
GAL Framework

Radek Bartoň, Martin Hrubý
Faculty of Information Technology

Brno University of Technology
E-mail: xbarto33@stud.fit.vutbr.cz, hrubym@fit.vutbr.cz

Keywords: design, GIS, GRASS, open source, library

Abstract

GAL (GIS or GRASS? Abstraction Layer) Framework is meant to be multiplatform Open-
Source library with certain tools and subsidiary daemons for easy implementation of distributed
modules for GIS GRASS1 in static or dynamic programming languages. This article aims to
present some ideas behind this library and bait a fresh meat for this project since its complexity
needs more spread development team not just single person. Project homepage can be found
at http://gal-framework.no-ip.org.

Motivation

A year ago I was trying to implement some feature to nviz module and I got acquainted with
GRASS’s core libraries. Accustomed to well-designed and well-documented APIs like Qt2,
Coin3 or wxWidgets4 it was shocking to me to meet such old-styled API with underestimated
state of documentation, so I gave up that job in few days in anger. But because I like GRASS
style from user’s point of view and its complexity and scalability of provided modules, I wanted

1http://grass.itc.it/
2http://doc.trolltech.com/
3http://doc.coin3d.org/Coin/
4http://www.wxwidgets.org/manuals/stable/wx contents.html

Geinformatics FCE CTU 2007 33

http://grass.itc.it/
http://gal-framework.no-ip.org
http://doc.trolltech.com/
http://doc.coin3d.org/Coin/
http://www.wxwidgets.org/manuals/stable/wx_contents.html


GAL Framework

to provide an easy and modern approach to module development along with current ones for
those that are not satisfied with present possibilities as me. So I decided to work on GAL
Framework as my diploma work and thesis. As actual advancement of common information
technology in hardware domain heads to multiprocessored devices and usage expansion of
dynamic languages such as Python, Java, C# or Ruby is here, there is need to consider these
factors in GRASS development too. GAL Framework should be answer to these trends.

Principles

GAL Framework should be alternative to current way of creating new modules for GRASS and
some current modules can be reimplemented in GAL Framework too if some weight reasons
occurs. Illustration of future GAL Framework role in GRASS module development can be
seen on Figure 1. Current GRASS code is displayed yellow and it is formed by GRASSlib and
code of each of GRASS modules. Green GAL Framework code is formed by core GAL library
and code of new GRASS modules which can be implemented with it or code of reimplemented
modules (v.proj for example). GAL Framework then may depend on GRASSlib itself and
other possible libraries such as D-Bus5 for distributive execution of functions or TerraLib6 for
faster implementation of GIS related functionality (red block).

Figure 1: Role of GAL Framework in module development.

GAL Framework internally uses component architecture which means that whole system is
formed by bunch of components which communicate which each other by interfaces. Some
components declare interfaces, some of them implement interfaces and some of them use
interfaces. Using UML syntax this can be displayed as on Figure 2.

There are four components and one interface on a figure. Component 1 declares an interface
Interface which indicates stereotype <<reside>>. Component 1 and Component 2 uses in-

5http://www.freedesktop.org/wiki/Software/dbus
6http://www.dpi.inpe.br/terralib/

Geinformatics FCE CTU 2007 34

http://www.freedesktop.org/wiki/Software/dbus
http://www.dpi.inpe.br/terralib/


GAL Framework

Figure 2: Component architecture in UML syntax.

terface (symbolized by dashed line with arrow). That means that they are calling interface’s
functions. Component 3 and Component 4 implement interface functions which is symbol-
ized by solid line. There is an abstraction over interface functions called slots which may be
configured some ways to specify which implementation will be executed when interface slot is
called. Sometimes you may want to execute just lastly registered implementation, sometimes
you may want to call each of them, etc.

To allow public access to all available components and interfaces in the system, a common
access point must be introduced. In this case, it is called component manager and it serves
for new component or interface registration as long as registration of interface implementa-
tions. Figure 3 shows simplified class diagram for relationships between component manager,
components, interfaces and slots:

Figure 3: Class diagram of component architecture.

Let’s see on Figure 4 how can be this component architecture applied in practice:

There is a ModuleComponent component implementing a GRASS module at the top which
uses three different (and imaginary for now) interfaces:

� IVectorLayerProvider,

� IRasterLayerProvider,

� IMessageHandler for retrieving of vector or raster data and for message display and
logging.

IVectorLayerProvider interface is implemented by two different components registered in
system. One of them shelters vector layer data in PostgreSQL database, the second shelters
for example data in MySQL database. Raster related interface IRasterLayerInterface is

Geinformatics FCE CTU 2007 35



GAL Framework

Figure 4: Component architecture practically.

then implemented by two components too. First offers raster data from PostgreSQL and
second enwraps raster data in ordinary data files. This diagram should demonstrate that
using this approach module component can obtain GIS data and it don’t need to care where
and how are these data stored.

When module does what it wants with retrieved data it needs to output some informations
to console, logs or GUI, it sends messages through IMessageHandler interface. In discussed
example is this interface implemented by two components which forwards messages to CLI,
GUI or writes them to log files. This again demonstrates presentation of outputed data
independence.

Usage and Examples

Although bindings to most of commonly used dynamic languages are planned, at least for
Python and Java, all of following code examples are written in C++ because it will be main
language used during GAL Framework development. Get known that all of this example
usages reflect current state of design and may change in future.

The simplest interface usage example which doesn’t create component and can be used only
as a client module is listed here:

#include <iostream>

#include <core/GAL.h>

#include <core/ComponentManager.h>

#include <core/Interface.h>

#include <exceptions/Basic.h>

int main(int argc, char * argv[])

{

try

{

01: GAL::initialize();

// Obtain slots of IExampleInterface functions.

Geinformatics FCE CTU 2007 36



GAL Framework

02: ComponentManager & component_manager = GAL::getComponentManager();

03: Interface & interface = component_manager.getInterface("IExampleInterface");

04: Function1Slot & function1 = dynamic_cast<Function1Slot &>(interface.getSlot("function1"));

05: Function2Slot & function2 = dynamic_cast<Function2Slot &>(interface.getSlot("function2"));

// Call functions’ implementation.

06: std::cout << "Function 1 returned: " << function1() << std::endl;

07: std::cout << "Function 1 returned: " << function2("Example", 10) << std::endl;

08: GAL::finalize();

}

catch (Exception exception)

{

std::cout << exception.getMessage() << std::endl;

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

Code is enclosed between initialization and deinitialization functions: GAL::initialize()
and GAL::finalize(). First we obtain reference to publicly available component manager
at line 02. Then we get interface object at line 03. At line 04 and 05, we get slot objects
which can be remembered during whole program run time for interface’s functions execution.
This can minimalize needed overhead. Lines 06 and 07 do this execution. In this example
we used only imaginary interface IExampleInterface but in real case it can be for example
interface which provides access to raster layer and we will compute some statistical values
over returned data. Note, that from this point of view it doesn’t matter if interface’s slots
are implemented in statically linked C++ code, loaded and executed from plug-in in shared
library or they are executed distributively in Python code or on distant machine via RPC
call. All of this is only up to slot implementations and its configuration.

The second example shows how can be certain interfaces implemented by components:

#include <iostream>

#include <string>

#include <core/GAL.h>

#include <core/ComponentManager.h>

#include <core/Component.h>

#include <core/Interface.h>

#include <exceptions/Basic.h>

// ExampleComponent class definition.

01: class ExampleComponent: public Component

{

public:

02: virtual void initialize();

03: virtual void finalize();

04: virtual void * getFunction(const char * name);

05: static const char * function1();

06: static const char * function2(const char * first, cont int second);

private:

07: Interface * interface;

};

// Component initialization. Gets instance of interface and registers it

// in component manager.

08: void ExampleComponent::initialize()

{

09: ComponentManager & component_manager = GAL::getComponentManager();

10: this->interface = &(component_manager.getInterface("IExampleInterface"));

Geinformatics FCE CTU 2007 37



GAL Framework

11: component_manager.registerImplementation(*(this->interface), *this);

}

// Component deinitialization. Unregisters interface.

12: void ExampleComponent::finalize()

{

13: ComponentManager & component_manager = GAL::getComponentManager();

14: component_manager.unregisterImplementation(*(this->interface), *this);

15: this->interface = NULL;

}

// Implementation of first interface function.

16: const char * ExampleComponent::function1()

{

17: std::cout << "IExampleInterface::function1" << std::endl;

18: return "Example";

}

// Implementation of second interface function.

19: const char * ExampleComponent::function2(const char * first, const int second)

{

20: std::cout << "IExampleInterface::function2" << std::endl;

21: return "Example";

}

// Overriden virtual function which returns function pointer to requested

// implementation of interface function.

22: void * ExampleComponent::getFunction(const char * _name)

{

23: std::string name = std::string(_name);

24: if (name == "function1")

{

25: return (void *) &(this->function1);

}

26: else if (name == "function2")

{

27: return (void *) &(this->function1);

}

28: else

{

29: return NULL;

}

}

int main(int argc, char * argv[])

{

try

{

30: GAL::initialize();

// Create component instance.

31: Component * component = new ExampleComponent();

32: component->initialize();

33: GAL::daemonize();

// Destroy component instance.

34: component->finalize();

34: delete component;

36: GAL::finalize();

}

catch (Exception exception)

{

std::cout << exception.getMessage() << std::endl;

return EXIT_FAILURE;

Geinformatics FCE CTU 2007 38



GAL Framework

}

return EXIT_SUCCESS;

}

There is defined ExampleComponent first at lines 01-07 in this example. Each component
needs to override three virtual methods: Component::initialize() at lines 08-11 for com-
ponent initialization and registration of interface implementation, Component::finalize()
at lines 12-15 for component deinitialization and interface implementation unregistration and
Component::getFunction() at lines 22-29 for access to interface functions implementations.
Main program block (lines 30-36) then contains code which creates instance of component
and then turns program to daemon with GAL::daemonize() method. Interface implemen-
tation can be then called by external modules. In case where implemented interface is used
only internally as in this example, no daemonization is needed and program would just use
interface as in first example.

The third example is just code snippet showing how to define a new interface with its slots:

// Definition of CallbackSlot derived slot.

01: class Function1Slot: public CallbackSlot

{

public:

02: Function1Slot();

03: char * execute();

04: char * operator()();

};

// Definition of DBusSlot derived slot.

05: class Function2Slot: public DBusSlot

{

public:

06: Function2Slot();

07: char * execute(char * first, int second);

08: char * operator()(char * first, int second);

};

// Slot signature initialization.

09: Function1Slot::Function1Slot():

10: CallbackSlot()

{

11: this->addReturnValue(STRING);

}

// Slot signature initialization.

12: Function2Slot::Function2Slot():

13: DBusSlot()

{

14: this->addArgument(STRING);

15: this->addArgument(INT32);

16: this->addReturnValue(STRING);

}

// Arguments and return values packing and unpacking for D-Bus call.

17: char * Function2Slot::execute(char * first, int second)

{

18: char * result = NULL;

19: this->setArgument(0, (void *) first);

20: this->setArgument(1, (void *) second);

21: this->setReturnValue(0, (void *) &result);

Geinformatics FCE CTU 2007 39



GAL Framework

22: this->callFunction();

23: return result;

}

// Syntax sugar for use of slot as a functor.

24: char * Function1Slot::operator()()

{

25: return this->execute();

}

// Syntax sugar for use of slot as a functor.

26: char * Function2Slot::operator()(char * first, int second)

{

27: return this->execute(first, second);

}

// Definitions of example interface with two function slots.

28: class IExampleInterface: public Interface

{

public:

29: IExampleInterface();

30: ~IExampleInterface();

private:

31: Slot * function1Slot;

32: Slot * function2Slot;

};

// Interface initialization. Instances of two slots are created and added

// to interface.

33: IExampleInterface::IExampleInterface():

34: Interface(),

35: function1Slot(NULL), function2Slot(NULL)

{

36: this->setId("IExampleInterface");

37: this->function1Slot = new Function1Slot();

38: this->function2Slot = new Function2Slot();

39: this->addSlot("function1", *(this->function1Slot));

40: this->addSlot("function1", *(this->function2Slot));

}

// Interface deinitialization. Instances of two slots are removed and

// destroyed.

41: IExampleInterface::~IExampleInterface()

{

42: this->removeSlot("function1");

43: this->removeSlot("function2");

44: delete this->function1Slot;

45: delete this->function2Slot;

}

First of all, two slots are defined at lines 01-04 and 05-08. One of them is derived from
CallbackSlot which is simple static implementation of slot mechanism and second is derived
from DBusSlot which implements slot mechanism via D-Bus calls. Slot constructors at lines
09-11 and 12-16 specify their signature by addition of input and output arguments. For
DBusSlot derived slots is needed to define way of argument packing and unpacking which does
Function2Slot::execute() method at lines 17-23. IExampleInterface is then defined at
lines 28-32 and slots are created or destroyed in its constructor at lines 33-40 and destructor
at lines 41-45. Finally, to be able to use this interface in whole system, its instance has to be

Geinformatics FCE CTU 2007 40



GAL Framework

registered in component manager using ComponentManager::registerInterface() method.

Current State

At the time of this article creation, GAL Framework is in early stage of design with work on
test implementation of designed ideas in progress. Test component management, client-side
and partially a server-side of D-Bus slot implementation is finished. Pieces of knowledge
gained from test implementation will be fed back to update the current design lately. When
all parts of component management and slot mechanisms will be designed and proved by
implementation, GAL Framework may proceed to design of appropriate GIS related interfaces
which will serve for further implementation of GRASS modules.

Currently GAL Framework uses SCons as a build tool, Subversion as a source management
system, Trac as a project management system, wiki and discussion forum, Umbrello for UML
modeling, SWIG for bindings generation and libffi and D-Bus as a libraries.

Anyone interested in this approach, who wants to contribute to GAL Framework at least with
comments or new ideas, may contact me at xbarto33@stud.fit.vutbr.cz or create account
at http://gal-framework.no-ip.org to get edit rights for wiki and discussion forum.

References

1. Christopher Lenz, Dave Abrahams and Christian Boos: Trac Component Architecture,
web-page7

2. Trac – http://trac.edgewall.org/

3. SCons – http://www.scons.org/

4. Subversion – http://subversion.tigris.org/

5. Umbrello – http://uml.sourceforge.net/index.php

6. SWIG – http://www.swig.org/

7. libffi – http://sourceware.org/libffi/

8. D-Bus – http://www.freedesktop.org/wiki/Software/dbus/

7http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture

Geinformatics FCE CTU 2007 41

http://gal-framework.no-ip.org
http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture
http://trac.edgewall.org/
http://www.scons.org/
http://subversion.tigris.org/
http://uml.sourceforge.net/index.php
http://www.swig.org/
http://sourceware.org/libffi/
http://www.freedesktop.org/wiki/Software/dbus/


Geinformatics FCE CTU 2007 42


