
Moebius: An interface to web map services

David Procházka*, Jana Procházková**
* Dep. of Informatics, Faculty of Business and Economics, Mendel University in Brno

** Dep. of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology
prochazka@pef.mendelu.cz

Keywords: Indexing, Searching, Web Map Service

Abstract

Our article presents a concept of a geospatial search engine based on a Web Map Service
(WMS) compliant virtual mapserver. This virtual mapserver is able to index mapservers
based on the WMS standard and create an unified interface to all shared map layers. Our
presented approach also allows to search the map layers within the virtual mapserver and
process the results directly in GIS tools.

Introduction

We could recognize two basic approaches for retrieving some files or more generally a piece of
information: searching and classification. Searching is a widely used method and is replacing
the classification approach in many applications (for instance retrieval of a relevant web
page). In geoinformatics however, ontological classification is dominantly used: metadata
catalogs (http://mis.cenia.cz), semantic rules (see [1], [2]), etc. Although these methods have
some benefits, they also have many drawbacks: 1. Catalogues and other ontologically based
approaches require manual administration (delays in actualization, limited range, etc.). 2. It
is hard to classify geodata into a fix set of categories because on every layer is possible to look
from many aspects (origin, resolution, coverage, content). For an overview of currently used
approaches see [3] or [4].

Generally, these approaches are not solving the basic problem: geodata is spread across the
Internet on many mapservers and it is usually a preliminary problem to find these mapservers,
for this reason, there is a need for a geospatial version of a search service such as Google
(http://www.google.com), Jyxo (http://www.jyxo.cz) or similar engines. Nowadays geodata
is usually published through different map services, therefore we have focused on them. The
presented search engine is using OpenGIS standards for communication, especially the Web
Map Service (see [5]).

Geinformatics FCE CTU 2008 39

http://mis.cenia.cz
http://www.google.com
http://www.jyxo.cz

Moebius: An interface to web map services

Geospatial search service

The presented solution has three basic parts: First an indexing engine to find as many
mapservers as possible. Indexing must be as autonomous as possible because manual admin-
istration would quickly become the bottleneck of the engine. Secondly it is necessary to create
a unified interface to them. For this purpose we have designed a virtualization engine. The
third part is a search engine working with given indices. Such engine must be very simple
and intuitive (e.g. like Google). The following sections present the basic structure of these
components.

Indexing tool

Indexing tool (called Indexer) is a web service written in Python. To start the Indexer it must
be given the address of the indexed mapserver. It then sends a GetCapabilities request to
the given mapserver and decomposes the resulting XML file. Pieces of information connected
directly to the map layer (bounding box, name, title, ...) are integrated with information valid
for more layers. For instance the Abstract of the mapset (or the mapserver itself) is valid for
all layers in the mapset. Therefore the index of each layer must contain this information.
Result of this process is an index with following structure.

� NickName – unique identification string, composition of the name of the map layer
(unique within the mapserver) and unique identification of a mapserver (it is chosen
during indexing, usually it is part of URL – result is e. g. lakes@mapserver.water.gov),

� Name – name of the layer (content of name element),

� WMS – version of WMS supported by the mapserver, taken from the head of the
GetCapabilities file,

� Address – URL of the mapserver where the layer is stored, hence it is also the URL
used for the GetMap requests, again taken from the head of the GetCapabilities file,

� Access – access mode to the layer, there are three options: all (everyone is able to
access this layer), black (everyone except for users from IP addresses on a blacklist),
white (users from IP addresses on a whitelist only), used for security reasons,

� Descriptions – contain the content of Title elements in Layer elements (description of
the layer or mapset) and usually also from the head of the GetCapabilities file,

� Abstracts – list of Abstracts taken from the head of the GetCapabilities file and in-
stances of Layer element,

� SRSs – list of supported coordinate systems,

� BoundingBoxes and LatLonBoundingBox – define the bounding box of the layer,

� MinScale and MaxScale – maximal and minimal scale of the layer, taken from the
lowest instance of Layer element (could be replaced or extended by ScaleHint element),

� Formats – list of supported output formats, taken from the head of the GetCapabilities
file,

Geinformatics FCE CTU 2008 40

Moebius: An interface to web map services

� Opaque and Queriable – same meaning as in GetCapabilities file, values are taken
from the lowest instance of Layer element,

� Styles – list of Styles – names of NamedStyles known to the WMS and appliable to this
layer.

All described pieces of metadata are given by the WMS itself. As there exists no unified
metadata system for geospatial data, it is not possible to rely on information stored in meta-
data files using different formats. But there are enough different elements in GetCapabilities
documents to provide complex information about a map layer. The basic problem is that
these elements are frequently not used. Abstracts and descriptions are very brief, information
about supported resolutions, accuracy, etc. is usually completely missing. From our point of
view the situation is slowly getting better, but there is still enough place for improvements.

Currently it is necessary to pass the URL of some mapserver to the Indexer. Appropriate
indices are created automatically. For higher performance the indexing tool should be ac-
companied by some kind of a web crawler for automatic mapserver discovery as described
in [6].

It is necessary to emphasize that the contents of the indices have to be checked periodically.
There are two possible control approaches. The first one checks just the existence of the layer.
This could frequently be done by a GetMap request on some small part of the layer. The
second approach could be called ”reindexing”: If a newly created index entry matches to an
old one, the contents must be the same or otherwise it is necessary to replace the entry.

Virtualization tool

There are many approaches in virtualization (or rather aggregation) of web services. Probably
the most successful projects are GIDB [6] and GeoBrain [7], [8]. In our project a different
approach is used. The concept is described in more detail in [4]. The standard “old-style”
approach is to create lists of mapserver URL or create a WMS interface to them (GIDB).
But still we have a number of different mapservers. In our approach we are merging layers
from all indexed layers together into one huge virtual mapserver. Such a mapserver contains
no data, the virtual layers are generated from the indices stored in the database.

It is obvious, that every WMS compliant mapserver must be able to respond on GetMap and
GetCapabilities requests. Following section describes the implementation of these requests in
our virtual mapserver called Moebius.

GetCapabilies

The implementation of the GetCapabilities request is straight forward: The Moebius has
the indices that contain all information necessary for generation of the GetCapabilities (GC)
documents. Therefore the response is in fact a translation of the indices into a GC file. The
first part of the GC file contains information about the Moebius (supported formats, address
of the service, contact information, etc.). These information is stored in a configuration
file. The second part is generated by the translation method. Indices are stored in current
implementation in an XML, therefore an parser generates just slightly different XML tree

Geinformatics FCE CTU 2008 41

Moebius: An interface to web map services

according to the GC DTD.

Figure 1: uDig application with our virtual mapserver Moebius. In the bottom window is
displayed the content of the Moebius map service.

GetMap

Every GetMap request must be decomposed according to the number of requested layers. For
every requested layer is a new GetMap request executed. This request is sent to the real
mapserver. The response – an image – is stored by the Moebius. After the mapservers have
returned all requested images, the Moebius merges them into one. This image is returned
to the client. It is obvious that the client does not know that it is in fact receiving data
originating from different mapservers (see Fig. 2).

Figure 2: Scheme of the GetMap request implementation in the Moebius

Geinformatics FCE CTU 2008 42

Moebius: An interface to web map services

An example using layers from two mapservers:

example URL1

and the result is the following single image (Fig. 3).

Figure 3: Example of a GetMap request with layers from two different mapservers.

Search engine

A web page is a common approach for searching the web. This approach, however usually
effective, is inconvenient in this situation. Let us suppose that a user formulates a question
and receives an answer in form of some list of links. There is an significant disadvantage in
such a response: In case the user wants to add some layers into his project in a GIS, it will
be necessary to copy the addresses of mapservers, names of the layers, etc. Therefore we have
designed a completely different solution.

The basic idea of our approach is: if GetCapabilities means ”return all available layers”, there
should be an another request FindMap which means ”return me layers which fulfil given
criteria”. The response on such a request should be again a GetCapabilities file,
just with limited amount of layers. This approach allows to process the response directly in
a GIS application because every response is in fact from the GIS application point of view an
independent WMS mapserver.

Structure of FindMap request

1http://echo.mendelu.cz/cgi-bin/moebius/moebius.py?service=wms&version=1.1.1&request=g \
etmap&layers=topp:tdwg level 1@edit3.csic.es,Radarsat 1000@cgkn.net&srs=EPS \
G:4326&bbox=-180,-90,180,90&styles=&format=image/png&width=500&height=400&

Geinformatics FCE CTU 2008 43

http://echo.mendelu.cz/cgi-bin/moebius/moebius.py?service=wms\&version=1.1.1\&request=getmap\&layers=topp:tdwg_level_1@edit3.csic.es,Radarsat_1000@cgkn.net\&srs=EPSG:4326\&bbox=-180,-90,180,90\&styles=\&format=image/png\&width=500\&height=400\&

Moebius: An interface to web map services

The FindMap request is similar to other WMS requests. Parameters allow the user to formu-
late a question for what he is searching for and where it should be. This can be done using
the following attributes:

� request=FindMap – identification of the request, should be mandatory or optional
(depend on implementation of the service),

� words=keyword,keyword,... – list of keywords which are searched in the indices,
mandatory,

� bbox=minx,miny,maxx,maxy – bounding box for searching, mandatory,

� operator=and,or – defines relation between keywords, optional (default value is “or”),

� version=1.0.0 – version of request, currently not used, just for the future development,

� exceptions=exception format – defines format of exceptions, optional,

� abstract=0..n – number from 0 to n which represents the significance of instances
of keywords in this part of the index (0 – abstract is not used in the calculation, n –
abstract has the highest significance),

Example of such a FindMap request is:

example URL2

The response is an appropriate part of the GetCapabilities document of the Moebius with
layers for a given part of China.

From the request (especially the bounding box part) it is obvious that user assumes that
there exists only one place called ”Three Gores” and that he does’t know where this place is.
Therefore he is searching the whole Earth.

More usual is the second application of this service, where the user is searching on some specific
part of the Earth. For example: If a user is searching for the coast of Iberian peninsula, it
is possible to search for keywords ”coast” and ”Iberian”/”Iberian peninsula” on the whole
Earth or for ”coast” just above the appropriate peninsula.

1. example URL3

2. example URL4

The second approach is obviously much more effective. On a mapserver in Spain or Portugal
there will be probably a layer called ”coast”, but it is much less probable, that this layer will
be called ”Iberian coast”. Moreover the coast looked for could be part of a greater layer –
e. g. a European coast layer. It is obvious that in this case searching for ”Iberian coast” is
ineffective.

Search method and calculation of the relevance
2http://echo.mendelu.cz/cgi-bin/moebius/search.py?words=Three,Gorges&operator=and&bbox \

=-180,-90,180,90
3http://echo.mendelu.cz/cgi-bin/moebius/search.py?words=iberian,coast&operator=and&bbo \

x=-180,-90,180,90
4http://echo.mendelu.cz/cgi-bin/moebius/search.py?words=coast&bbox=-16,42,10,36

Geinformatics FCE CTU 2008 44

http://echo.mendelu.cz/cgi-bin/moebius/search.py?words=Three,Gorges\&operator=and\&bbox=-180,-90,180,90
http://echo.mendelu.cz/cgi-bin/moebius/search.py?words=iberian,coast\&operator=and\&bbox=-180,-90,180,90
http://echo.mendelu.cz/cgi-bin/moebius/search.py?words=coast\&bbox=-16,42,10,36

Moebius: An interface to web map services

Probably the widest spread method used for searching is Inverted Index (see [9], [10] and many
others). A great advantage of this approach is its simplicity. Inverted Index method is used
by Google and many other search engines. The gist is building records which contain touples
– a keyword and its instances in documents (e.g. golf is in documents 1, 7 and 9). Usually the
records also contain information about position or positions of the keyword in the document
(golf appears in document 1 on positions 7, 25 and 78). This method is frequently extended
with a thesaurus, dictionary and other improvements. Important for implementation is, that
these improvements can be added independently.

Inverted Index based methods do not reflect the semantic meaning of documents. If a user
is searching for the word ”Golf”, they are only able to find documents containing this word.
Usually they are not able to recognize the difference between golf (sport) and Volkswagen Golf
(car). Some engines (such as Google) are using the history to guess the semantic meaning of
a question (e.g. a user is usually asking for information about cars). But what if there is a
page about Tiger Woods which is in fact about the golf sport, but does not contain the word
golf itself? Inverted Index methods are usually not able to recognize it. Therefore there is a
need for a more complex method which is able to work with semantic relations.

Latent Semantic Analysis

Important method based on analysis of the semantic meaning is Latent Semantic Analy-
sis (LSA), also called Latent Semantic Indexing. LSA is a technique in natural language
processing for analyzing relationships between a set of documents by producing a set of con-
cepts related to the documents and terms they contain. LSA is based only on mathematical
principles and does not use any indices or keywords. Important advantage is that a similar
document must not contain a given keyword (see [11]) and can still be found.

The input of the algorithm is a set of different documents and one document which contains
the keywords. LSA will find the documents which are close to given keywords.

LSA can use a term-document matrix which describes the occurrences of terms in documents.
It is a sparse matrix where the rows correspond to terms (typically stemmed words that appear
in the documents) and the columns correspond to documents.

X =

x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (1)

A typical example of the weighting of the elements of the matrix is Inverse Document Fre-
quency (IDF). The element of the matrix is proportional to the number of times the terms
appear in each document, where rare terms are upweighted to reflect their relative importance.
The next step is applying mathematical algorithm Singular Value Decomposition – SVD (for
mathematical background see [12] or [13]) The output is the product of three special matrices:

X = K · S ·DT (2)

Matrix K contains the eigenvectors ui of XXT (in columns), DT is the matrix of the eigen-
vectors vi of XTX (in rows). Matrix S is composed of square root of singular values, which
are written in descending order on the main diagonal.

Geinformatics FCE CTU 2008 45

Moebius: An interface to web map services

It turns out that when you select the s largest singular values, and their corresponding singular
vectors from K and DT , you get the rank s approximation to X with the smallest error
(Frobenius norm). This approximation translates the term and document vectors into a
concept space. Equation (2) can be rewritten as:

Ms = Ks · Ss ·DT
s , (3)

The last step is to find, which documents are close to the given query (view this as a mini
document). To do the latter, we must first translate our query q into the concept space – q∗.
It is obvious that we must use the same transformation that we use on our documents (SVD
transformation). Then we compare it to our documents (vectors vi) using cosine similarity.

cos(q∗,vi) = q∗·(DT
s)i

|q∗|·|(DT
s)i|

(4)

The result of the described equation always lies in the interval 〈0, 1〉 – property of cosine
function. The result near zero shows that there is no similarity between query and the
document. A value near one shows that there is a high similarity, hence we have probably
found a relevant result.

This approach is very promising. Although it is necessary to comprehend and implement many
mathematical algorithms, the results outweigh the difficulties. For the presented approach to
create accurate results at least few larger sentences which describe the content are needed.
Nowadays descriptions of layers contain usually only a few words, and hence it is not possible
to use LSA efficiently right now. It is necessary to wait until owners of mapservers are
publishing more complete and precise meta-data. For the time being it is necessary to use an
algorithm which is able to work with less information.

Implemented method

Our approach is a combination between Inverted Index and LSA principles. The implemented
search engine is using indices created by the indexing tool. Relevance is based on number of
instances of searched keywords and their position in the indices.

Let for all elements of index ei, i = 0, 1, . . . , n − 1 (Abstracts, Titles, ...) exists a coefficient
of the importance of the element wi. Coefficient wi starts with value zero and is increased by
one with every keyword ks found in the element. This calculation of the importance is done
for all elements ei.

Furthermore for every element ei is defined coefficient vi. This is the weight of of the element.
The weight is designed to emphasize the important elements such as Keywords. For instance
if a keyword appears in the element Keywords, it is more important than its appearance in
element Abstract. Hence every element has its weight given by default settings of the engine
or by the user as a parameter of the FindMap request. These two coefficients are used for
calculation of the importance of the layer:

W =
∏n−1
i=0,wi 6=0wi.vi

where

bin(ks, ei) =

{
1, keyword ks is in element ei
0, keyword ks is not in element ei

Geinformatics FCE CTU 2008 46

Moebius: An interface to web map services

and coefficient of the importance wi for element ei is given by:

wi =
∑
∀s bin(ks, ei)

The calculation is based on following assumption: If in some element more keywords appears,
it is more probable that this layer is relevant. If there are more elements containing more
keywords, relevance is much higher. From this reason values of the non-zero coefficients are
multiplied.

The second important coefficient which is used for calculation of the relevance is the coeffi-
cient of instances. The number of instances of searched keyword ks in element ei is called
ai. We calculate the sum ms of these instances for every keyword ks:

ms =
∑n−1

i=0 ai

In case there is an operator ”and” between keywords and there exists at least one ms = 0, is
coefficient of instances for that layer set to zero. In all other cases is the coefficient given by
equation

M =
∑
∀sms

The value which represents the relevance of a layer – R – is calculated by multiplying the
coefficients W and M presented above.

R = W ·M

This formula reflects the thought that important is not only the number of instances of the
keywords, but also their position in the index and their proximity.

Conclusion and further development

The key innovations of the presented approach are the virtualization of multiple Web Map
Servers and the method of searching. It is necesary to empathize that the virtualization en-
gine creates a single WMS compliant interface to all mapservers. Hence the virtual mapserver
Moebius can be opened in every GIS tool that connects to OGC WMS. The FindMap request
which is embedded into the Moebius allows to process search results directly in GIS appli-
cations. This was done by selecting the GetCapabilities document language as the output
format of the search results. Moreover, because this GetCapabilities document is an ordinary
XML document, it could be transformed into any other XML based format – XHTML, KML,
etc. This allows to process the results in many more ways.

Currently we are developing an extension to Moebius which transforms the GetCapabilities
files into Keyhole Markup Language (KML, for description see [14]). Therefore it is possible
to load virtually any WMS mapserver (or the search result) in Google Earth. An example
of such a translated search result follows. The KML document itself contains no data. All
geodata is loaded on demand using the Moebius WMS. The generated KML supports the
Super-Overlay technology (see [14]).

Great challenge which is before us is the optimization of the ranking algorithm. The currently
used approach is very simple. We are working on development of a rank for every layer
that could present its reliability (similar meaning as pagerank has [15]). It will be based on

Geinformatics FCE CTU 2008 47

Moebius: An interface to web map services

observing the usage of different layers (frequently used layers are probably more relevant).
Extension of our algorithm with such a rank could significantly improve the search results.

Although we have a working proof of our concept, there must be done a lot of work before
this application can be used for everyday work. Currently we are experimenting with new
solution for storage of the indices and we are trying to remove the performance bottlenecks.
Source codes of our solution written in Python and further information are available on
http://echo.mendelu.cz, where you can also find more examples and further information. If
you are interested in this project, do not hesitate to contact us.

Figure 4: Google Earth application with opened KML file with the results of the search

References

1. Cruz, I. F. et al. Handling semantic heterogenities using declarative agreements. In GIS
’02: Proceedings of the 10th ACM international symposium on Advances in geographic
information systems, pp. 168–174, ACM Press, New York, NY, USA, 2002.

2. Wiegand, N. et al. A web query system for heterogeneous government data. In Pro-
ceedings of the 2004 annual national conference on Digital government research. Digital
Government Research Center, 2004.

3. Procházka, D. Modelováńı a vizualizace vymezeného geografického prostoru (Ph.D. The-
sis). MUAF in Brno, Brno, 2008, online5.

4. Procházka, D. Motyčka, A. Geospatial Search Service. In Collaboration, software and
services in information society, Ljubljana, Slovenija, 2008.

5http://echo.mendelu.cz/disertace.pdf

Geinformatics FCE CTU 2008 48

http://echo.mendelu.cz
http://echo.mendelu.cz/disertace.pdf

Moebius: An interface to web map services

5. De La Beaujardiere, J. OpenGIS Web Map Server Specification Implementation, 2007,
online6.

6. Sample, J. et al. Enhancing the US Navy’s GIDB Portal with Web Services. In Internet
Computing, IEEE. Sept.-Oct. 2006, 10, 5, pp. 53–60.

7. Zhao, P. – Di, L. Semantic Web Service Based Geospatial Knowledge Discovery. In
IEEE International Conference on Geoscience and Remote Sensing Symposium 2006.
2006, pp. 3490–3493.

8. Yue, P. et all Semantic Augmentations for Geospatial Catalogue Service. In IEEE
International Conference on Geoscience and Remote Sensing Symposium 2006. 2006,
pp. 3486-3489.

9. Manning, Ch. D. Raghavan, P. Schütze, H. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, MA, 2008, online7.

10. Black, P. E. Inverted index. In Dictionary of Algorithms and Data Structures, U.S.
National Institute of Standards and Technology, 2008, online8.

11. Yu, C. Cuadrado, J. Ceglowski, M. Payne, J. S. Patterns in Unstructured Data – Dis-
covery, Aggregation, and Visualization. National Institute for Technology and Liberal
Education (NITLE), 2008, online9.

12. Aggarwal, C.C. Yu, P.S. On effective conceptual indexing and similarity search in text
data. In Proceedings of the IEEE International Conference on Data Mining, 2007, pp.
3-10.

13. Wall, M. E. Rechtsteiner, A. and Rocha, L. M. A Practical Approach to Microarray
Data Analysis. Kluwel, Norwell, MA, 2003.

14. Google, Inc. Keyhole Markup Language Introduction. Mountain View, CA, 2008,
online10.

15. Page, L. Brin, S. Motwani, R. Winograd, T. The PageRank Citation Ranking: Bringing
Order to the Web. Stanford Univeristy, 1999, online11.

Acknowledgement

This article was written in context of project VZ MSM 6215648904/03/03/01 – Ministry
of Education, Youth and Sports of the Czech Republic.

6http://www.opengeospatial.org/standards/wms
7http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
8http://www.nist.gov/dads/HTML/invertedIndex.html
9http://www.knowledgesearch.org/lsi/cover page.htm

10http://code.google.com/apis/kml/documentation/
11http://dbpubs.stanford.edu:8090/pub/1999-66

Geinformatics FCE CTU 2008 49

http://www.opengeospatial.org/standards/wms
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
http://www.nist.gov/dads/HTML/invertedIndex.html
http://www.knowledgesearch.org/lsi/cover_page.htm
http://code.google.com/apis/kml/documentation/
http://dbpubs.stanford.edu:8090/pub/1999-66

Geinformatics FCE CTU 2008 50

