
GAL Framework – Current State of the
Project

Radek Bartoň, Martin Hrubý
Faculty of Information Technology

Brno University of Technology
E-mail: xbarto33@stud.fit.vutbr.cz, hrubym@fit.vutbr.cz

Keywords: design, GIS, GRASS, open source, library, dynamic language, remote procedure
call

Abstract

The GAL (GIS Abstraction Layer) Framework is a component-architecture-oriented1 remote
procedure call (RPC) library with implementations of GIS-related subsystems communicating
using the library and a set of demonstrational and testing tools utilizing that services. It
doesn’t aim to be a full-featured solution for GIS application construction but a proposal
for possible incremental GRASS GIS2 modernization. This article summarizes current state
of the project, it’s history, application and potential and also presents options for further
advancement and areas of possible participation. Only a concern of other developers or users
and the time may transform this idea into something practically usable.

History and Motivation

The project was originated as an article author’s master degree diploma thesis at the Fac-
ulty of Information Technology of the Brno University of Technology in February 2007. It
was intended to be a higher-level abstraction layer above GRASS GIS core libraries from the
beginning allowing rapid and clear GRASS module development. It also allows sequential
exchange of the current implementations with the new ones if used communication interfaces

1http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture
2http://grass.osgeo.org/

Geinformatics FCE CTU 2008 5

http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture
http://grass.osgeo.org/


GAL Framework – Current State of the Project

would be well-designed and preserved. This could help during possible GRASS GIS inno-
vation procedure. Support of distributed computing and dynamic language facilitation was
contemplated too.

An initial stage of project realization was to design core communication mechanisms and
lasted until July 2007 when the first steps to implement them was started. The library
design was introduced on the last year’s volume3 of Geoinformatics FCE CTU Workshop.
Further information about project creation motivation in consequence to GRASS’s internal
organization was discussed there also.

Main development of the framework, including the design of introductory general-purpose,
raster display and raster processing interfaces, was performed during the first half of year 2008
until the end of May when the project was presented in front of a diploma thesis commission.
But the development did not stop since then and it may continue further if there will be
enough of interest.

Current State

The library is divided into several subsystems which are developed in parallel to allow imple-
mentation of certain features of example tools. These are mainly but not lastly a reimplemen-
tation of d.mon module functionality and a real-time 3D visualization tool called d.roamer
similar to the nviz but with emphasis on interactivity. This paragraph will tell a few words
about progress of each of the subsystems; designed interfaces and implemented modules are
discussed in next paragraphs.

Generally can be said about these subsystems that GRASS’s libraries has been used in their
implementation everywhere it was feasible but a possibility of their replacement with different
implementations has always been kept in mind.

Core Subsystem

This part of library defines basic ways of communication between the components through
the interfaces, abstracts used event processing libraries to a single event loop and provides
a general model for RPC based subsystems such as a D-Bus4 subsystem is. What do the

”component“ and the ”interface“ terms mean in context of the GAL Framework and what is
the ”component architecture“ was explained the last year5 or can be found in this document6.

The core subsystem is naturally the most evolved part of the framework. Only things that
should be done here are a proper event processing loop implementation since current one is
quite naive and a user (module programmer) comfortance improvements which are not crucial
in this stage of evolvement.

Exception Subsystem

3http://geoinformatics.fsv.cvut.cz/gwiki/GAL Framework
4http://www.freedesktop.org/wiki/Software/dbus
5http://geoinformatics.fsv.cvut.cz/gwiki/GAL Framework
6http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture

Geinformatics FCE CTU 2008 6

http://geoinformatics.fsv.cvut.cz/gwiki/GAL_Framework
http://www.freedesktop.org/wiki/Software/dbus
http://geoinformatics.fsv.cvut.cz/gwiki/GAL_Framework
http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture


GAL Framework – Current State of the Project

It contains an exception objects’ class hierarchy so far. The exceptions are generally used as
the only one mechanism for an error state signalization occured during the communication
between the components.

A local exception evocation and processing is provided natively by GCC but an exception
passage through D-Bus message bus is not working yet.

D-Bus Subsystem

The only one RPC communication implementation present is the D-Bus subsystem. The
D-Bus library was chosen because of its simplicity and desktop systems orientation, but it’ll
be probably replaced with an ORBit2 implementation of a CORBA architecture in the future
for its robustness.

Current implementation allows only single process act as a server which provides components
with interface implementations. This have to be changed so that any number of processes
will be accessible to any client module soon.

General Subsystem

Together with the core, the exception and the D-Bus subsystems, general subsystem can be cut
out and reused in any other project needing component architecture implementation, because
it contains general purpose objects, interfaces and components. For example a command-line
argument parsing and an environment variables management is located here.

The subsystem is quite solid, only a module arguments documentation strings access has to
be improved. This however doesn’t mean that it doesn’t need other extensions. If there will
occur any new requirements for general functionality, their concretization may be inserted
here.

GIS Subsystem

This subsystem should include all instruments to GIS related computations. Currently it has
only information about active user and default region and their control. Possible algorithms
for a map projection or general GIS data transformation are waiting for their introduction.

Raster Subsystem

It comprehends everything about raster data access, manipulation and conversion. Raster
architecture is designed so that data are accessed by tiles. Request for tile contains desired
dimensions, position and resolution of the tile in a layer region object. Colour rules and a
colour table for data presentation are associated with the returned tile similarly like in the
GRASS. Actual data storage is currently kept in GRASS’s competence using a GRASSlib
library.

A present design of the raster data representation is quite initiatory and and it needs an
adequate degree of revision from the outside with proper modifications. Hence any comments

Geinformatics FCE CTU 2008 7



GAL Framework – Current State of the Project

or suggestions would be positive and convenient contribution. If progress of the project allows
practical usage of the library along with the GRASS, new implementations of the raster data
storage may be added. Some examples of data analysis modules should be implemented too.

Display Subsystem

Raster data are passed to this part of the framework and displayed. A basic element of
this process is a raster image object defined by its dimensions, number of channels and bit
depth. First present component implementing raster data visualization emulates d.mon’s eight
monitors but it uses Qt 4.x for window management and OpenGL for rendering, second is a
d.roamer’s module component which displays raster data as 3D scene with terrain. Vector
data display isn’t currently elaborated.

Dynamic Languages Bindings

To allow easy development of modules written in scripting or dynamic languages, SWIG7

wrapper generator was employed. Existing bindings are targeted to Python and Java.

Unfortunately, technical difficulties with dynamic and heterogeneous nature of the designed
communication methodology leaded to many customizations of the wrapper and some lim-
itations. For example a server-side module development in dynamic languages is for now
impossible without using D-Bus communication. This can be translated as: ”It is not possi-
ble to call Python/Java code from C++ code directly.“ Possibility to write client-side modules,
which is the main reasonable dynamic languages usage, is though available.

Designed and Implemented Interfaces

Although this article shouldn’t serve as the library reference, some important communication
interfaces should be listed and explained here to get image about GAL Framework approaches.
Interfaces are actually designed as interface objects which holds an interface configuration
state (list of available functions with their signatures, a way of communication, etc.) and
which are imported to a module on demand from the GAL core. INodeController – is basic
interface for independent process management from outside. It’s mainly used internally, for
example d.quit module calls process termination function of this interface. Other functions
will serve for communication negotiation.

� IRasterDisplayer – displays any raster image on a monitor. This can be tiles of raster
layer or simply any raster image (legend, icon, etc.).

� IRasterLayerDisplayer – allows direct display of a raster layer on the monitor. This
may help to reduce unnecessary computations for better performance and and lets a
monitor handler to record a list of raster layer display requests.

� IRasterLayerProvider – gives tiled access to GIS raster data. Current implementa-
tion uses GRASS libraries for low-level data manipulation.

7http://www.swig.org/

Geinformatics FCE CTU 2008 8

http://www.swig.org/


GAL Framework – Current State of the Project

� IEnvironmentProvider – provides different storages for global variables. Present
implementations are volatile memory, GRASS mapset configuration and GRASS global
configuration storage.

Example Tools

A few modules known from the GRASS GIS was developed to test and demonstrate func-
tionality of designed and implemented interfaces. They are described here.

g.gald, g.quit, g.list and g.gisenv

Some modules from a general category was rewritten as tests of the designed interfaces. They
are a g.list and a g.gisenv. In addition, a g.gald and a g.quit modules was introduced.
Figure 1. shows example of their usage. First the g.gald module, which provides all available
functionality implementation, is executed as a daemon. Then the g.list is used to list raster
layers of a mapset and the g.gisenv module displays defined environment variables. Finally,
the g.quit module terminates the running g.gald module.

Figure 1: Some modules from general category.

d.mon, d.move, d.resize and d.rast

User interface of reimplemented d.mon module is shown on the Figure 2. The d.mon module
actually only gives order to show a monitor to the waiting g.gald process which performs
own monitor window display. It is the same with d.rast module that reads raster data from
GRASS and sends them to g.gald. Other controlling modules the d.move and the d.resize
tell the g.gald to move or resize the window.

Geinformatics FCE CTU 2008 9



GAL Framework – Current State of the Project

Figure 2: d.mon module in action.

d.roamer

The last presented module is called a d.roamer and it allows the user to fly over a visualized
terrain in real-time. It’s screenshots can be found on Figure 3. and 4. The first shows the
terrain rendered with full faces, the second uses wireframe. This demonstrates used level of
detail algorithm called geo mip-mapping.

Figure 5. contains diagram of internal communication between d.roamer and d.rast modules
using the framework. Analogously as with the g.gald, d.mon and d.rast modules in previous
paragraph, data are read form GRASSRasterLayerProvider component and pased through
IRasterLayerProvider and IRasterDisplayer interfaces to d.roamer’s RoamerComponent
component.

Areas of Future Development

As you may notice, vector subsystem is not present in the framework at all yet. The expla-
nation is that it was not necessary to focus on so complex area as vector data architecture
is for the prove of concept of proposed and designed communication strategy. Hopefully, de-
cent vector implementation will be result of Bc. Jan Kittler’s master thesis whom the article
author is cooperating with. He should design new internal and external representation of
vectors and some analytical tools with user interface. Core parts should be implemented in
C++, analysis tools and user interface in C#. This will introduce need of C# bindings for
GAL Framework.

Geinformatics FCE CTU 2008 10



GAL Framework – Current State of the Project

Figure 3: d.roamer module interface with full-faced terrain.

Figure 4: d.roamer module interface with wireframe terrain.

Geinformatics FCE CTU 2008 11



GAL Framework – Current State of the Project

Figure 5: Architecture of d.roamer module.

Because of huge scale of project’s extent, another outside contribution would be more than
welcomed. Safe multi-thread processing of events in loop including thread-safe access to any
internal data of the library may be elaborated. Better raster architecture as long as any
number of raster or vector data format implementations may be added. And finally, new
modules using GAL Framework may be developed. Bachelor or Diploma theses on that
themes could be published.

Some Statistics

� 20 months of development of single person.

� 9000 code lines (according to http://www.ohloh.net/projects/9183/analyses/latest).

� 6500 comment lines (mainly Doxygen documentation).

� C++ as main language, Python and Java bindings.

� 41 commits to SVN repository (svn://gal-framework.no-ip.org:3691).

� Depends on D-Bus, libxml2, libgcj or libffi, Qt 4.x, SoTerrain8 and GRASSlib libraries
(some optionally).

� Homepage is Trac instance at http://gal-framework.no-ip.org.

8http://blackhex.no-ip.org/wiki/SoTerrain

Geinformatics FCE CTU 2008 12

http://www.ohloh.net/projects/9183/analyses/latest
http://blackhex.no-ip.org/wiki/SoTerrain
http://gal-framework.no-ip.org


GAL Framework – Current State of the Project

References

1. Christopher Lenz, Dave Abrahams and Christian Boos. Trac Component Architecture
http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture, July 2007.

2. Radek Bartoň and Martin Hrubý. GAL Framework. In Proceedings of the workshop
Geoinformatics FCE CTU 2007. Czech Technical University in Prague, September 2007.

3. GRASS Development Team. GRASS GIS. http://grass.itc.it.

4. freedesktop.org. D-Bus. http://www.freedesktop.org/wiki/Software/dbus.

5. SWIG. Simplified Wrapper and Interface Generator. http://www.swig.org.

6. Radek Bartoň. SoTerrain. http://blackhex.no-ip.org/wiki/SoTerrain, October 2007.

Geinformatics FCE CTU 2008 13

http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture
http://grass.itc.it
http://www.freedesktop.org/wiki/Software/dbus
http://www.swig.org
http://blackhex.no-ip.org/wiki/SoTerrain


Geinformatics FCE CTU 2008 14


