
Custom OpenStreetMap Rendering –
OpenTrackMap Experience

Radek Bartoň
Department of Computer Graphics and Multimedia

Faculty of Information Technology, Brno University of Technology
ibarton fit.vutbr.cz

Keywords: OpenStreetMap, mapnik, osm2pgsql, PosgreSQL, mapping, rendering, hiking,
hiking tracks

Abstract

After 5 years of its existence, the OpenSteetMap [1] is becoming to be an important and
valuable source of a geographic data for all people on the world. Although initially targeted to
provide a map of cities for routing services, it can be exploited to other and often unexpected
purposes. Such an utilization is an effort to map a network of hiking tracks of the Czech
Tourist Club [2].

To support and apply this endeavour, the OpenTrackMap [3] project was started. Its aim is
to primarily provide a customized rendering style for Mapnik renderer which emphasizes map
features important to tourists and displays a layer with hiking tracks. This article presents
obstacles which such project must face and it can be used as a tutorial for other projects of
similar type.

Motivation and Background

Small portable devices equipped with GPS chips and high bandwidth Internet connection are
more frequently becoming our attendants on trips to nature. Although they are sometimes
more powerful than personal computers used in near past, they have not enough processing
power to interactively render vector geographic data of larger areas with good visual quality.

For this reason Web-based raster geographic data services such as TMS [4], WMS [5,6] or
Slippy Map [7] combined with geocoding [8] and routing services are more suitable for this
platform. Rendering requests are sent to a server and rendered tiles are then transferred back
to a client as images using HTTP protocol. This transfers heavy load of data rendering to
distant servers.

Although servers like [9] provides hiking maps of Czech Republic, they are almost impossible
to use on the portable devices with an open source software due to licensing or technical

Geinformatics FCE CTU 2009 5

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

restrictions. In the field of the open source, the OpenSteetMap is only available source of
geographic data of the entire planet. On the other hand, portion of already mapped tracks
of CTC hiking tracks network in the OpenStreetMap is only partial. This implies need
of publicly accessible and regularly updated service which displays hiking tracks from the
OpenSteetMap for Czech Republic. It should provide fast enough feedback for mappers at
home and it could also be used in a terrain.

First project to develop fully open source portable device with GPS capabilities is Openmoko
[10]. So a primary target of the OpenTrackMap project is to provide maps for a TangoGPS
application on the Openmoko platform.

Similar Projects

Before getting down to start developing the OpenTrackMap, proper research of existing
projects with same scope was made. Most similar of them is an openstreetmap.cz [11] with
its display of hill shading and Czech hiking tracks layer. Unfortunately, it is not regularly
updated a it does not provide a baked layer with all map features together. Moreover, its
rendering style is not high quality.

Projects like a Freemap Slovakia [12] or an OSMC Reit- und Wanderkarte [13] are more
mature but they covers different countries while projects [14,15,16,17] are also customized
OpenStreetMap renderings but aimed to different audience.

Requested Features

With respect to objectives of the project, following list with requested features can be written
up:

� Display hiking tracks of the CTC network with their color, that is use red, green, blue
and yellow lines for them. Properly display two to four parallel tracks using dashed
lines of appropriate colors.

� Distinguish between regular, local, learning, skiing and horse tracks using shields with
established symbols [18,19,20].

� Overlay a layer with contour lines generated from publicly available elevation data.

� Add a layer with hill shading also extracted from elevation data.

� Display additional point objects attractive for hikers (i. e. guideposts, castles, peaks,
pubs, etc.) with appropriate icons that are not included in a default OpenStreetMap
rendering style.

� Provide both single TMS service for each layer and a complete TMS service with all
layers baked into a single layer.

� Setup automatic data synchronization from a main OpenStreetMap data repository
with reasonable update interval and delay.

Geinformatics FCE CTU 2009 6

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

Available Renderes

From the list of known renderers of OpenSteetMap data, only three are more interesting.

Mapnik

The Mapnik [21] is the most features and also the most used renderer available. Basically, it
is a C++ library with Python bindings generator accompanied with rendering scripts using
the library. Appearance of the rendered map is specified in custom XML style document
[22] but a CSS like styling syntax can be also used and then compiled to the default XML
style with a Cascadenik tool [23]. There is also a simple GUI application for Mapnik styles
preview called a Mapnik Viewer [24]. On-demand tile rendering is possible with mod tile [25]
or TileLite [26].

Possible input vector formats of the Mapnik are following:

� ESRI shapefile.

� OSM XML format [27].

� PostGIS database.

� Oracle Spatial database.

� SQLite database.

� And many others through OGR library [28] like GRASS vector format, GPX or KML.

Input raster formats supported are:

� TIFF image.

� And many others through GDAL library [29] like GRASS raster format, GeoTIFF or
JPEG2000.

It is optional to choose between two rendering libraries [30]: Anti-Grain Geometry and Cairo.
This implies possible output formats:

� PNG raster image (AGG, Cairo).

� JPEG raster image (AGG).

� SVG raster image (Cairo).

� PDF document (Cairo).

� PostScript document (Cairo).

Osmarender

Osmarender [31] is all in all an XSLT template, an XML styling document and a Perl script
that converts the OSM XML format to a SVG vector image. It is used for distributed
rendering in a Tiles@home [32] project, but it has not so much features like the Mapnik and
for the OpenTrackMap is quite insufficient regarding to the requested features list.

Geinformatics FCE CTU 2009 7

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

Kosmos

This software [33] is just simple GUI to style and render the OpenStreetMap data on a
desktop. It is written in C# for Windows and thus it needs .NET Framework to run and it is
not much compatible with Mono implementation of it. This means that the Mapnik is only
option for renderer for the OpenTrackMap.

Source of Elevation Data

To display contour lines and hill shading layer in the map, elevation height map data are
needed. Well-known and free source of elevation data for nearly whole world is lidar data
obtained from NASA’s SRTM project [34]. Resolution of its grid is 3 arc seconds, which
is approximately 90 meters in the area of Czech Republic, while it is claimed that their
vertical accuracy is 10 meters. There are many servers run by U. S. government organizations
providing this dataset. They differ in quality of a data post-processing, that is gap filling of
missing data. For the OpenTrackMap project, just USGS [35] and GLCF [36] data was tried.

In the time of the project creation a new source of elevation data was introduced. It is
an ASTER GDEM [37] stereoscopic data from joint project of the NASA and the Japanese
Ministry of Economy, Trade, and Industry (METI). Its resolution is 1 arc second and expected
vertical accuracy is 7 to 14 meters. Although it is not yet clear whether this data can be used
in open source projects like the OpenTrackMap is, some experiments with the data was made
to prove that they can be useful.

Figure 1: Hill shading map of central Bohemia near capital city Prague generated using the
USGS SRTM data in WGS84 projection. The red rectangular area in the left part of the

figure is an extent of the cut-out right part. The completely white area is caused by missing
data.

The figures 1. to 3. show examples of the hill shading generated from different elevation
maps. Although the USGS (figure 1.) and the GLCF SRTM (figure 2.) data seem pretty
much the same, the ASTER GDEM (figure 3.) data contains disturbing artifacts of artificial
edges of a splotch shape. This is probably caused by the fact that the ASTER GDEM data
was filled in with the SRTM data in areas of missing data occluded by clouds and that there
may be some constant value offset between those sources. There are also some missing data

Geinformatics FCE CTU 2009 8

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

Figure 2: Hill shading map of central Bohemia near capital city Prague generated using the
GLCF SRTM data in WGS84 projection. The red rectangular area in the left part of the

figure is an extent of the cut-out right part. The completely white area is caused by missing
data.

Figure 3: Hill shading map of central Bohemia near capital city Prague generated using the
ASTER GDEM data in WGS84 projection. There are many visible artifacts of a splotch
shape. The red rectangular area in the left part of the figure is an extent of the cut-out

right part and shows those artifacts in detail.

in the SRTM sources but they are few and does not mind so much. They produce small but
dense clusters of contour lines as is shown on the figure 4.

Conclusion of this investigation is that though the ASTER GDEM data was very promising
at the beginning, they turned out to be inapplicable in practice while there is no significant
difference among foreign sources of the SRTM data.

Infractructure

A complete infrastructure of the OpenStreetMap project is quite extensive as a figure 5.
shows. Fortunately, only its subset, marked by a red border on the image, is needed to be
setupped to run a regularly updated tile service.

At the beginning there is a source of whole planet data in a database dump form in a com-
pressed OSM XML format. It is imported to a PostgreSQL [39] database with a PostGIS [40]

Geinformatics FCE CTU 2009 9

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

Figure 4: A detail of a dense cluster of contour lines generated from the SRTM data on a
place of the missing data.

Figure 5: Scheme of the OpenStreetMap infrastructure. Source of image [38]

extension using a osm2pgsql [41] tool. An Apache Web server with a mod tile [42] module is
running on the server machine. This module directs tile requests to a tile cache on a server’s
disk storage if tile is in the cache is present and up-to-date or to a resident daemon which
renders the tile using the Mapnik library if it is not. A JavaScript AJAX-based [43] web
interface called an OpenLayers [44] inlined in a HTML document is responsible for the tiled

Geinformatics FCE CTU 2009 10

Bartoň R.: Custom OpenStreetMap Rendering --OpenTrackMap Experience

map display to a user though a web browser while mobile or desktop applications are using
the tile requests directly using the SlippyMap [7] scheme.

Raster and Vector Data Storage

Vector Data

First step to establish the OpenSteetMap based tile server is to prepare the vector data for
rendering. Though the Mapnik supports rendering from the OSM XML files directly, it is
more efficient and customizable to import the OSM XML data to the PostgreSQL database
with the PostGIS extension. The only way how to do this is to use the osm2pgsql because an
another tool for the OpenSteetMap data processing an osmosis [45] exports to the PostGIS
database using a different schema.

Let us suppose that there is a fresh installation of a PostgreSQL 8.4, a PostGIS 1.4.0 and a
SVN version of the osm2pgsql. Then the following steps will prepare the data for the Mapnik
rendering. They are relevant to Ubuntu Karmic Koala desktop but they should be more or
less the same for other systems. See [46,47] for the details.

First we create a new database with a PL/pgSQL and PostGIS support:

$ su postgres

$ createuser osmuser

$ createdb -E UTF8 -O osmuser osm

$ createlang plpgsql osm

$ psql -d osm -f /usr/share/postgres/8.4/contrib/postgis.sql # if PostGIS compiled from source

$ psql -d osm -f /usr/share/postgres-8.4-postgis/lwpostgis.sql # if installed from Ubuntu package

$ echo "ALTER TABLE geometry_columns OWNER TO osmuser; ALTER TABLE spatial_ref_sys OWNER TO osmuser;" \

| psql -d osm

The osm2pgsql operates in two different modes. First, the default one, uses a memory efficient
database schema but it does not support further changes in data using this tool. Second is
a slim mode which adds additional tables that are needed for incremental updates support.
Slim mode heavily utilizes array types so we need to include an initarray PostgreSQL module
from contrib package:

$ psql -d osm -f /usr/share/postgresql/8.4/contrib/_init.sql

In the osm2pgsql package is a 900913.sql script which has to be imported to the database to
include a Google projection:

$ cd osm2pgsql/

$ psql -d osm -f 900913.sql

Now the database is prepared for the import of the data downloaded from

http://planet.openstreetmap.org/planet-latest.osm.bz2.

osm2pgsql imports only tags that are truly necessary for rendering. Which one they are, it
is specified in a default.style file. Following code is a diff file against SVN version to include
tags needed for hiking tracks rendering:

Index: default.style

===

--- default.style (revision 18005)

Geinformatics FCE CTU 2009 11

http://planet.openstreetmap.org/planet-latest.osm.bz2

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

+++ default.style (working copy)

@@ -86,18 +86,37 @@

If you’re interested in bicycle routes, you may want the following fields

To make these work you need slim mode or the necessary data won’t be remembered.

-#way lcn_ref text linear

-#way rcn_ref text linear

-#way ncn_ref text linear

-#way lcn text linear

-#way rcn text linear

-#way ncn text linear

-#way lwn_ref text linear

-#way rwn_ref text linear

-#way nwn_ref text linear

-#way lwn text linear

-#way rwn text linear

-#way nwn text linear

-#way route_pref_color text linear

-#way route_name text linear

+way lcn_ref text linear

+way rcn_ref text linear

+way ncn_ref text linear

+way lcn text linear

+way rcn text linear

+way ncn text linear

+way lwn_ref text linear

+way rwn_ref text linear

+way nwn_ref text linear

+way lwn text linear

+way rwn text linear

+way nwn text linear

+way route_pref_color text linear

+way route_name text linear

+# Czech style hiking tracks.

+way kct_yellow text linear

+way kct_red text linear

+way kct_green text linear

+way kct_blue text linear

+

+# Slovak style hiking tracks.

+way marked_trail text linear

+way marked_trail_yellow text linear

+way marked_trail_red text linear

+way marked_trail_green text linear

+way marked_trail_blue text linear

+

+# International hiking tracks.

+way network text linear

+way iwn text linear

+

+# Signposts.

+node information text nocache

And the actual import commands are:

$ cd osmosis/

$ bzcat planet-lastest.osm.bz2 | ./osmosis --read-xml file=- --bounding-box left="12.10" \

right="18.87" top="51.32" bottom="48.27" --write-xml file=../czech_republic.osm.gz

$ cd osm2pgsql/

$./osm2pgsql -s -m -d osm ../czech_republic.osm.gz

The osmosis command here serves for bounding the data to a region of the Czech Republic.
Although the osm2pgsql can bound the data too, this feature is quite slow comparing to the
osmosis way. The osmosis can read compressed OSM XML files directly but there is a bug

Geinformatics FCE CTU 2009 12

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

in the implementation. The osm2pgsql has to be run from its directory, the -s option enables
the slim mode and the -m option specifies that a Merkaartor projection is used.

Hill Shading

To create raster hill shading layer in GeoTIFF format from the USGS SRTM elevation data
downloaded in a zipped HGT format, this simple script should be sufficient:

for TILE in N*E*.hgt.zip; do

yes | ./srtm_generate_hdr.sh ${TILE}

rm -f "${TILE%%.hgt.zip}.bil" "${TILE%%.hgt.zip}.hdr" "${TILE%%.hgt.zip}.prj" "${TILE%%.hgt.zip}.hgt"

done

gdal_merge.py -v -o srtm.tif -ul_lr 12.10 51.06 18.87 48.55 N*E*.tif

gdalwarp -of GTiff -co "TILED=YES" -co "BIGTIFF=YES" -srcnodata 32767 -dstnodata 0 -t_srs "+proj=merc \

+a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgris=@null +no_defs" \

-rcs -order 3 -tr 30 30 -wt Float32 -ot Float32 -wo SAMPLE_STEPS=100 -multi srtm.tif warped.tif

hillshade warped.tif hillshade.tif -s 0.2

It first converts the HDRs to the GeoTIFFs, merges them to a single big GeoTIFF, projects
it to a Merkaartor projection and then generates a hill shade GeoTIFF image.
The srtm generate hdr.sh script can be downloaded from [49], the hillshade program belongs to
a demtools [50] package and the gdal merge.py and the gdalwarp are part of GDAL library [29].
Intensity of the hill shading can be controlled with a -s parameter of the hillshade command,
lower values means higher intensity. -co ”BIGTIFF=YES” argument and BigTIFF support
in GDAL are needed if size of GeoTIFF files exceeds 4 GB.

Contour Lines

A generation and an import of the contour lines to the database in a vector form goes with
several steps. First one, the HGT format conversion, is same as for the hill shading. Then
a shapefile with the contours is generated using a gdal contour tool from the GDAL library.
Then it’s imported with a shp2pgsql which is part of the PostGIS.

CREATE="1"

for TILE in N*E*.hgt.zip; do

yes | ./srtm_generate_hdr.sh ${TILE}

rm -f "${TILE%%.zip}" "${TILE%%.hgt.zip}.shp" "${TILE%%.hgt.zip}.shx" "${TILE%%.hgt.zip}.dbf"

gdal_contour -i 10 -snodata -32767 -a height "${TILE%%.hgt.zip}.tif" "${TILE%%.hgt.zip}.shp"

if ["$CREATE" == "1"]; then

shp2pgsql -d -I -g way "${TILE%%.hgt.zip}" contours | psql -q osm

else

shp2pgsql -a -g way "${TILE%%.hgt.zip}" contours | psql -q osm

fi;

unset CREATE

rm -f "${TILE%%.hgt.zip}.shp" "${TILE%%.hgt.zip}.shx" "${TILE%%.hgt.zip}.dbf"

rm -f "${TILE%%.hgt.zip}.bil" "${TILE%%.hgt.zip}.hdr" "${TILE%%.hgt.zip}.prj"

done

It was tried that the import from the separate shapefiles generated from each elevation data
tile is more efficient for rendering than merging the tiles followed by the generation and the
import from a single big image. This is because first method produces shorter and segmented
contour lines which are bounded on smaller spatial area.

Geinformatics FCE CTU 2009 13

Bartoň R.: Custom OpenStreetMap Rendering --OpenTrackMap Experience

Rendering

Mapnik Stylesheet Design

When designing the Mapnik XML stylesheet for the OpenTrackMap project, a default Open-
SteetMap stylesheet from a OpenStreetMap SVN [51] was taken as a template and customizing
modifications was applied into it.

Since the Czech Republic is an inland country, there is no need to render a coastline layers
but default color of the map has to be set to white instead of light blue:

...

-<Map bgcolor="#b5d0d0" srs="&srs900913;">

+<Map bgcolor="#ffffff" srs="&srs900913;">

...

-<Layer name="world" status="on" srs="&srs900913;">

- <StyleName>world</StyleName>

- <Datasource>

- <Parameter name="type">shape</Parameter>

- <Parameter name="file">&world_boundaries;/shoreline_300</Parameter>

- </Datasource>

-</Layer>

-<Layer name="coast-poly" status="on" srs="&srs900913;">

- <StyleName>coast-poly</StyleName>

- <Datasource>

- <Parameter name="type">shape</Parameter>

- <Parameter name="file">&world_boundaries;/processed_p</Parameter>

- </Datasource>

-</Layer>

-<Layer name="builtup" status="on" srs="&srsmercator;">

- <StyleName>builtup</StyleName>

- <Datasource>

- <Parameter name="type">shape</Parameter>

- <Parameter name="file">&world_boundaries;/builtup_area</Parameter>

- </Datasource>

-</Layer>

...

The contour lines imported to the database and the hill shading layer in a GeoTIFF file can
be added using following style and layer directives:

...

+

+<Style name="shading">

+ <Rule>

+ &maxscale_zoom9;

+ &minscale_zoom18;

+ <RasterSymbolizer>

+ <CssParameter name="opacity">0.5</CssParameter>

+ <CssParameter name="mode">multiply</CssParameter>

+ <CssParameter name="scaling">bilinear8</CssParameter>

+ </RasterSymbolizer>

+ </Rule>

+</Style>

+

+

+<Style name="contours10">

+ <Rule>

+ &maxscale_zoom14;

+ &minscale_zoom18;

+ <LineSymbolizer>

+ <CssParameter name="stroke">#844c44</CssParameter>

Geinformatics FCE CTU 2009 14

Bartoň R.: Custom OpenStreetMap Rendering --OpenTrackMap Experience

+ <CssParameter name="stroke-width">0.3</CssParameter>

+ </LineSymbolizer>

+ </Rule>

+</Style>

...

+

+<Layer name="hillshade" status="on" srs="&srs900913;">

+ <StyleName>shading</StyleName>

+ <Datasource>

+ <Parameter name="type">gdal</Parameter>

+ <Parameter name="file">&hillshade;</Parameter>

+ <Parameter name="format">tiff</Parameter>

+ </Datasource>

+</Layer>

+

+

+<Layer name="contours10" status="on" srs="+proj=latlong +datum=WGS84">

+ <StyleName>contours10</StyleName>

+ <StyleName>contours-text10</StyleName>

+ <Datasource>

+ <Parameter name="table">(SELECT way,height FROM contours WHERE height::integer % 10 = 0

+ AND height::integer % 50 != 0 AND height::integer % 100 != 0)

+ as "contours10"</Parameter>

+ &latlon-datasource-settings;

+ </Datasource>

+</Layer>

...

Only the style and layer for the contour lines with an elevation dividable by 10 meters and
displayed at higher zoom levels are showed in this article. Other styles and layers for the
contour lines with the elevation dividable by 50 and 100 meters and displayed only at lower
zoom levels can be found in a complete OpenTrackMap Mapnik stylesheet [52,53].

Hiking tracks of the CTC are marked with one of four colors: red, green, blue and yellow
[18,19,20]. They are mostly mapped using relations and tagged with kct red, kct green, kct blue
and kct yellow tags respectively. Some of the allowed values are major, local, learning, ski
and horse [54] depending on the type of the track. Slovak hiking tracks are tagged with
marked trail <color> counterparts of CTC-style tags and they are taken into account too.
Since the hiking tracks of different colors can go in parallel on the same road, special care has
to be taken to display them correctly and legibly.

The main problem about this is that road segments that are part of multiple hiking track rela-
tions of a different color has to be detected and rendered appropriately. The OpenTrackMap
face this problem by copying segments of relations with kct <color> tags to a new database
table of lines a using Python script [55]. Disadvantage of this solution is that it is not much
friendly to regularly performed incremental updates since whole table has to be recreated each
time the data are updated. Better option is to modify osm2pgsql tool to do this automatically
with each update and it is a space for further advancement.

The tracks are then rendered from the custom table with the copied segments and a default
table without the relations with following styles and layers using dashed lines of intermittent
colors:

...

+

+<Style name="red-green-track">

+ <Rule>

+ &maxscale_zoom13;

+ &minscale_zoom18;

Geinformatics FCE CTU 2009 15

Bartoň R.: Custom OpenStreetMap Rendering --OpenTrackMap Experience

+ <LineSymbolizer>

+ <CssParameter name="stroke">#dd0000</CssParameter>

+ <CssParameter name="stroke-opacity">0.7</CssParameter>

+ <CssParameter name="stroke-width">4</CssParameter>

+ <CssParameter name="stroke-dasharray">4,4</CssParameter>

+ </LineSymbolizer>

+ <LineSymbolizer>

+ <CssParameter name="stroke">#00dd00</CssParameter>

+ <CssParameter name="stroke-opacity">0.7</CssParameter>

+ <CssParameter name="stroke-width">4</CssParameter>

+ <CssParameter name="stroke-dasharray">0,4,4,0</CssParameter>

+ </LineSymbolizer>

+ </Rule>

+</Style>

...

+<Layer name="red-green-track" status="on" srs="&srs900913;">

+ <StyleName>red-green-track</StyleName>

+ <StyleName>red-shield</StyleName>

+ <StyleName>green-shield</StyleName>

+ <Datasource>

+ <Parameter name="table">((SELECT osm_id,way,route,name,ref,kct_red,kct_green,

+ marked_trail_red,marked_trail_green,

+ char_length(ref) AS length FROM &prefix;_line WHERE osm_id > 0 AND

+ ((kct_yellow IS NULL) AND (marked_trail_yellow IS NULL)) AND

+ ((kct_red IS NOT NULL) OR (marked_trail_red IS NOT NULL)) AND

+ ((kct_green IS NOT NULL) OR (marked_trail_green IS NOT NULL)) AND

+ ((kct_blue IS NULL) AND (marked_trail_blue IS NULL))) UNION

+ (SELECT osm_id,way,route,name,ref,kct_red,kct_green,

+ marked_trail_red,marked_trail_green,

+ char_length(ref) AS length FROM &prefix;_track_rels WHERE

+ ((kct_yellow IS NULL) AND (marked_trail_yellow IS NULL)) AND

+ ((kct_red IS NOT NULL) OR (marked_trail_red IS NOT NULL)) AND

+ ((kct_green IS NOT NULL) OR (marked_trail_green IS NOT NULL)) AND

+ ((kct_blue IS NULL) AND (marked_trail_blue IS NULL)))) as

+ red_green_track

+ </Parameter>

+ &datasource-settings;

+ </Datasource>

+</Layer>

...

This is the style and layer just for a red-green combination of the hiking track colors and
only for higher zoom levels. In the full stylesheet [52,53], there are styles and layers for all
combinations of four colors and for three ranges of the zoom levels, that is fifteen different
styles with three rules each.

Track type is visualized using shields with symbols placed on the lines:

...

+<Style name="red-shield">

+ <Rule>

+ <Filter>[kct_red]=’ski’</Filter>

+ &maxscale_zoom13;

+ &minscale_zoom18;

+ <ShieldSymbolizer name="osm_id" face_name="DejaVu Sans Bold" size="0"

+ placement="line" file= "&symbols;/kct-ski-red.png" type="png" width="16"

+ height="16" min_distance="10" spacing="100"/>

+ </Rule>

+ <Rule>

+ <Filter>[kct_red]=’horse’</Filter>

+ &maxscale_zoom13;

+ &minscale_zoom18;

+ <ShieldSymbolizer name="osm_id" face_name="DejaVu Sans Bold" size="0"

+ placement="line" file= "&symbols;/kct-horse-red.png" type="png" width="16"

+ height="16" min_distance="10" spacing="100"/>

Geinformatics FCE CTU 2009 16

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

+ </Rule>

+ <Rule>

+ <Filter>[kct_red]=’local’</Filter>

+ &maxscale_zoom13;

+ &minscale_zoom18;

+ <ShieldSymbolizer name="osm_id" face_name="DejaVu Sans Bold" size="0"

+ placement="line" file= "&symbols;/kct-local-red.png" type="png" width="16"

+ height="16" min_distance="10" spacing="100"/>

+ </Rule>

+ <Rule>

+ <Filter>[kct_red]=’learning’</Filter>

+ &maxscale_zoom13;

+ &minscale_zoom18;

+ <ShieldSymbolizer name="osm_id" face_name="DejaVu Sans Bold" size="0"

+ placement="line" file= "&symbols;/kct-learning-red.png" type="png" width="16"

+ height="16" min_distance="10" spacing="100"/>

+ </Rule>

+</Style>

...

An international hiking tracks rendering is easier to set up comparing to the local ones:

...

+

+<Style name="international-track">

+ <Rule>

+ <Filter>[route]=’foot’ and ([network]=’e-road’ or [network]=’nwn’ or [network]=’iwn’)</Filter>

+ &maxscale_zoom5;

+ &minscale_zoom8;

+ <LineSymbolizer>

+ <CssParameter name="stroke">#dd0000</CssParameter>

+ <CssParameter name="stroke-opacity">0.7</CssParameter>

+ <CssParameter name="stroke-width">2</CssParameter>

+ </LineSymbolizer>

+ </Rule>

+</Style>

...

+

+<Layer name="international-track" status="on" srs="&srs900913;">

+ <StyleName>international-track</StyleName>

+ <Datasource>

+ <Parameter name="table">

+ ((SELECT osm_id,way,route,name,ref,network,char_length(ref) AS length FROM &prefix;_line

+ WHERE osm_id > 0 AND

+ route=’foot’ AND (network=’e-road’ OR network=’nwn’ OR network=’iwn’)) UNION

+ (SELECT osm_id,way,route,name,ref,network,char_length(ref) AS length from &prefix;_track_rels

+ WHERE route=’foot’ AND (network=’e-road’ OR network=’nwn’ OR network=’iwn’)))

+ as international_tacks

+ </Parameter>

+ &datasource-settings;

+ </Datasource>

+</Layer>

...

Static Tile Rendering

For the static tiles rendering, a custom multithread version of a OpenStreetMap’s gener-
ate tiles.py Python script was written [56] because in early times of the OpenTrackMap
project existence, no such script was available. The multithreading was introduced to this
script as far as with changeset 17484 [57]. Rendering times for different zoom levels with the
OpenTrackMap Mapnik stylesheet are discussed in a section ”Experimental Results”.

Geinformatics FCE CTU 2009 17

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

On-Demand Tile Rendering

A mod tile [25] is an Apache module that allows us to serve, cache and render tiles with a
Mapnik in several layers using different XML stylesheets. It communicates with standalone
renderd daemon, that performs actual rendering, via sockets.

An Apache virtual host configuration for the Web server with the mod tile and statically
served tiles could look like this:

<VirtualHost *>

Virtual host configuration.

DocumentRoot /mnt/data/OpenTrackMap/

ServerName opentrackmap.no-ip.org

renderd configuration.

LoadTileConfigFile /etc/apache2/renderd.conf

ModTileRequestTimeout 60

ModTileMaxLoadOld 2

ModTileMaxLoadMissing 5

ModTileRenderdSocketName /var/run/renderd/renderd.sock

ModTileCacheDurationMax 604800

ModTileCacheDurationDirty 900

ModTileCacheDurationMinimum 10800

ModTileCacheDurationMediumZoom 14 86400

ModTileCacheDurationLowZoom 9 518400

ModTileCacheLastModifiedFactor 0.20

LogLevel debug

Location for index.html with OpenLayers interface.

<Location />

Allow From All

</Location>

Location for statically served tiles.

<Location /tiles/>

Allow From All

SetHandler DefaultHandler

</Location>

</VirtualHost>

The mod tile configuration comprehends a specification of a renderd configuration file and
several options for tuning caching behavior. Next is a root location where an index.html file
with the OpenLayers JavaScript interface is coded. The last location is directory with the
statically rendered tiles.

The renderd configuration file with a single on-demand rendered layer accessible under a
http://opentrackmap.no-ip.org/default/ URI is following:

[renderd]

socketname=/var/run/renderd/renderd.sock

num_threads=2

tile_dir=/mnt/data/OpenTrackMap/

stats_file=/var/run/renderd/renderd.stats

[mapnik]

plugins_dir=/usr/lib/mapnik/input

font_dir=/usr/share/fonts/

font_dir_recurse=1

[default]

URI=/default/

XML=/mnt/data/OpenTrackMap/osm.xml

HOST=opentrackmap.no-ip.org

Geinformatics FCE CTU 2009 18

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

Here, the socketname option must match the ModTileRenderdSocketName option in the
Apache virtual host configuration. To enable another layer, just the [default] section is needed
to be copied.

Since the mod tile is still quite a fresh project with its flaws, it is necessary to register a cron
job that looks after renderd daemon state:

TEST=‘ps -A | grep -w renderd‘

if [[-n $TEST]]

then

echo ‘date‘ ": OK" >> /var/log/apache2/renderd.log

else

echo ‘date‘ ": KO" >> /var/log/apache2/renderd.log

/etc/init.d/renderd restart

fi

Automatic Server Updates

The automatic server updates are necessary for a quick feedback during track editing. Map-
pers would like to see their edits in real render as soon as possible. Concerning a technical
restrictions, a database updated once per hour seems to be a good compromise. The main
problem with this is a question how to effectively import full and incremental data files of a
bounded area of Czech Republic. Also remember that the relations2lines.py script has to be
re-run each time the data are changed.

Full Update

There are three different possibilities for the full updates. A first is to import a planet file
[48] with an osm2pgsql tool and use its -b option to specify the bounding box limits. See a
full update osm2pgsql.py script [58] for details. A second is to bound data with an osmosis
tool and then import the result with the osm2pgsql. This is placed in a full update osmosis.py
script [59]. Finally, the third option is to use an already bounded OSM data from a publicly
available service such as [60,61] are.

First solution turned out to be too slow comparing to the osmosis way - 16:13 h vs. 1:50 h.
This is probably caused by a fact that a bounding algorithm implementation using memory
operations written in Java is much faster than a PostGIS implementation of it. Using the data
bounded by another developers has its drawbacks in higher delay to an official OpenSteetMap
database and in a need of knowing an exact timestamp and bounding area parameters of the
data. For this reasons, the second way is currently used in the OpenTrackMap project.

Incremental Updates

After a first full update is performed, another updates started with a regular interval can be
incremental to the full one. The osm2pgsql supports this feature but data has to be imported
in a so called slim mode which stores overhead information to additional tables. To bound
changeset data more ways are also possible. Using the osmosis tool to bound a changeset of
a larger area is not much efficient because the changeset is applied to an old full data first,
a new full data are bounded and then a bounded changeset is determined by comparison

Geinformatics FCE CTU 2009 19

Bartoň R.: Custom OpenStreetMap Rendering --OpenTrackMap Experience

with the old full data. On the other hand, this can be more optimal for smaller areas. An
incremental updates osm2pgsql.py script [62], that is utilized in the OpenTrackMap project,
uses direct changeset import with the osm2pgsql tool and with the -b option.

Practical Results

Figure 6: An OpenLayers based OpenTrackMap web interface. A baked layer with all
features displayed.

Figure 6. shows an OpenTrackMap full-featured statically served layer in a web browser on
a web page with an OpenLayers interface [44] while figure 7 shows a default OpenSteetMap
layer as a base layer and a layer with just hiking tracks rendered on-demand using the mod tile
as an overlay.

Figure 8. shows the OpenTrackMap full and tracks-only layers in a TangoGPS application
which can be run on an Openmoko Neo Freerunner mobile smartphone.

Finally, figure 9. presents the OpenTrackMap on a Sony Ericsson G705 cell phone with a
Java Mobile support in a Mobile GMaps application [63]. For this application simple wrapper
script that transforms Google URL scheme to SlippyMap scheme has to be written for the
web server:

from mod_python import apache

from mod_python.util import FieldStorage

def handler(req):

args = FieldStorage(req)

if args.has_key("zoom") and args.has_key("x") and args.has_key("y"):

req.internal_redirect("/tiles_hq/%d/%s/%s.png" % (17 - int(args["zoom"]),

args["x"], args["y"]))

Geinformatics FCE CTU 2009 20

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

Figure 7: An OpenLayers based OpenTrackMap web interface. A layer served from
OpenStreetMap displayed with a hiking tracks layer overlay rendered on-demand.

Figure 8: The full statically served layer (left) and the hiking tracks on-demand rendered
layer in a TangoGPS application.

return apache.OK

else:

return apache.HTTP_NOT_FOUND

Geinformatics FCE CTU 2009 21

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

Figure 9: The OpenTrackMap on a mobile device Sony Ericsson G705 in a Mobile GMaps
application.

Experimental Results

Few experiments with the generate tiles.py script [56] was performed. Their results are on
the figures 10., 11. and 12. While the first two show summarized rendering times (Y axis) in
minutes for rendering of tiles up to certain zoom level (X axis) in a linear and a logarithmic
scale, last figure displays average rendering time per tile in seconds depending on the maximal
zoom level rendered.

Figure 10: Rendering time in minutes dependence on a maximal zoom level rendered – a
linear scale.

Geinformatics FCE CTU 2009 22

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

Figure 11: Rendering time in minutes dependence on a maximal zoom level rendered – a
logarithmic scale.

Figure 12: Average tile rendering time in seconds dependence on a maximal zoom level
rendered.

All tests was done on an Intel Core 2 Duo 3 GHz machine with a 2 GB of RAM and two
processing cores using one and two rendering threads. A main finding about them is that
a parallel speedup of the two-thread rendering is not approaching 2 but it is approximately
1.56. This is because the one-thread rendering is already partially parallel since the Mapnik
rendering and a PostgreSQL database look-ups run in separate processes. It would be inter-
esting to try how would the parallel rendering scale on computers with more cores or in a

Geinformatics FCE CTU 2009 23

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

distributed environment.

The figure 12. also shows a rendering complexity of a displayed data on each zoom level.
Levels 8 to 11 are slow for they render large areas of a hill shading layer. There is rising
rendering time for levels 13 and 14 because on those levels more detailed data are being
exposed.

Conclusion and Future Work

Although the OpenTrackMap project is existing only for four months, it has already fulfilled
most of its resolutions. Yet, a lot of things can be done or improved. Namely they are the
following:

� More interesting point objects of a different kind could be displayed.

� A full and stable support for the automatic hourly updates is not finished yet.

� Another source of the elevation data with a better void data fill could be searched for.

� A KML based raster image and/or vector data service (to be used in Google Earth)
could be established.

� Rendering and data import process could be optimized.

� Overall quality of the service including the OpenLayers interface could be improved.

Only time and interest of OpenTrackMap’s users can make those requests real.

References

1. OpenStreetMap Homepage
http://www.openstreetmap.org

2. Czech Tourist Club Homepage
http://www.klubturistu.cz/

3. OpenTrackMap Homepage
http://opentrackmap.no-ip.org

4. Tile Map Service Specification
http://wiki.osgeo.org/wiki/Tile Map Service Specification

5. Wikipedia – Web Map Service
http://en.wikipedia.org/wiki/Web Map Service

6. Open Geospatial Consorcium, Inc. – Web Map Service
http://www.opengeospatial.org/standards/wms

7. OpenStreetMap – Slippy Map
http://wiki.openstreetmap.org/wiki/Slippy map

8. Wikipedia – Geocoding
http://en.wikipedia.org/wiki/Geocoding

Geinformatics FCE CTU 2009 24

http://www.openstreetmap.org
http://www.klubturistu.cz/
http://opentrackmap.no-ip.org
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
http://en.wikipedia.org/wiki/Web_Map_Service
http://www.opengeospatial.org/standards/wms
http://wiki.openstreetmap.org/wiki/Slippy_map
http://en.wikipedia.org/wiki/Geocoding

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

9. Mapy.cz (CZ)
http://mapy.cz/

10. Openmoko
http://wiki.openmoko.org/

11. openstreetmap.cz (CZ)
http://openstreetmap.cz/

12. Freemap Slovakia
http://www.freemap.sk/

13. OSMC Reit- und Wanderkarte
http://topo.geofabrik.de

14. OpenCyclemap
http://opencyclemap.org

15. http://beta.letuffe.org
http://beta.letuffe.org

16. Freemap
http://www.free-map.org.uk

17. OpenPisteMap
http://openpistemap.org

18. Klub českých turist̊u – Pěš́ı značeńı (CZ)
http://www.klubturistu.cz/?oid=10191

19. Klub českých turist̊u – Lyžařské značeńı (CZ)
http://www.klubturistu.cz/?oid=10192

20. Klub českých turist̊u – Cyklo značeńı (CZ)
http://www.klubturistu.cz/?oid=10193

21. Mapnik
http://mapnik.org/

22. Mapnik – Mapnik Configuration XML
http://trac.mapnik.org/wiki/XMLConfigReference

23. Cascadenik
http://code.google.com/p/mapnik-utils/wiki/Cascadenik

24. Mapnik – Mapnik Viewer
http://trac.mapnik.org/wiki/MapnikViewer

25. OpenStreetMap – mod tile
http://wiki.openstreetmap.org/index.php/Mod tile

26. TileLite
http://bitbucket.org/springmeyer/tilelite/wiki/Home

27. OpenStreetMap – .osm
http://wiki.openstreetmap.org/wiki/.osm

Geinformatics FCE CTU 2009 25

http://mapy.cz/
http://wiki.openmoko.org/
http://openstreetmap.cz/
http://www.freemap.sk/
http://topo.geofabrik.de
http://opencyclemap.org
http://beta.letuffe.org
http://www.free-map.org.uk
http://openpistemap.org
http://www.klubturistu.cz/?oid=10191
http://www.klubturistu.cz/?oid=10192
http://www.klubturistu.cz/?oid=10193
http://mapnik.org/
http://trac.mapnik.org/wiki/XMLConfigReference
http://code.google.com/p/mapnik-utils/wiki/Cascadenik
http://trac.mapnik.org/wiki/MapnikViewer
http://wiki.openstreetmap.org/index.php/Mod_tile
http://bitbucket.org/springmeyer/tilelite/wiki/Home
http://wiki.openstreetmap.org/wiki/.osm

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

28. OGR Simple Feature Library
http://www.gdal.org/ogr/

29. GDAL – Geospatial Data Abstraction Library
http://www.gdal.org/

30. Mapnik – Mapnik Renderers
http://trac.mapnik.org/wiki/MapnikRenderers

31. OpenStreetMap – Osmarender
http://wiki.openstreetmap.org/wiki/Osmarender

32. tiles@home
http://tah.openstreetmap.org/

33. Kosmos Home
http://igorbrejc.net/kosmoshome

34. Shuttle Radar Tophgraphy Mission
http://www2.jpl.nasa.gov/srtm/

35. U. S. Geological Survey – Shuttle Radar Topography Mission
http://srtm.usgs.gov/

36. Global Land Cover Facility – Shuttle Radar Tophgraphy Mission
http://www.landcover.org/data/srtm/

37. ASTER Global Digital Elevation Model
http://www.gdem.aster.ersdac.or.jp/

38. OpenStreetMap – Component Overview
http://wiki.openstreetmap.org/wiki/Component overview

39. PostgreSQL
http://www.postgresql.org/

40. PostGIS
http://postgis.refractions.net/

41. OpenStreetMap – osm2pgsql
http://wiki.openstreetmap.org/wiki/Osm2pgsql

42. OpenStreetMap – mod tile
http://wiki.openstreetmap.org/index.php/Mod tile

43. Wikipedia – AJAX
http://en.wikipedia.org/wiki/Ajax (programming)

44. OpenLayers
http://openlayers.org/

45. OpenStreetMap – osmosis
http://wiki.openstreetmap.org/wiki/Osmosis

46. OpenStreetMap – Mapnik
http://wiki.openstreetmap.org/wiki/Mapnik

Geinformatics FCE CTU 2009 26

http://www.gdal.org/ogr/
http://www.gdal.org/
http://trac.mapnik.org/wiki/MapnikRenderers
http://wiki.openstreetmap.org/wiki/Osmarender
http://tah.openstreetmap.org/
http://igorbrejc.net/kosmoshome
http://www2.jpl.nasa.gov/srtm/
http://srtm.usgs.gov/
http://www.landcover.org/data/srtm/
http://www.gdem.aster.ersdac.or.jp/
http://wiki.openstreetmap.org/wiki/Component_overview
http://www.postgresql.org/
http://postgis.refractions.net/
http://wiki.openstreetmap.org/wiki/Osm2pgsql
http://wiki.openstreetmap.org/index.php/Mod_tile
http://en.wikipedia.org/wiki/Ajax_(programming)
http://openlayers.org/
http://wiki.openstreetmap.org/wiki/Osmosis
http://wiki.openstreetmap.org/wiki/Mapnik

Bartoň R.: Custom OpenStreetMap Rendering – OpenTrackMap Experience

47. OpenStreetMap – Mapnik – PostGIS
http://wiki.openstreetmap.org/wiki/Mapnik/PostGIS

48. planet-lastest.osm.bz2
http://planet.openstreetmap.org/planet-latest.osm.bz2

49. Remote Sensing at ITC-irst – MPA Group – SRTM Shutte Radar Topography Mission
http://mpa.itc.it/rs/srtm/

50. GDAL-Based DEM Utilities
http://www.perrygeo.net/wordpress/?p=7

51. OpenStreetMap – osm.xml1

52. OpenTrackMap – osm.xml
http://blackhex.no-ip.org/browser/OpenTrackMap/mapnik/osm.xml

53. OpenTrackMap – osm.xml.diff
http://blackhex.no-ip.org/browser/OpenTrackMap/mapnik/osm.xml.diff

54. OpenStreetMap – WikiProject Czech Republic – Editing Standards and Conventions –
Turistické značeńı2

55. OpenTrackMap – relations2lines.py
http://blackhex.no-ip.org/browser/OpenTrackMap/bin/relations2lines.py

56. OpenTrackMap – generate tiles.py
http://blackhex.no-ip.org/browser/OpenTrackMap/mapnik/generate tiles.py

57. OpenStreetMap – generate tiles.py – Changeset 174843

58. OpenTrackMap – full update osm2pgsql.py4

59. OpenTrackMap – full update osmosis.py
http://blackhex.no-ip.org/browser/OpenTrackMap/bin/full update osmosis.py

60. Geofabrik: Downloads
http://www.geofabrik.de/data/download.html

61. CloudMade: Downloads
http://downloads.cloudmade.com/

62. OpenTrackMap – incremental update osm2pgsql.py5

63. Mobile GMaps
http://www.mgmaps.com/

1http://trac.openstreetmap.org/browser/applications/rendering/mapnik/osm.xml?format=raw
2http://wiki.openstreetmap.org/wiki/WikiProject Czech Republic/Editing Standards and \

Conventions#Turistick.C3.A9 zna.C4.8Den.C3.AD
3http://trac.openstreetmap.org/changeset/17484/applications/rendering/mapnik/generate t \

iles.py
4http://blackhex.no-ip.org/browser/OpenTrackMap/bin/full update osm2pgsql.py
5http://blackhex.no-ip.org/browser/OpenTrackMap/bin/incremental update osm2pgsql.py

Geinformatics FCE CTU 2009 27

http://wiki.openstreetmap.org/wiki/Mapnik/PostGIS
http://planet.openstreetmap.org/planet-latest.osm.bz2
http://mpa.itc.it/rs/srtm/
http://www.perrygeo.net/wordpress/?p=7
http://trac.openstreetmap.org/browser/applications/rendering/mapnik/osm.xml?format=raw
http://blackhex.no-ip.org/browser/OpenTrackMap/mapnik/osm.xml
http://blackhex.no-ip.org/browser/OpenTrackMap/mapnik/osm.xml.diff
http://wiki.openstreetmap.org/wiki/WikiProject_Czech_Republic/Editing_Standards_and_Conventions#Turistick.C3.A9_zna.C4.8Den.C3.AD
http://wiki.openstreetmap.org/wiki/WikiProject_Czech_Republic/Editing_Standards_and_Conventions#Turistick.C3.A9_zna.C4.8Den.C3.AD
http://blackhex.no-ip.org/browser/OpenTrackMap/bin/relations2lines.py
http://blackhex.no-ip.org/browser/OpenTrackMap/mapnik/generate_tiles.py
http://trac.openstreetmap.org/changeset/17484/applications/rendering/mapnik/generate_tiles.py
http://blackhex.no-ip.org/browser/OpenTrackMap/bin/full_update_osm2pgsql.py
http://blackhex.no-ip.org/browser/OpenTrackMap/bin/full_update_osmosis.py
http://www.geofabrik.de/data/download.html
http://downloads.cloudmade.com/
http://blackhex.no-ip.org/browser/OpenTrackMap/bin/incremental_update_osm2pgsql.py
http://www.mgmaps.com/

Geinformatics FCE CTU 2009 28

