
Designing a New Raster Sub-System for
GRASS-7
Martin Hruby

IT4Innovations Centre of Excellence
Brno University of Technology

Božetěchova 2, BRNO, 61266, Czech republic
hrubym fit.vutbr.cz

Keywords: GRASS, GIS, raster sub-system, geographical data, 3D rasters

Abstract

The paper deals with a design of a new raster sub-system intended for modern GIS systems
open for client and server operation, database connection and strong application interface
(API). Motivation for such a design comes from the current state of API working in GRASS
6. If found attractive, the here presented design and its implementation (referred as RG7) may
be integrated to the future new generation of the GRASS Geographical Information System
version 7-8. The paper describes in details the concept of raster tiling, computer storage of
rasters and basic raster access procedures. Finally, the paper gives a simple benchmarking
experiment of random read access to raster files imported from the Spearfish dataset. The
experiment compares the early implementation of RG7 with the current implementation of
rasters in GRASS 6. As the result, the experiment shows the RG7 to be significantly faster
than GRASS in random read access to large raster files.

Introduction and motivation

GRASS [1] is a well-known open-source GIS system with a long history, wide range of included
analytical tools and rather large community of users. Most of the users cooperate on its
development, they comment its quality, do report its bugs and some of them implement
their own system or analytical tools in form of GRASS independent modules. The main
GRASS’es strength is traditionally supposed to be in the raster analysis and so, rasters should
be something very well working in GRASS. Unfortunately, the current raster Application
Interface (API) of GRASS-6 does not offer functions which would comfortably support a
development of complicated raster analytical algorithms. Moreover, the current raster core
probably will not process large raster files efficiently. This paper is giving an alternative
which, if found reasonable, might replace the current raster core with this new one – referred
as RG7 (Rasters for GRASS-7) in this paper.

There are several open source initiatives and traditional software packages oriented to pro-
cessing of raster files. Let us mention at least the famous GDAL [5] (eventually GDAL/OGR),
Postgis Raster [6] and Raster3D [7]. The GDAL library is mostly a collection of storage for-
mats and a very large software complex. Postgis gives mostly a storage functionality with
a certain support for raster data manipulation and analysis – however, via SQL statements,
which is an opposite approach to RG7. The Raster3D library is the only one software in-
tended strictly to GRASS and, currently, is still in development. Comparing to them, the
RG7 library has got a different motivation which comes mainly from the user’s perspective.
The main idea is to provide a very abstract view to the raster data, moreover, to provide it

Geoinformatics FCE CTU 2011 11



Hruby M.: Designing a New Raster Sub-System for GRASS-7

in highly efficient way. And, at second, to keep the library code as simple as possible.

The paper is going to discuss the Application Interface giving the user a set of functions
operating the user data (raster map layers), the format of storing raster data and the whole
architecture of the raster sub-system.

Let us begin from the current state of the GRASS, it means, let us summarize the current
abilities of raster API in GRASS-6 [2] (and consequently the architecture of the current raster
core):

• Set of functions for opening and closing an existing raster or creating a new raster file.

• A function (G_get_map_row(...)) for reading a specified row from a raster layer.

• A function (G_put_map_row(...)) for writing a specified row to a raster layer.

• Other support routines implementing the metadata including an eventual reclass table.

Clearly, any API must contain functions for opening, creating and closing the raster data.
As a new feature, we may discuss a multi-user access to the data, various rights to access the
data, remote access to the data (e.g. in form of a GRASS file server), transactions an so on.

System of reading and writing a row of raster is the main point of criticism of the current
state of API. The problem has two levels of discussion: at first, user’s approach to the data
and at second, system implementation of such a call. In the current state, an user obtains a
particular row of the raster no matter what part of that he needs. This kind of a sequential
approach is sufficient for rather primitive tools (r.mapcalc, r.in/out, etc.), but let us imagine
an analytical algorithm requiring a random access (or better say – an index-sequential access)
to the whole raster layer. A developer implementing such a tool has to create his own library
over the GRASS raster API caching the lines and serving as a necessary abstraction over the
API. As I suppose, we would rather like let the developer concentrate himself on the core
algorithm of his application.

On the other hand, the current GRASS raster sub-system together with the set of raster tools
is nowadays optimized for such an approach. It must me told in the very beginning: the here
presented approach is not generally better than the current one, but it has a good chance to
be a good advantage for future GRASS’es developmental grow. This paper presents some sort
of an opposition to the current row access approach, even if some developers claim that this
row-approach is natural for a large part of raster analytic algorithms. Some comparisons and
contemplations are put in the section "Experimental results".

Let us now give the features of the RG7 raster sub-system:

• Support for extremely large raster files with a guarantee of constant time access to any
part of the layer, i.e. 1) any part of the raster is accessible in the same time as another
one, 2) size of the raster has no influence to the access time (or just marginal).

• Native support for multiple data formats and storing the rasters in a SQL database (for
example in PostgreSQL [3] or SQlite3 [4]).

• Real multi-user access and GRASS ready to work as a file server.

• Integrated 3D-raster concept.

Geoinformatics FCE CTU 2011 12



Hruby M.: Designing a New Raster Sub-System for GRASS-7

• Comfortable API ready to give any sort of view to the data. Development of user raster
application on a very high abstraction level.

• Raw raster data and other information packages (mainly the set of various metadata)
operated in a unique manner and stored in an unique place, where SQL databases are
preferred1.

Processing the extremely large rasters (size of gigabytes) together with any user-specified
sliding window over the raster needs a special design of a store format and quick access to
sub-region within the file. This is why the RG7 is based on raster tiles. Every raster file
available through RG7 will be physically decomposed to a grid of so called physical tiles.
This is the main difference to the current GRASS raster concept – not the row, but a tile
is the raster atomic element of data. A tile is a block of fixed size no matter what size has
got the raster file, i.e. raster files with long rows do not influence the complexity of their
processing. The advantages and disadvantages are discussed in the section "Conclusion of the
experiments".

It will be shown, that with the RG7 design, the technical approach of storing the data is
absolutely independent to its logical tile representation. Moreover, many storing principles
can be used, e.g. storing in a classical file managed by an operating system (referred as a
OS-file), in a SQL database or virtualized via network.

The main interest of the RG7 design is focused into the set of functions making an interface
between an user and the GRASS kernel. Simplifying the style of raster programming might
encourage new users to bring their algorithms to the GRASS code.

Technical and geographical definition of the tiles

Definition of a tile

A tile is a geographically defined sub-region within a raster layer. A raster file itself is defined
by its boundary coordinates and number of cells in north-south and east-west directions.
Similarly, a tile is defined by its boundary coordinates and number of cells in both directions.

By decomposing the raster to a set of tiles, we get an organized system of small data elements
(tiles) which are easy to operate. A tile becomes as an almost regular grid decomposition
of a raster file, as it is shown in Figure 1. This system of recursive decomposition making a
spatial index is called the Quad-Tree (let us assume this term to be a common knowledge in
the GIS community).

As we may see bellow, there are several ways of defining a tile regarding its size. There are
generally two approaches to raster file decomposition:

• Regular - all tiles are of the same size and the size is equal in both directions (the tile has
a square shape). Constructing a spatial index in form of a Quad-Tree is not necessary to
navigate through the raster. An optional implementation of raster pyramids is logical
and easy.

1Motto: no files, no troubles.

Geoinformatics FCE CTU 2011 13



Hruby M.: Designing a New Raster Sub-System for GRASS-7

– Advantages - mapping a geographical coordinate to a particular tile has a constant
time access, it is easy to implement and operate.

– Disadvantages - not very practical as the input raster must have a square shape
and its number of raster elements in both directions (cells) must be 2n, where
n ∈ N.

• Irregular - the file is decomposed using a Quad-Tree procedure with a minimum tile
attribute (see bellow). It may be applied to all existing raster files as the limitation of
regularity is not required here. An optional implementation of raster pyramids is still
possible.

– Advantages - no limits for rasters in the meaning of their size.

– Disadvantages (time issue) - each tile is of different size. Mapping a geographical
coordinate to a particular tile must be done through the Quad-Tree spatial index, i.
e. in logarithmic time complexity. This computational overhead can be successfully
minimized in the internal algorithms of RG7, for example by using an explicit
topological links among the neighbor tiles.

– Disadvantages (space issue) - number of tree nodes (i.e. virtual tiles) grows expo-
nentially with height of the tree. The height of tree depends on size of the raster
and size of the minimum tile.

Clearly, the requirement of having all files of size in 2n is not very practical. Therefor, the
RG7 concept strongly assumes the files of any size and implements the irregular
tiling.

Figure 1: A demonstration of the irregular Quad-Tree

Decomposition of a raster to a tree of virtual and physical tiles

In RG7, size of a tile is not fixed, i.e. is not equal for all tiles, and it is influenced by so
called minimum region. Four tiles is the minimum number of tile decomposition, i.e. having
a raster (or generally any region) with countX × countY cells and minimum region of size
mregX × mregY cells, the raster is split into a quadruple of virtual sub-tiles only if (1)

Geoinformatics FCE CTU 2011 14



Hruby M.: Designing a New Raster Sub-System for GRASS-7

holds. If the condition (1) is false, the region countX × countY is not split and remains as
a physical tile (see Figure 1 where the red rectangle defines the minimum region for further
decomposition). The regions which allow their decomposition are then called the virtual tiles.

countX ≥ 2 ·mregX ∧ countY ≥ 2 ·mregY (1)

The raster spatial index is based on Quad-Trees, where the tree nodes are are referred as
virtual tiles and leafs (non divisible regions) are the physical tiles. See the Algorithm 1. The
condition (1) also causes every physical tile to be generally larger then the specified minimum
region, thus the minimum region does not denote a wanted size of a tile, it just define the
stop condition of the decomposition. Each tile (virtual or physical) is addressed by a prefix
code as described in Figures 2. In Figure 2, the top-left tile is labelled 0 and when this one
tile is decomposed further (see Figure 2 on right), a prefix 0− is added.

Algorithm 1 Decomposition of a region to a tree of sub-regions
class Ras_vtile {
Ras_vtile(Region reg) : region(reg) { ... }

...
void decompose(ICoord mreg) {

phtile = 0;

if (region.countX() >= 2*mreg.x && region.countY() >= 2*mreg.y) {
int mx = region.countX()/2;
int my = region.countY()/2;

subtiles[0] = new Ras_vtile(region.sub_region(0, my, mx, region.countY()));
subtiles[1] = new Ras_vtile(region.sub_region(mx, my,

region.countX(), region.countY()));
subtiles[2] = new Ras_vtile(region.sub_region(0, 0, mx, my));
subtiles[3] = new Ras_vtile(region.sub_region(mx, 0, region.countX(), my));

for (int a=0; a<4; a++)
subtiles[a]->decompose(mreg);

} else
phtile = new Ras_phtile(region);

}

Region region;
Ras_vtile *subtiles[4];
Ras_phtile *phtile;

}

In such a convention, each physical tile has got its label and using that label, one can find the
tile in a quad-tree hierarchy. The label is also an index key to identify the tile in a database
storage.

Geoinformatics FCE CTU 2011 15



Hruby M.: Designing a New Raster Sub-System for GRASS-7

0- 1-

2- 3-

0-0 0-1 1-0 1-1
0-2 0-3 1-2 1-3
2-0 2-1 3-0 3-1
2-2 2-3 3-2 3-3

Figure 2: Addressing tiles in a decomposition of a raster (depth 1 and 2)

Architecture of the raster sub-system

Having defined the concept of Quad-Tree for RG7, we may proceed to description of the RG7
itself. The RG7 sub-systems consists of the following modules, each responsible for certain
functionality:

• Physical module (PH) – PH implements a direct low level access to raster files. It
creates a spatial index tree, reads and writes particular tiles. PH also implements a
memory cache over tiles. This module has the major influence to practical run-time
efficiency of RG7.

• Connection module (CN) – CN establishes a connection between a particular raster
application and a physical module. CN implements a kernel which controls the user
access to the files. CN also manage a possible multi-user (or multi-application) access
to the files.

• Raster window module (RW) – RW implements an user specified view to a raster file.
RW contains algorithms of raster resampling and presentation. RW specifies the user
API in various formats, i.e. at least the full RG7 C++ API and GRASS standard-like
C API.

• Raster application modules (AM) – AM is a set of user implemented raster analytical
modules using RG7 API at a CN or RW level.

The RG7 API shall connect users through the CN and RW modules. Direct access to PH
module is not assumed for a standard user. The direct access is allowed only for debugging
and benchmarking purposes.

The whole design is prepared for object-oriented (OO) implementation in C++. Object
oriented C++ is preferred for its high level of abstraction and support of semi-standard C++
libraries (Boost, STL). To keep backward compatibility with GRASS-6 raster API, a certain
part of RG7 API will contain headers in classical C language. There is absolutely no technical
problem in combining a C and C++ code in one software package. Moreover, in my personal
opinion, the dogma of keeping GRASS in pure C might be a serious limitation in GRASS’es
future development.

Geoinformatics FCE CTU 2011 16



Hruby M.: Designing a New Raster Sub-System for GRASS-7

The Physical module of RG7

Definitions of the basic geometrical objects

Let XCoord denotes an abstract class implementing a 2D point in a plane2. Let X and Y are
the two components of the coordinate – X representing the eastings and Y representing the
northings.

Then, let Coord is defined in floating point numbers and ICoord in integers. Coord expresses
a geographical coordinate (in any coordinate system) and ICoord just a relative coordinate,
mostly an index to the raster grid.

Region will denote a geographical rectangular space given by its left-bottom corner (LB:Coord)
and right-top corner (RT:Coord). Surely, speaking about LB and RT is equal to giving four
numbers expressing north, south, east and west boundaries of the region. Rasterization of
the region is given by number of cells in east-west dimension – countX() and south-north
dimension – countY(). The Region implements a method inside(Coord i) returning true,
resp. false, if a point i is geographically inside the region, resp. if it does not.

Basic definitions - A physical tile

A physical tile (Ras_phtile in the code) is geographically defined by its region. The raster
data contents is stored in a 2D array, in a matrix object, of dimension region.countX() ×
region.countY() cells. Other internal attributes are not interesting at the moment. Let us
see the main I/O methods of the physical tile.

The functionality of Ras_phtile is mainly in these methods:

• wphys(ICoord i, dtype v) – writes a value v to the matrix at i position.

• rphys(ICoord i) – returns a value at i position.

• write_to_compressed_ba – the function outputs a serialised stream of matrix contents
to a compressed byte array (compressed using run-length method). The compression
methods are subjects for further work and thus kept simple in the current design.

• read_from_compressed_ba – loads and decompresses the serialized stream to the matrix
object.

• allocate() and deallocate() the matrix object. The existence of data in physical
tiles is only virtual and the tile’s contents is loaded just in the moment of its demand.
By allocating the matrix(Ras_phtile), we mean allocating a computer memory for
matrix object. By deallocating we mean giving the memory back on heap.

Virtuality of the raster data contents

The attribute matrix of Ras_phtile consumes a non-trivial part of computer memory. When
a raster file is opened, RG7 automatically creates its tree representation made of virtual tiles
and physical tiles. But no data is loaded from the database storage yet and so, no physical
tile allocates a memory for the matrix buffers.

2It might be extended with the 3rd dimension very soon.

Geoinformatics FCE CTU 2011 17



Hruby M.: Designing a New Raster Sub-System for GRASS-7

Ras_phtile object representing a particular tile stores the raster contents only virtually until
its allocate() method is invoked. The method allocates a memory for matrix and the
tile’s contents may be loaded (read_from_compressed_ba). When the tiles is not needed,
its deallocate() method frees the matrix memory. Clearly, before deallocating the buffer
with some write changes, the tile’s contents must be stored in the database. This memory
management approach is going to be described bellow in further details.

The Physical module in C++ classes

Let us now introduce the main C++ classes making the Physical module of RG7 (See Figure
3):

• Ras_phys_file – manages a spatial index of a file and physical tiles. This class
is abstract in the meaning that it just manages the tiles without any direct link to
their physical storage (this is done through the following Ras_interface class). The
Ras_phys_file class manages an amount of memory used by tiles via calls allocate()
and deallocate() (see section "Memory management").

• Ras_interface – holds metadata (an instance of Ras_metadata) for a file and imple-
ments its particular data format. As it will be described bellow, the RG7 functionality
may be extendible right through these interfaces. RG7 may implement interfaces for
storing the data in files, SQL databases or even in network services.

• Ras_metadata – implements a storage of metadata for a raster file. The metadata
contains a lot of raster’s attributes, but at least two: region specifying the raster’s
geometry and minimum_region determining the raster’s decomposition to tiles.

The Ras_phys_file instance represents a single opened raster file. When opening a raster
file, the RG7 system instances a Ras_interface relevant for the raster file (depending on its
particular data format). An instance of Ras_interface (simply the interface or iface) is re-
sponsible for the input and output of raster’s metadata (at least region and minimum_region)
and for all I/O operations over tiles. Then, an instance of Ras_phys_file is created (and
given the interface). Having region and minimum_region, the Ras_phys_file can establish
the quad-tree representing the spatial-index (Algorithm 1).

By opening a raster, the RG7 only constructs relevant data structures in computer memory
(objects Ras_phys_file, Ras_interface, Ras_metadataand the spatial index). Loading the
raster contents (the map itself) depends then on user’s requirements. In multi-user (multi-
application) access, the Ras_phys_file is instanced only once in the RG7 kernel.

Memory management over the physical tiles

As it has been already mentioned, a given raster is split to a grid of physical tiles which
are supposed to contain the relevant data. Certainly, the whole raster will probably not fit
the computer memory, therefor some sort of memory management must be designed. This
memory management is going to be very similar to a well-known system of virtual memory
managed by todays operating systems (virtual and physical memory pages).

Geoinformatics FCE CTU 2011 18



Hruby M.: Designing a New Raster Sub-System for GRASS-7

Figure 3: UML overview on the Physical module classes

A physical tile may be in one of two possible states (relevant for the tile’s memory consump-
tion/reservation) – allocated or deallocated, i.e. consuming computer memory or not. When
the user requests a raster attribute at some geographical coordinate, this request is translated
to its logical coordinates which identify a particular tile p and local index lc. Then:

1. If p is deallocated at the moment, Ras_phys_file allocates a memory for p, and asks
its interface (iface) to load the tile from its disk storage. Then, p is allocated.

2. If p is allocated, p.rphys(lc) is returned.

Certainly, not all tiles can be allocated at the same moment due some operation memory limi-
tations. For this purpose, Ras_phys_file can be set to keep as maximum max_available_tiles
physical tiles in allocated state (as default, max_available_tiles is set -1 and then there
are no limits). As it has been mentioned, the memory management is inspired by the virtual
memory management – all physical tiles contain data only virtually and the Ras_phys_file
object assigns the memory resources on demand, it means, in a situation when there are
already max_available_tiles physical tiles allocated and another tile is required to load its
data, one of the current allocated tiles must be deallocated. The algorithm doing such a deci-
sion is another problem to discuss. At the current state of RG7, the Ras_phys_file object
keeps certain access statistics on tiles and selects the latest accessed tile to be deallocated.

Geoinformatics FCE CTU 2011 19



Hruby M.: Designing a New Raster Sub-System for GRASS-7

Virtual storage interfaces

One of the most valuable features of the RG7 design is in allowing developers to imple-
ment various formats of storing the rasters. Ras_phys_file operates a raster file in an
abstract manner invoking its interface for certain basic operations. Every class derived from
Ras_interface implementing the following methods may define its own data format:

• open() – opens an existing raster file and loads its metadata.

• close() – closes all files needed by the raster layer.

• create() – creates a new raster layer using the given metadata.

• writemetadata() – stores the raster file’s metadata.

• loadmetadata() – loads the raster file’s metadata.

• swaptile(p)– if the contents of p.matrix was modified, p.matrix is serialized and
flushed to disk storage (or any persistent device). Invoked usually when p is selected to
become deallocated or when closing the whole file.

• swapped_tile_available(p)– returns a boolean saying whether a raster contents of p
is present on storage or not. If p is filled with NULL values, there is no need to store
that fact on disk.

• load_swapped_tile(p)– a tile p loads its data contents from disk storage (p must be
allocated before).

Having such an interface, one may implement any data format or a way of storing the raster
data. For example, these interface definitions are going to be included in RG7 early design:

• Ras_interface_sqlite – the main assumed interface for RG7 via SQLite3 [4]. Tile’s
matrix contents is stored in an SQL database in BLOB records.

• Ras_interface_postgres – similar to Ras_interface_sqlite, but implemented for
PostgreSQL. PostgreSQL works as an independent OS process, thus this storage proces-
sor might be faster for heavier traffic loads than SQLite3 (especially with multiple-core
CPUs). This is an issue for further testing and experience.

• Ras_interface_grass6 – an interface providing a compatibility to current GRASS-6
raster storing format. The interface has to read multiple rows to complete a 2D tile,
thus it can be efficient only with classical raster row-oriented applications.

• Ras_interface_WMS – an interface providing an abstraction over WMS services. WMS
raster files are selected as read-only then.

• Ras_interface_sfile – all physical tiles are stored in an unique disk file and the
interface keeps an offset table in a separate disk file (similar to ESRI Shapefile .shx).
Fast and rather easy to implement.

Efficient implementation of this physical storage level is essential for the RG7’s read/write per-
formance. For this reason, the Ras_interface_sqlite interface defines an unique database
index (RasterID × TileID) for fast searching in the DB storage.

Geoinformatics FCE CTU 2011 20



Hruby M.: Designing a New Raster Sub-System for GRASS-7

Raster Metadata in RG7

Metadata are operated through the interface object using its writemetadata() and loadmetadata()
methods. The loaded contents is then kept in Ras_metadata objects having the following
parts:

• Geographical description of the raster – boundary region of the raster (referred as basic
region) and its size (number of cells in both directions).

• User comments – various text fields inspired mostly in GRASS raster metadata.

• Tiling – minimum region (see 2).

• Values description – particular null value and the cell’s data type (char, two-byte integer
and four-byte float).

• Reclassification – reclassification table and reference to an original raster file (may be
generally in different format).

• Colour palette – reference to a standard implemented palette or an user-specified palette
(just for graphical presentation).

RG7 does not assume an extra raster storage to keep explicitly the null data, thus there must
be one value reserved to specify the NULL contents of a cell. By default, the null value is
set to numerical zero. Let us remind that a tile containing only null values in all cells is not
stored, i.e. swapped_tile_available(p) interface method should return false. If such a tile
is modificated by writing some non-null data, the tile is then swapped when deallocated.

The connection module of RG7

The Connection module provides the interconnection between the user application (analytical
module) and the internal raster kernel managing the set of active Ras_phys_file. The
Connection module consists of two classes:

• Ras_kernel – the class is instanced as a singleton RG7. The RG7 object serves the users
to open, create and close the requested raster files. For a required file, Ras_kernel
returns a particular Raster object making a handle to a particular open raster.

• Raster – objects of this class provides a handle to open rasters, i.e. realize required
read and write operations to the rasters. The object also gives the complete metadata
information.

The Ras_kernel and Raster objects are supposed to be an only channel to a particular
source of raster data from the user’s perspective (to a local GIS kernel, to a remote GIS file
server, etc.). There are some details in multi-user or multi-process accesses in the design to
finish. At the moment, let us assume just one application processing the data through just
one Ras_kernel channel.

The Ras_kernel object registers all open/created raster files and assigns a Ras_phys_file ob-
ject for each one. Multiple open request to a unique file always leads to a single Ras_phys_file
object.

Geoinformatics FCE CTU 2011 21



Hruby M.: Designing a New Raster Sub-System for GRASS-7

As the Raster objects provide the complete information access in both read/write directions
(together with the Window module), it in fact makes the basic necessary interface between an
user and the raster GIS kernel. The whole raster implementation is thus encapsulated inside
this abstraction and so, the RG7 concept may serve as a new abstract API for applications
even without the new tiling approach, just as an abstract layer over the classical GRASS raster
engine.

The window layer

The RWindow class provides a final element of RG7 C++ API. An application may specify a
window which can slide within the region of Raster object. The important fact is that an
user does not invoke explicitly the read/write operations – he just points the window as a
text cursor and shifts that as he needs.

When a window is placed (or shifted/moved), its RWindow object requests the Raster object
to obtain the relevant data. All data edits are made through the window as well, so if RWindow
objects is asked to move at some other coordinate (or is being destroyed), RWindow object
then performs the write operation automatically.

RWindow object offers a basic resampling of a raster based on its internal attribute region. If
the region is left default, i.e. taken from the file’s metadata (its basic region), then the win-
dow reads the raster in its original resolution and in fact, it accesses the physical raster data.
Furthermore, an user may specify his own region and then the region translates the relative co-
ordinates of the window to the geographical coordinates and identifies the source cells. By de-
fault, the resample method is set to the nearest neighbor. Specifying an own region is frequent
in analytical tools respecting the standard GRASS monitor. The GRASS monitor settings (a
global region accessible via g.region) is available by invoking Ras_kernel::monitor().

The RWindow operations are these:

• read(ICoord c) – returns a value of a cell at c local position within the window.

• write(ICoord c, dtype val) – similarly, writes a value val.

• topleft()/topright()/bottomleft()/bottomright() – move the window on such a
position.

• shift_right()/... – shifts the window one cell on right/left/down/up.

• moveAt(ICoord c)/moveAt(Coord c) – points the window at a given position.

There are various sorts of raster windows in the RG7 design:

• RWindow – basic single-layer window with user defined size and region of resampling.

• RWindowPicture – a variant of RWindow, exportable to a bitmap picture.

• RWindowRow – a variant of RWindow where the size is automatically set to (1, columns)
where columns follows the geometry of the given raster file.

• RWindowMulti – a multi-layer window. It allows opening multiple raster files with an
unique window, each file either for write or read access.

Geoinformatics FCE CTU 2011 22



Hruby M.: Designing a New Raster Sub-System for GRASS-7

• RWindow3D – a window suitable for 3D raster requests. In fact, that is a multi-level
RWindow defined on a single file.

Let us see the following demonstrative example of various access windows.

RWindow r1(handle, ICoord(3,3));
RWindow r2(handle, ICoord(3,3), RG7.monitor());
RWindow r3(handle, ICoord(1, RG7.monitor().countX()), RG7.monitor());
RWindowRow r4(handle, RG7.monitor());
RWindowMulti r5(ICoord(3,3), RG7.monitor());
r5.add(handle);
r5.add(RG7.open("elevation.dem"), READONLY);
RWindowPicture r6(handle, RG7.monitor());

The r1 window of size 3 × 3 is open for previously open raster using its natural (physical)
resolution and for its natural region. Similarly, r2 is created with the same window size, but
defined on the global GRASS region specified by the g.region, i.e. including its resolution.
The windows r3 a r4 are equivalent. The r5 has got two layers with rasters "geology"
(previously open) and "elevation.dem". Sliding r5 will load/save raster cells of both layers
simultaneously. The window r6 is going to have its size specified by the current monitor
settings, i.e. by its boundaries and resolution. In fact, it gives an whole picture of the raster
as it might be seen in the d.mon GUI window and then printed by r6.plot("out.bmp") as
a raster picture.

Application interface to RG7

RG7 is implemented in GNU C++, it means that its code is made to be easily understable for
developers, ready for enhancements and using various STL libraries wherever it is possible.
Over its core, various APIs might be specified:

• API compatible with the already existing C API standard such that absolutely no
modifications to the existing raster tools will be needed.

• C++ API giving the users all the new enhancements of RG7.

• API connecting other programming languages.

It is absolutely sure that implementing RG7 may not hurt the overall functionality of GRASS,
i.e. of GRASS analytical and system modules. It is a matter of time and future experience if
some modules will be re-implemented to gain a higher performance coming with a new raster
storing and processing.

An 3D raster support

The RG7 concept is open for 3D-raster extension with only minor modifications to its basic
algorithms, I/O interface and program code.

The suggestion is the following:

• The 3rd dimension is discretized in the regular way with a constant step. It makes a set
of 2D unique raster files, where identification of a particular tile is done in two steps:

Geoinformatics FCE CTU 2011 23



Hruby M.: Designing a New Raster Sub-System for GRASS-7

identification in 2D and determination of the layer in 3rd dimension.

• Labeling the tile is extended with a number of a required layer (I/O operations provided
by the interfaces).

• Window may slide on an single or on all layers (3D window).

Experimental results

This section is going to present few benchmark experiments demonstrating access times to
rasters in different manners of their use. We assume the following datasets (Table 1) imported
from Spearfish60 demonstration dataset [8]. The rasters were generated with appropriate
g.region res= resolution and then exported by r.out.ascii. The data were then imported
to RG7 software prototype. All benchmarks have been done based on the SQLite3 interface
(see the section "Virtual storage interfaces"), i.e. with rasters stored in SQLite3 database.
The minimum region was set 32 × 32 cells for almost all layers (the "geolarge" file with
64x64 tiling). The benchmark was performed on a 4xCPU Xeon 3GHz PC with 8 GB RAM
running on Linux OS. The benchmark measures the whole time of the application’s time run
using the time unix utility, i.e. the time measured also includes some application overhead
with initialization etc. It should be mentioned at the very beginning of this case study, that
the experiment (called the benchmark here) does not have a quality of a proper laboratory
measurement and its main purpose was not estimate the exact algorithmic complexity of RG7
access times on rasters. The purpose was rather to show the general difference between access
times on GRASS and RG7 which will be evident and so, not very precise measurement of run
times is generally acceptable.

Spearfish Test-name Original size Test size Num. of tiles
original name (rows, columns) (imported to RG7)

soils soils 750 x 950 750 x 950 256
geology geol 140 x 190 140 x 190 16
geology geolbig 140 x 190 14,000 x 19,000 65,536
geology geol05 140 x 190 28,000 x 38,000 262,144
geology geolarge 140 x 190 140,000 x 190,000 4,194,304 (tile ≥ 64x64)

Table 1: Testing raster files imported from Spearfish60 dataset.

The Table 1 consists of raster files taken from the Spearfish dataset (Spearfish original name)
with their original stored resolution (Original size in rows and columns). The files has been
resampled and exported in GRASS and then given a case-study identifier (Test-name) and
case-study resolution (Test size). When imported to RG7, each file has been automatically
decomposed to the raster tiles (Number of tiles). The "geolarge" file has been decomposed
with 64x64 minimum region tiling, the others with the default 32x32 minimum region tiling.

Random physical read access

In this experiment, a given raster is open and sets its "max available tiles" attribute denoting
a maximum number of tiles in the cache. Let us remind the term "maximum available tiles"
(see 2) denoting a cache size of tiles in memory. The experiment proceeds a given number of
iterations, where in each iteration:

Geoinformatics FCE CTU 2011 24



Hruby M.: Designing a New Raster Sub-System for GRASS-7

1. a random coordinate c withing the raster’s region is generated,

2. a cell value at the position c is requested. If the required physical tile is not present
in the cache, the tile must be loaded from its disk storage (respecting the limitation of
"max available tiles").

As the access is fully random, only two experiments have a sense – an experiment with a
single tile cache ("max available tiles" is one) and an experiment with a non-limited cache
("max available tiles" is "full", i.e. unlimited). We should keep in mind that, with this random
access, the randomly chosen cell very surely points on a different tile than in the previous
iteration.

Test-name max. available n. iterations time [s] avg. access time
tiles per tile [ms]

geol 1 105 4.4 0.044
soils 1 105 5 0.05

geolbig 1 105 8 0.08
geol05 1 105 10.3 0.10
geolbig 1 106 96 0.096
geol full 106 0.162 –
soils full 106 0.253 –

geolbig full 106 8.6 0.09
geol05 full 106 30.4 0.03
geolarge full 106 6 0.09

Table 2: Benchmark "random access" results measured on RG7

When having only one "max available tiles", almost at every iteration, the requested tile must
be loaded through the given interface, i.e. from the SQLite3 database engine. The results show
that obtaining any physical tile takes in average about 0.1 ms no matter what the whole size
the raster file has (or, at least, the access times are in the same digit place). In other words,
at the current implementation of RG7, this prototype can proceed approximately 10, 000 tile
loads per second with absolutely random order of tiles. Let us note, that this number will
be double or triple when using burst readings (database transactions, SQL selects of multiple
tiles, etc.).

If the cache supports an unlimited number of physical tiles (referred as "full"), almost all tiles
of the input raster must be loaded during the iterations, but just once. The complete time
for "geol" and "soils" is trivial, just "geolbig" in compare to "soils" shows about 6 seconds more
to load all 65536 tiles (it makes aprox. 0.09 ms/tile), which is not too bad for this early
implementation of RG7. See Table 2 to get the experiment’s results.

The experiment has been extended with a more detail sampling of the runtime of the bench-
marking program for the "geol", "geolbig" and "geol05" raster files. The Figure 4 shows the
results when using a single-tile cache and the unlimite cache. The left graph is not very
surprising – the access to a tile takes some constant time, thus the resulting function for all
raster files is linear. On the right side we may see, that (see the "geolbig" file) after certain
number of iterations, the cache gets filled with all tiles and further iterations does not touch
the disk and the request are completed within the cache itself.

Geoinformatics FCE CTU 2011 25



Hruby M.: Designing a New Raster Sub-System for GRASS-7

Figure 4: Benchmark "random access" results measured on RG7 with geol, geolbig and geol05
datasets. Measured runtime with single tile cache (on left) and unlimited cache (on right).

The Figure 5 shows the average access time to a tile. Let us mention mainly the effect of
removing the application overhead (loading the program, establishing the quad-tree, etc.)
causing the convergence of the computed average time to a certain true value.

Figure 5: Benchmark "random access" results measured on RG7 with geol, geolbig and geol05
datasets. Measured average access time to a tile with single tile cache (on left) and unlimited
cache (on right).

Let us proceed a similar experiment done in GRASS. The experiment was implemented using
a demonstration tool called r.example (loop with random Rast_get_row(infd, inrast,
random()%nrows, data_type)). The region had to be manually set regarding the current
experiment, e.g. g.region rast=geology.

The results at the Tables 2 and 3 clearly show the following important observations:

• GRASS is significantly faster than RG7 with 1-tile cache in small files. That’s probably
because the GRASS kernel loads the whole file in one shot at the first read access and
the further readings are then done using its internal cache. The file "geol" is also so
small (around 8KB) that it takes only 2-3 pages of virtual memory and thus kept whole

Geoinformatics FCE CTU 2011 26



Hruby M.: Designing a New Raster Sub-System for GRASS-7

Test-name n. iterations time [s] avg. access time per row [ms]
geol 105 0.5 0.005
soils 105 1.7 0.017

geolbig 105 34 0.34
geol05 105 112 1.12
geolarge 105 915 9.15
geol 106 4.5 0.0045
soils 106 17 0.017

geolbig 106 314 0.314
geol05 106 963 0.963
geolarge 106 4,176 4.176

Table 3: Benchmark "random access" results measured on GRASS

in OS disk buffers.

• GRASS is significantly slower than RG7 in small files when RG7 has got an unlimited
cache (soils, 0.253s versus 17s).

• GRASS is significantly slower in large files (see the "geolbig" results) compared mainly
in case of a single tile cache – 8s versus 32s (96s versus 314s).

To conclude the first experiment, it must be told that the measurement is not very precise
due to the influence of OS disk buffers which are not under the tester’s control, but, anyway:

• In the category of small files, we compare GRASS results with RG7 unlimited-cache
results, and, RG7 wins. We assume that the raster is surely cached in GRASS, thus
this comparison is correct.

• In the category of large file, we compare GRASS results with RG7 single-tile results,
and, RG7 wins. We assume the GRASS not keeping such a large file in buffers, thus,
again – this comparison is correct.

Correlation between number of tiles and the access time

One might think about the time complexity of index-sequential accessing to single raster tiles.
Is there any correlation between their size and expected time necessary to fetch a required tile?
Certainly, there is some connection, however very small as it is shown in this sub-experiment.

I generated nine square raster files similar to the previous ones. These rasters are not gen-
erated from any existing raster file (like before), they are fully artificial but having all the
same contents. See the Table 4 for the raster file definitions and for the measured results.
The experiments are basically identical to the previous bundle of runs. The benchmarking
program was executed with a given raster file and set to use just single tile cache. Number of
iterations was set equally 1 million of iterations. The table displays the overall time of each
program’s execution. As we may see, through all rasters files, the million of iterations (and
loading a tile) took about the same time no matter what the size of raster actually is.

Geoinformatics FCE CTU 2011 27



Hruby M.: Designing a New Raster Sub-System for GRASS-7

File ID Number of rows Number of Runtime of
(columns) stored tiles the experiment [s]

g1000 1,000 256 66
g2000 2,000 1,024 67
g5000 5,000 16,384 42
g10000 10,000 65,536 46
g20000 20,000 262,144 54
g50000 50,000 1,048,576 74
g70000 70,000 4,194,304 72
g200000 200,000 16,777,216 54
g300000 300,000 67,108,864 81

Table 4: Generated raster files and runtime measurements for the experiment in Chapter 2

Random window read access

This experiment consists of random read accesses with a square window (3x3). The experi-
ment is done with either 4 tiles cache (the window may intersect up to 4 tiles) and unlimited
cache. Surely, the practical raster analyzes do not "jump" from a random point to another,
the experiment just shows a possible access time when sliding a 3x3 raster window. The
results (see Table 5) are not compared to GRASS as the measured times would be just a
triple of the previously measured ones.

Test name max. ava-tiles readings time [s] avg. access time per window [µs]
geol 4 105 6 60
soils 4 105 6 60

geolbig 4 105 8.5 85
geol full 105 0.15 1.5
soils full 105 0.2 2

geolbig full 105 4.7 47
geolbig full 106 9 90

Table 5: Benchmark "window access" results

Conclusion of the experiments

The RG7 implementation seems to be more efficient in the here presented benchmarks than
the classical GRASS raster sub-system. This paper is not a comparative study of GRASS
and RG7 in raster processing performance. That’s another topic for another paper which
might be worked out when RG7 gets more advanced and tuned. Anyway, there is a big
performance reserve and hope in processing various RWindow requests as the burst selects on
SQLite3 database are done in shorter time than a sum of tile’s individual selects. That’s the
point where RG7 might compete GRASS in classical row sequential analyzes as well.

There is only only one point of performance difference between these two approaches where
GRASS seems to be still faster: d.mon. The d.mon utility displays a rather small number
of rows and so, it reads a small number of rows from disk. Comparing to that, RG7 has to
read a sequence of tiles which then complete the requested single row. The same experience

Geoinformatics FCE CTU 2011 28



Hruby M.: Designing a New Raster Sub-System for GRASS-7

is probable in processing rasters in overview mode, i.e. not in their original resolution. Doing
such a fast overview on the data is possible via raster pyramids.

Conclusions and future work

The RG7 design has been presented in this paper. The design is certainly in a very early
developmental stage with, at the moment, no proper connection to its target infrastructure,
and as it has been mentioned, GRASS-7 (or 8) might be the target. Moreover, the RG7
implementation is currently very theoretical and needs certain optimizations to ensure high
performance of the resulting raster kernel.

Using the virtual interfaces (see the section "Virtual storage interfaces"), the RG7 library
makes an abstraction over unlimited number of data storage formats and methods. The GIS
system based on RG7 can operate raster data sources like GRASS raster format, RG7 Sqlite3
interface, WMS, GeoTIFF, etc. – all in the same manner.

The benchmark experiments demonstrated that a random access to a raster via RG7 is faster
than via classical GRASS raster sub-system. This is pretty sure at the moment. One may say,
that this success is perhaps just marginal as a large number of practical raster analyses reads
the rasters sequentially and that’s perfectly working in the current GRASS. However, as it
was mentioned in 2, the optimized RWindowRow interface will probably defeat this argument.

There might be some criticism regarding the searching time overhead in Quad-tree spatial
index. In fact, there are two sorts of searching trees: searching through Quad-tree spatial
index and searching in database index file. Both are variants of tree data structures. Let us
mention that the practical Quad-tree height is rather small, e.g. 12 levels for raster 200, 000×
200, 000 cells. Time spent in searching within such a tree is really marginal. Similarly, in the
case of the SQL database index file.

I wanted to show that tiling the raster, i.e. splitting the raster to a grid of small elements
can guarantee some sort of independence on raster’s size. Saying constant access time would
be too strong as there are several aspects in computers influencing the result, however the
experiments presented here give some support to the concept of RG7. The concept of RG7
has just one weakness at the moment, and that is the time spent in generating the Quad-tree
when opening the raster. This is going to be fixed in the next RG7 development step.

Moreover, the computing performance is not the biggest issue. RG7 is attempting to show
a different manner of accessing the raster data, and, I would say, a better manner than the
current API provides. The idea of "windows" (or cursors?) of variable size is certainly not
new. In the Computer science terminology, the rasters storage and raster API make together
so called Abstract Data Type (ADT). The computer scientists know for many years that a
good ADT ensures clever, efficient and flexible algorithms. On the other hand, a bad ADT
kills surely the applications. Let us give a good raster ADT to the future GRASS program
generation.

The RG7 design certainly counts on the standard GRASS-6 raster API ensuring a full back-
ward compatibility with the existing raster analytical tools.

Geoinformatics FCE CTU 2011 29



Hruby M.: Designing a New Raster Sub-System for GRASS-7

Acknowledgement: This work has been supported by the Grant Agency of Brno University
of Technology No. FIT-S-11-1 Advanced secured, reliable and adaptive IT and the Czech
Ministry of Education under the Research Plan No. MSM0021630528 "Security-Oriented
Research in Information Technology".

This work was also supported by the European Regional Development Fund in the IT4Innovations
Centre of Excellence project(CZ.1.05/1.1.00/02.0070).

Author would like to thank to three anonymous reviewers for their useful comments and
remarks.

References

1. GRASS Homepage: http://grass.fbk.eu/

2. GRASS-6 Raster API Manual:
http://grass.osgeo.org/programming6/gisrasterlib.html

3. PostgreSQL Homepage: http://www.postgresql.org/

4. SQLite3 Homepage: http://www.sqlite.org/

5. GDAL Homepage: http://www.gdal.org/

6. PostGIS Homepage: http://postgis.refractions.net/

7. Raster3D Manual Page: http://grass.osgeo.org/manuals/html70_user/raster3D.
html

8. Spearfish Data set: http://grass.fbk.eu/download/data6.php

Geoinformatics FCE CTU 2011 30

http://grass.fbk.eu/
http://grass.osgeo.org/programming6/gisrasterlib.html
http://www.postgresql.org/
http://www.sqlite.org/
http://www.gdal.org/
http://postgis.refractions.net/
http://grass.osgeo.org/manuals/html70_user/raster3D.html
http://grass.osgeo.org/manuals/html70_user/raster3D.html
http://grass.fbk.eu/download/data6.php

