantages compared with satellite imagery. For instance, higher 
spatial resolution and less impact from atmospheric variations can be obtained. 
However, there are difficulties in classifying urban features, due to the complexity of 
the urban land covers. The usage of Maximum Likelihood Classification (MLC) has 
limitations since it is based on the assumption of the normal distribution of pixel values, 
where, in fact, urban features are not normally distributed. There are advantages in 
using the Markov Random Field (MRF) for urban land cover classification as it assumes 
that neighboring pixels have a higher probability to be classified in the same class 
rather than a different class. This research aimed to determine the impact of the 
smoothness (λ) and the updating temperature (Tupd) on the accuracy result (κ) in MRF. 
We used a UAV VHIR sized 587 square meters, with six-centimetre resolution, taken in 
Bogor Regency, Indonesia. The result showed that the kappa value (κ) increases 
proportionally with the smoothness (λ) until it reaches the maximum (κ), then the value 
drops. The usage of higher (Tupd) has resulted in better (κ) although it also led to a 
higher Standard Deviations (SD). Using the most optimal parameter, MRF resulted in 
slightly higher (κ) compared with MLC. 
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1. INTRODUCTION  

The land cover represents composition and the characteristics of the land surface in a various 
spatiotemporal scale, and it is used in a various domain, e.g., resources management, policy purposes 
(Cihlar, 2000). The land cover is a product of the remote sensing (RS), initially obtained from the aerial 
photography, and it has been the most common application of satellite imagery data (Colwell, 1960). 
Satellite imagery has been demonstrated its efficiency to acquire information regarding earth’s topography 
in a large spatial and spectral extent (Yan et al., 2015). However, although the most recent optical satellite 
sensor can provide a Very High Image Resolution (VHIR) (Yan et al., 2015), imagery is often contaminated 
by aerosols, cloud and cloud shadows (Liang et al., 2001), causing difficulties in the land cover classification 
process. 

Unmanned Aerial Vehicle (UAV) based RS has been developed rapidly due to some advantages. Firstly, it 
has better flexibility than different RS methods, e.g., airborne and satellite (Lin et al., 2015).  Secondly, UAV-
based photography can provide an image with extremely high spatial resolutions, able to observe 
previously-undetectable features (Getzin et al., 2012). Thirdly, since the UAV flying at a low altitude,  UAV-
based photography is rarely affected by cloud cover (Rango et al., 2009). Fourthly, UAV has become 
available at an affordable price (Nasrullah, 2016). Due to its advantages, UAV-based RS has been 
implemented in a various field. For instance, Getzin et al. (2012) discussed the usage of Very High Image 
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Resolutions (VHIR) data obtained from UAV to assess the biodiversity in a forest. Regarding the application 
in the urban area, Lin et al. (2015) studied the use of oblique imaging to detect trees in the residential area. 
Another study from Yan et al. (2015) used data from Light Detection and Ranging (LiDAR) obtained from 
UAV for land cover classification. 

To understand the land cover in a particular area, extracting information in the image is a crucial stage. 
It has attracted many researchers from the remote-sensing community, particularly to develop an 
advanced classification approach and techniques to improve the classification accuracy (Lu & Weng, 2007). 
The image classification is a process of generating groups of identical pixels into classes that match the 
information categories from the user (Perumal & Bhaskaran, 2010). Among different image classification 
methods, supervised classification has been developed and broadly used to tackle the classification 
problems in multispectral data (Perumal & Bhaskaran, 2010; Richards, 2013). Earlier studies have carried 
out land cover classification using Maximum Likelihood Classification (MLC) (Perumal & Bhaskaran, 2010). 
In general, MLC assign pixels into certain class having the highest probability membership (Maselli et al., 
1994). Furthermore, it considers the variance and covariance among class distributions (Otukei & Blaschke, 
2010). When applied to normally distributed data, MLC may perform better than others classifiers.  
However, low accuracy may occur when data with a non-normal distribution were implemented (Otukei & 
Blaschke, 2010).  

Although UAV-based RS produces a higher spatial resolution compared with preceding sensors, e.g. 
Landsat TM, it may lead to complication in extracting urban features (Myint et al., 2006). When spatial 
resolutions increase, numerous small objects become further visible, which potentially lead to lower 
accuracy when it applied in an urban area (Myint et al., 2011). Among various classifiers that have been 
developed, Markov Random Field (MRF) were conceived as a stochastic approach to model a contextual 
information by including prior and posterior distribution of an image (Geman & Geman, 1984). This 
research aimed to implement an MRF approach in classifying urban features from UAV VHIR data. We 
explored different parameters to acquire the most appropriate parameter that produces the highest 
classification accuracy. 

The MRF-based algorithm was proposed by considering the spatial correlation. It was developed 
according to the Toblers’ First Law: “Everything is related to everything else, but near things are more 
related than distant things" (Tobler, 1970), which is the fundamental of the spatial dependence. Spatial 
dependence can be determined by the neighborhood systems, where neighboring pixels are more likely to 
fall under the same class than distant pixels. In the MRF model, each image has Markov properties 
according to spatial dependence, where isolated pixels are likely to be disappeared allowing a 
homogeneous region. Hence, the application of MRF is suitable for an image with a complex distribution of 
land cover class, such as that of a densely urban area.  

 

2. DATA AND METHODS 

2.1. Data Acquisition 

Data used in this research were obtained from UAV RS, and the image was taken in Bogor Regency, 
Indonesia. For the UAV Platform, we used Ai450 version 2. This UAV is a fixed-wing platform and equipped 
with 24 Megapixels camera. This platform was designated to cruise in 60 to 90 kph, and it covers 70 km in 
distance for 70 minutes. Data acquisition process was provided in Figure 1. 

This image was taken within two days under relatively similar conditions regarding wind speed, 
weathers and acquisition time. It takes between 2.00 PM to 5.00 PM. The flight speed was 36 to 54 kph at 
an altitude of 400 meters. Five Ground Control Points (GCP) was applied. For the orthophoto, we obtained 
Root Mean Square Meter (RMSE) at 0.0045 m. The spatial resolution of the image was 0.06 m. 
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Figure 1. Data Acquisition: (a) Platform preparation, (b) Before deployment,  

(c) Deployment, (d) landing (Authors, 2016) 
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(b) 
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(d) 
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2.2. Data Preparations 

For training set, we developed samples which were limited into five class according to visual image 
interpretations (red roof, vegetation, concrete, dark roof, and bright roof) (Figure 2b). We only employed 
limited class due to two reasons. Firstly, we used a small subset (587 square meters). Secondly, we 
expected high difference among training data, and employing different classes within almost similar color 
will lead into lower class separability. 

Figure 2. Subset Image and Training Set (Authors, 2016) 

 
a. Image 

 

 
 
 

b. Training set 

 

To ensure the quality of the training data set, we analyzed the class separability (Table 1). In this 
research, Jeffries-Matusita (JM) distance (see equation 2) was implemented to measure the separability 
between classes. It was widely used thanks to its advantage in suppressing the high separability values 
(Gunal & Edizkan, 2008). The JM distance transforms Bhattacharya (B) distance (see equation 1), to a value 
ranges from 0 to 2 because increasing B values do not imply that two classes have successfully separated. A 
higher value indicates higher separability between two classes. 

 

[1] 

 [2] 

According to Table 1, we notice that the sample is appropriate since the value of the JM distance is or 
near to 2, which indicate clear distinct among the class. However, slightly lower separability occurred 
between concrete and dark roof. Low-class separability will make the confusion between classes in the 
classification (Tolpekin & Stein, 2009). 

Table 1. Class Separability of the Training Set (Analysis, 2016) 

 

Subset location 
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The scatterplot indicated that the class of concrete has spread from the lowest to the highest Digital 

Number (DN)  (Figure 3). Concrete equally overlapped with the dark roof, which answered the lower class 

separability between them.  

Figure 3. Scatter Plot of Training Class in Band 1 and 2 (Analysis, 2016) 

 

2.3. Markov Random Field 

In our research, we employed the MRF model as previously shown by Ardila et al. (2011). They have 
successfully developed MRF model to identify urban trees by increasing the spatial resolution of the final 
classified image. We used the first order neighborhood system, which was considered as four adjacent 
pixels. It has a faster computation than the second order, which included eight adjacent pixels. The 
adjacent pixels included in our model were (1,0), (0,1), (1,1) and (1,-1) (Figure 4) covering the vertical, 
horizontal and diagonal adjacent pixels.  

 Figure 4. Neighborhood system implemented in this research (Ardila et al., 2011) 

 

The weight of the contribution from the neighboring pixels ( ) controls the smoothness level of 

the prior model. A higher contribution leads to a smoother solution of the prior model, which increases the 
probability of same class label within a neighborhood system. The  is modelled as , 

where the minimum value of =0, and the maximum value is ∞. relies only on the distance 

. In this weighted system, a further distance gives a lower contribution. The prior energy function 

) is aimed to model the contribution of adjacent pixels in a neighbourhood system, and defined as: 

 

 
[3] 

Roof_red 

concrete 

vegetation 

Dark_roof 

Roof_bright 
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[4] 

Where 

  = the local contribution to the prior energy from pixel  

      = the neighbourhood system of pixels  

      = the weight of the contribution from the neighbouring pixel   

 takes the value 0 if  and 1 otherwise 

The likelihood energy function is used to model the probability of a pixel belong to which class in the 
classified image. In this research, the Maximum Likelihood Classifier was applied to implement the 
probability model. This likelihood model works by assuming each class in the image has a normal 
distribution. It computes the highest probability to label pixels into a particular class (Maselli et al., 1994). 
The likelihood model can be modelled by considers a normal distribution of a pixel  with value  with 

mean vector  and covariance matrix  as: 

 
[5] 

 
[6] 

The posterior energy function is required to assign the pixels to a particular class. The posterior model 
incorporates the prior and likelihood model and can be defined as: 

 
[7] 

An MRF-based image classification requires a smoothness parameter (λ) to complete the computation. 
This parameter determines the smoothness level of the classified image obtained from MRF process. The 
smoothness parameter should be defined by considering its impact on the accuracy of the result. A higher 
(λ) leads to a smoother result. A smoother classified image does not imply a better result. Therefore, the 
optimal value should be estimated to obtain the highest accuracy. The value of (λ) ranges from 0 to 1. It 
works in the posterior model by controlling the prior and likelihood model. The smoothness parameter (λ) 
was introduced in this model by dividing the equation 7 by , which will transform the parameter so 

that it has the value one as the maximum value. The posterior model can be modelled as: 

 
[8] 

In this research, the Simulated Annealing (SA) approach is used for implementing the energy 
optimisation. It is adapted from the chemical process of metals cool and reaches its desired shape. In this 
study, it will adapt the initial maximum likelihood classification to consider the spatial correlation. The 
energy optimisation is required to achieve the global optima instead of the local optima. In SA is widely 
used and works well as an optimisation algorithm, and it has been applied in wide range of areas (Aarts et 
al., 2005). SA is controlled by two main parameters, initial temperature (T0) and updating temperature 
(Tupd).  

 [9] 

Initially, the SA process starts at high (T0) value and then cools down based on defined (Tupd). After 
employing the (Tupd), the (T0) will decrease until reaching the equilibrium. The (Tupd) should be defined to 
make sure that the SA has enough iteration steps for obtaining the highest accuracy result in acceptable 
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computation time. The (Tupd) controls the rate of temperature decrease. The process will stop if there are 
no more pixels are updated. The final result is expected to be achieved by applying the smoothness 
parameter (λ) that adjusts the smoothness level. The energy minimization is used for maximisation of 
pixels’ class labeling.  

2.4. Experiment Design 

In this research, the estimation of (λ) and (Tupd) was carried out by trial and error experiments. The 
value of the parameter (λ) and (Tupd) that leads to the highest kappa (𝜅) is chosen as the optimum value. For 
the (λ), we tested different value from 0.95 to 0.05, with an interval of 0.05. Meanwhile, for the (Tupd), we 
use five different value, which are 0.9, 0.75, 0.5, 0.25 and 0.1. 

3. RESULTS AND DISCUSSION 

According to the used training data (Figure 2b), the classification resulted in two images (Figure 5). On 
Figure 5a, we noticed classification resulted from the MLC, while Figure 5b was from MRF. In the area 
highlighted by red circle (Figure 5), we noticed the impact of the (λ) into classification result. MLC is 
resulting some isolated pixels (Figure 5a), while this pixel is disappeared in MRF (Figure 5b).  

Figure 5. Classification Result from MLC and MRF (Analysis, 2016) 

 

a. MLC 

 

b. MRF 

Regarding classification accuracy, among a different combination of (λ) and (Tupd), the highest (𝜅) 
obtained from MRF was 0.909679. This value was obtained from λ=0.9 and Tupd = 0.9. Meanwhile, (𝜅) 
resulted from MLC was 0.908143, which means that MRF resulted slightly higher accuracy than MLC. This 
result is not unexpected, since Wang and Wang (2013) have proved that MRF generates a more reasonable 
result compared with the sub-pixel/pixel spatial attraction model, Hopfield neural networks (HNNs), HNN 
with SSRSI, image interpolation then hard classification. 

Figure 6. (𝜅) value resulted from different (λ) and (Tupd) (Analysis, 2016) 
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As we can see in Figure 6, the (𝜅) for Tupd = 0.9 are increased and reach its peak in λ=0.9 and suddenly 
the (𝜅) value is dropped. Since the (λ) controls the contribution of prior and likelihood models in the 
posterior energy (Tolpekin & Stein, 2009), the highest the (λ), the less considered the likelihood. However, 
if the (λ) is too high, it will lead to over smoothing (Tiwari et al. , 2015). The lowest (𝜅) is 0.904031, and this 
value was obtained in Tupd = 0.9 and λ=0.95. In one hand, the likelihood energy assumed that the land cover 
classes are evenly distributed. In another hand, the prior energy aimed to model the contribution of 
adjacent pixels in a neighborhood system. In the case of over-smoothing, the value of the particular class is 
only assigned according to their neighborhood class, while the mean and covariance of pixels from the 
training sample is ignored.  

Regarding the impact of (Tupd) to (𝜅), we noticed from Figure 7 that higher (Tupd) resulting a higher (𝜅), 
and Tupd=9 resulted the highest (𝜅). In average, Tupd=0.9 generates highest (𝜅) compared with other (Tupd). 
However, it also provide the highest standard deviations (SD) (Figure 7).  

Figure 7. Average and Standard Deviation (SD) of (Tupd) among different (λ) (Analysis, 2016) 

 

The (Tupd) has the trade-off between the accuracy of the result and the computation time (Lam, 1988). A 
higher (Tupd) generating a higher (𝜅) and requires more iteration steps for the process to reach its solution. 
The more iteration steps lead to an additional computation time. Moreover, the increasing of iteration 
steps will increase the probability of the process to reach a different equilibrium. Figure 7 shows that the 
highest (Tupd) leads to the highest standard deviation of (𝜅), while the lowest (Tupd) creates the lowest 
standard deviation of (𝜅). 

 
4. CONCLUSION 

This research demonstrated the use of Markov Random Field for urban land cover classification from 
UAV VHIR data. We showed the impact of smoothness parameter (λ) and temperature update (Tupd) toward 
accuracy (𝜅). First, the usage of higher (λ) has resulted in better (𝜅), until it reaches its peak and suddenly 
the (𝜅) is dropped due to over smoothing. However, the (𝜅) resulted from MRF with the most optimal 
parameter is only slightly better than MLC. This result is not as we expected since we assume the usage of 
MRF might significantly increase the (𝜅). Second, the usage of higher (Tupd) has resulted in a better (𝜅) 
although it correspondingly leads to higher Standard Deviation (SD), since higher (Tupd) results in a higher 
probability of process to end in a different equilibrium. For further research, we recommend using a larger 
subset supported with better computation resources. Also, it is possible to use the estimation of the 
smoothness parameter, T0 and Tupd as demonstrated by Tiwari et al. (2015). 
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