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Long short-term memory networks enhance rainfall-runoff 
modelling at the national scale of Denmark

Julian Koch* , Raphael Schneider

Department of Hydrology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark

Abstract
This study explores the application of long short-term memory (LSTM) net-
works to simulate runoff at the national scale of Denmark using data from 
301 catchments. This is the first LSTM application on Danish data. The results 
were benchmarked against the Danish national water resources model 
(DK-model), a physically based hydrological model. The median Kling-Gupta 
Efficiency (KGE), a common metric to assess performance of runoff predictions 
(optimum of 1), increased from 0.7 (DK-model) to 0.8 (LSTM) when trained 
against all catchments. Overall, the LSTM outperformed the DK-model in 80% 
of catchments. Despite the compelling KGE evaluation, the water balance 
 closure was modelled less accurately by the LSTM. The applicability of LSTM 
networks for modelling ungauged catchments was assessed via a spatial 
split-sample experiment. A 20% spatial hold-out showed poorer  performance 
of the LSTM with respect to the DK model. However, after pre-training, that 
is, weight initialisation obtained from training against simulated data from 
the DK-model, the performance of the LSTM was effectively improved. This 
formed a convincing argument supporting the knowledge-guided machine 
learning (ML) paradigm to integrate physically based models and ML to train 
robust models that generalise well.

Introduction
The runoff at a given point along a river network can be defined as the outflow 
generated in the upstream contributing area. Accurate modelling of runoff 
has been a prime research theme for several decades (Wagener et al. 2004). 
A multitude of numerical modelling tools, from parsimonious conceptual 
rainfall-runoff models to complex fully distributed physically based models 
(PBMs), have been developed. In recent years, machine learning (ML) models, 
in particular, long short-term memory (LSTM) networks, have proved use-
ful for rainfall-runoff modelling. Since the first application by Kratzert et al. 
(2018), LSTMs quickly gained popularity and have typically outperformed tra-
ditional hydrological models under data-rich settings (Mai et al. 2021) and in 
ungauged catchments (Kratzert et al. 2019a).

The knowledge-guided ML paradigm aims to increase robustness and 
generalisability by integrating scientific knowledge into ML models (Nearing 
et al. 2020; Reichstein et al. 2019). This can be achieved by building physical 
constraints, such as the first-principle law of mass conservation (Hoedt et al. 
2021), into a ML model or using a PBM to augment training data (Jia et al. 
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2021). In this context, the method of pre-training by 
weight initialisation using PBM simulation data appears 
to be very promising, as a pre-trained LSTM attempts to 
emulate a PBM.

The rapid advancement of ML models for runoff 
prediction was facilitated by the availability of multiple 
large-scale runoff data sets containing a long timeseries 
of observed runoff, dynamic meteorological forcing and 
static catchment attributes, referred to as catchment 
attributes and meteorology for large-sample studies 
(CAMELS) data sets (e.g. Addor et al. 2017). In this article, 
we highlight the value of Danish hydrological big data 
for the advancement of ML-based runoff modelling. The 
Danish case offers a data-rich setting with over 300 sta-
tions and high-quality auxiliary data. Moreover, there 
exists a national water resources model (the DK-model), 
an advanced hydrological PBM that integrates ground-
water and surface water processes (Højberg et al. 2013; 
Stisen et al. 2019). The DK-model is a perfect benchmark 
for ML model development and provides simulated 
runoff, which is valuable for augmentation, as well as 
auxiliary hydrological information, such as groundwater 
conditions.

In this study, we aim to (1) highlight the value of Dan-
ish hydrological big data for advancing ML research at an 
international level, (2) implement a state-of-the-art LSTM 
to model runoff at the national scale of Denmark and (3) 
test a knowledge-guided LSTM based upon pre-training 
against simulated runoff obtained from a PBM.

Methods
Data
As in existing CAMELS data sets, we curated a data set 
comprising observed runoff as well as dynamic and 
static attributes for 301 Danish catchments (Fig.  1). 
The catchments vary in size between 10 km2 and 
2574 km2 with an average of 133 km2. The dynamic 
variables cover a period of 21 years (1990–2011) at 
daily timesteps and comprise observed runoff, sim-
ulated runoff (DK-model), air temperature, potential 
evapotranspiration and precipitation (Fig. 2). The 
three meteorological variables were derived from 
gridded data provided by the Danish Meteorological 
Institute and represent daily-averaged conditions for 
the entire catchment (Scharling 1999a, 1999b). A com-
plete timeseries of 21 years of daily observed runoff 
were available for 51% of the catchments, with 77% of 
the catchments having at least an 80% coverage. The 
runoff was normalised by the catchment size to mm/
day to give equal weight to the catchments during 
training, independent of their size. In total, 17 static 
catchment attributes were compiled. Eleven of which 
were calculated as catchment averages: precipitation, 

potential evapotranspiration, air temperature, slope, 
topographic wetness index, clay fraction, annual, 
summer and winter-simulated water table depth 
(DK-model), exceedance probability of a simulated 
water-table depth less than 1 m (DK-model) and the 
thickness of the surficial clay layer. Five land-use 
classes were expressed as percentages: forest, wet-
land, lake, agriculture and urban. Finally, the catch-
ment area was included as well. All data are available 
at https://doi.org/10.22008/FK2/YCQXTR.

Long short-term memory
The LSTM network architecture is a special type of recur-
rent neural network, designed to store and regulate 
information over time, which makes LSTMs well suited 
to learn long-term dependencies and memory effects 
(Hochreiter & Schmidhuber 1997). The LSTM is described 
in full elsewhere (Kratzert et al. 2018; Shen 2018). Similar 
to traditional hydrological models, the LSTM processes 
input data time step after time step. Runoff on a specific 
day is simulated based on the timeseries of length n of 
the preceding n days of meteorological data. Kratzert 
at al. (2019b) developed the entity-aware LSTM, which 
is an adaptation of the standard LSTM capable of learn-
ing catchment similarities based on the static attributes, 
which are treated in a separate embedding layer. In 
this study, we applied the proposed entity-aware LSTM, 
referred to simply as LSTM hereafter. We used the 

Fig. 1 Map of Denmark showing the 301 catchments used in 
this study. 60 catchments were randomly sampled for the spa-
tio-temporal split-sample experiment.
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NeuralHydrology codebase (github.com/neuralhydrol-
ogy/neuralhydrology/) to train and evaluate the models 
used in this study.

Experimental setup
Hyperparameters and general settings
As the purpose of this study was to initially explore the 
LSTM applicability, hyperparameters were not opti-
mised. Following Kratzert et al. (2019b), we assigned 
the following hyperparameter values: a learning rate 
of 0.001, a batch size of 256, an input length of 270 
days, 64 hidden cell states, a dropout rate of 0.4 and 
20 training epochs. All models were trained with five 
different seeds and the average of the five models 
was used for the final LSTM prediction. The model 
setup files are available at https://doi.org/10.22008/
FK2/YCQXTR.

Split-sample experiments
We conducted both a temporal split-sample and a spa-
tio-temporal split-sample experiment to test the capa-
bilities of a LSTM for Danish runoff data. The temporal 
split-sample experiment used data from all 301 stations 
for training. The timeseries were split into a training 

period of 11 years (2000–2011) and a test period of 10 
years (1990–1999; Fig. 2). The two periods correspond to 
the calibration and test period of the DK-model, which 
permitted a fair comparison between the two mod-
els. The spatio-temporal split-sample experiment was 
divided into the same training and test periods. Fur-
thermore, 20% of the stations were randomly selected 
and removed from the training data set and retained 
for model evaluation of the spatio-temporal split-sam-
ple experiment (i.e. a 20% spatial hold-out; Fig. 1). This 
experiment offers a more robust evaluation, as it tests 
the transferability of 80% of stations to the remain-
ing 20%. This allows us to assess the ability to predict 
ungauged basins.

Pre-training
The concept of pre-training can be used to initialise the 
weights of a LSTM using alternative runoff data before 
fine-tuning the LSTM using the actual runoff data from 
the catchments of interest. Runoff data for pre-training 
can potentially be obtained from observational data 
sets from a larger or different geographical region or 
from a PBM. In this study, we followed the latter and 
employed simulation data from the DK-model to pre-
train. In this way, the LSTM aimed to emulate the pro-
cess descriptions of the PBM before being fine-tuned 
against observed runoff. The training epochs were set 
to 15 for pre-training and 5 for fine-tuning. Simulated 
runoff at all 301 stations for the training period of 11 
years (2000–2011) was used for pre-training, and it was 
applied to both split-sample experiments.

Evaluation metrics
For training the LSTM network, the mean squared error 
(MSE) between the observed and simulated runoff was 
selected as the loss function. Two alternative metrics 
were calculated for the model evaluation, namely the 
Kling-Gupta Efficiency (KGE) and the averaged flow bal-
ance (Fbal). KGE is a three-component metric that con-
siders the correlation, the standard deviation ratio and 
the bias between the observed and simulated runoff 
(Gupta et al. 2009). Fbal quantifies the water balance 
closure between the observed and simulated runoff rel-
ative to the observed flow (Henriksen et al. 2003). Nega-
tive Fbal scores indicate an overestimation of the model 
with respect to the observed runoff. The optimal values 
for KGE and Fbal are 1 and 0, respectively.

Results and discussions
The cumulative density functions for KGE and Fbal are 
presented in Figure 3. The LSTM was benchmarked 
against the DK-model (PBM), and the effect of pre-train-
ing was also investigated. Superior performance could 
be attributed to the LSTM, with and without pre-training, 

Fig. 2 Dynamic input data for a single catchment used to train 
the LSTM. a: Precipitation. b: Potential evapotranspiration. c: 
Air temperature. d: Observed runoff (obs) and simulated runoff 
(PBM) were used as training data. The training period and test 
period are shown in a.
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with respect to KGE for the temporal split-sample exper-
iment. The median KGE was 0.8 for both LSTM config-
urations and 0.7 for the PBM. The conclusion was less 
clear for the water balance closure (Fbal); here, the PBM 
showed normally distributed under- and over-estimates 
with a median close to zero. However, the LSTMs were 
skewed towards negative values, that is, overestimation 
of runoff, with a median of –0.08. Overestimated runoff 
was predominately evident during the low-flow summer 
periods. Using alternative loss functions instead of the 
MSE in the LSTM training may alleviate this problem.

The spatio-temporal split-sample experiment revealed 
that the LSTM did not generalise well to ungauged 
basins. The median KGE was 0.69 and comparable with 
the PBM (KGE = 0.73), despite poor KGE scores for the 
lowest 20% of the cumulative density function. The same 
was evident for Fbal, where the lowest 20% performed 
poorly with respect to the PBM. However, pre-train-
ing using PBM data resulted in better performance for 
ungauged basins, making them comparable with the 
PBM. This emphasised the merit of pre-training. For the 
spatio-temporal split-sample experiment, where infor-
mation was evidently missing in the training data set, 
pre-training against PBM data helped to increase perfor-
mance. However, the performance did not change for 
the temporal split-sample experiment, where the obser-
vations provided enough information.

Considering KGE for the temporal split-sample 
experiment, the LSTM outperformed the PBM in 80% 
of catchments. This fell to 44% for the spatio-temporal 

experiment but could rise to 54% through pre-training. 
Considering the absolute Fbal, 68% of the catchments 
were simulated more precisely by the LSTM than by the 
PBM for the temporal split-sample experiment. For the 
spatio-temporal split-sample experiment, this could be 
raised slightly from 44% to 49% through pre-training.

The simulation results for two selected catchments 
for the 10-year test period of the temporal and spa-
tio-temporal split-sample experiments are presented 
in Figure 4. In the first catchment (260080), the perfor-
mance between the LSTMs and the PBM was very com-
parable with a KGE score of 0.8 (PBM) and 0.78 (LSTM) for 
the temporal split-sample experiment. The performance 
dropped to 0.66 in the spatio-temporal split-sample 
experiment but increased to 0.8 through pre-training. 
The second catchment (420022) showed a very poor 
performance for the spatio-temporal split-sample 
experiment (KGE = –0.12). However, KGE improved to 
0.78 through pre-training and thus became compara-
ble with the PBM (KGE = 0.75). In other words, the spa-
tio-temporal split-sample experiment for catchment 260 
080 could be simulated accurately without pre-training, 
because the LSTM could learn the runoff behaviour of 
that catchment using data from similar neighbouring or 
upstream catchments. However, the runoff behaviour 
of catchment 420022 could not be learned without data 
from the same catchment. Nevertheless, pre-training 
using PBM data helped to increase the performance of 
the LSTM. Figure 4 presents results for a large (260080, 
323 km2) and a small (420022, 44  km2) catchment. 

Fig. 3 Cumulative density functions for KGE and Fbal in the test period for runoff simulated by the DK-model (PBM), the LSTM 
model and the pre-trained LSTM model (prtrn LSTM). The temporal split-sample experiment is depicted in the left panels and the 
spatio-temporal split-sample experiment in the right panels. The optimal value of Fbal is highlighted with a dashed horizontal line. 
The LSTM predictions are based on the mean of 5 seeds, indicated here with transparent coloured lines.
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Smaller catchments generally perform less well due to 
the stronger imprint of anthropogenic activities (drain-
age and abstraction) and an increased uncertainty of 
precipitation data for smaller catchments.

The superior performance of LSTMs over concep-
tual rainfall-runoff models or hydrological PBMs was 
demonstrated for temporal split-sample experiments by 
Kratzert et al. (2018), Gauch et al. (2021), Mai et al. (2021) 
and others; however, conclusions of the spatial transfer-
ability to ungauged basins are disputed. Kratzert et al. 
(2019a) reported a superior performance of LSTM for 
a small spatial hold-out (8%), whereas Mai et al. (2021) 
found a worse performance for a more systematic spa-
tial hold-out.

Loss function plots are presented in Supplementary 
file S1 to elucidate the training of the applied modelling 
experiments in more detail. The data generally  support 
the chosen hyperparameter values and number of 
training epochs.

To our knowledge, this is the first study that demon-
strates the merits of pre-training against PBM sim-
ulation data for runoff modelling in the context of 
knowledge-guided ML. In a related study, pre-training 
using PBM data was found to be beneficial for the mod-
elling of lake-water temperature (Read et al. 2019). For 
rainfall-runoff modelling, pre-training has so far been 
found to be suitable for transferring trained LSTMs from 
one geographical region to another (Ma et al. 2021). We 
have shown that pre-training using PBM data offers 
great potential to initialise the LSTM with diverse runoff 
behaviour. Here, we constrained only the pre-training 
to the same catchments and time; however, in theory, 
PBM simulations for different climate change scenarios 
or a larger geographical domain could inform the LSTM 
with diverse runoff behaviour not seen in the observed 
runoff data.

Most of the published studies on LSTM runoff mod-
elling are of catchments with a low anthropogenic 

Fig. 4 Two example catchments showing the observed (obs) and simulated runoff for the test period. a: Catchment 260080, 323 
km2. b: Catchment 420022, 44 km2. Simulated data comprise the DK-model (PBM), the LSTM-based model and the pre-trained 
LSTM-based model (prtrn LSTM). The runoff predictions of the LSTM-based models are given for the temporal split-sample (ts) and 
spatio-temporal split-sample (sts) experiments.
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impact; however, recent efforts to model highly man-
aged catchments have documented promising results 
as well (Ouyang et al. 2021). The 301 Danish catchments 
selected in this study are, to a large degree, affected by 
groundwater abstraction and drainage, and the effect 
of the degree of anthropogenic impact on model per-
formance and transferability should be investigated in 
future work.

Conclusions
We draw the following main conclusions from the initial 
application of LSTM networks for rainfall runoff model-
ling at the national scale of Denmark:

Danish hydrological big data have the potential for 
conducting ML research at an international level. The 
DK-model serves as a valuable benchmark as well as a 
source for augmented training data and input data in 
the form of static catchment attributes.

An LSTM can outperform a state-of-the-art hydro-
logical model; however, accuracy decreases for 
ungauged catchments. This can be alleviated by 
pre-training against physically based simulated run-
off, providing crucial information to the LSTM where 
needed.

Future research studies should (1) advance knowl-
edge-guided ML to use hydrological knowledge provided 
by the DK-model optimally; (2) test alternative LSTM 
architectures, hyperparameters and loss functions; (3) 
study the effect of anthropogenic impact (drainage and 
groundwater abstraction) on the LSTM; (4) investigate 
ways of interpreting LSTM models to gain new insights 
into the runoff process in Denmark; (5) apply a broad 
range of hydrological signatures in the evaluation of 
LSTMs; and (6) produce a CAMELS data set for Denmark 
to provide high-quality hydrological and meteorological 
data.
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