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Abstract

In aerial photogrammetry, the Cartesian coordinate system for the description of
object space is commonly used. In contrast, many projects have to be processed
in specific map projection and vertical datum. In that space, some geometric de-
formations exist. There are some compensative methods for active and passive
sensors. In the case of active sensors, decomposition and the correction of ob-
servation vector for each ground point can be used. We obtain height, horizontal
distance and horizontal angle in this process. All of these values should be cor-
rected for precise georeferencing. The contribution deals with the derivation of the
corrections and gets some theoretical values from the area of the Czech Republic.
Esspetially in the case of high flying heights the corrections may gain values even
in order of meters.
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Introduction

The task of georeferencing in the field of aerial topographic survey is the determination of
geometric relations between captured data and the real world [7]. It includes two consecutive
procedures:the determination of the exterior orientation parameters (EOP) and the restitution
scene from EOP and observed data [9]. EOP comprise of the spatial position of the sensor
projection center and sensor attitude at the time of the observation. EOP for passive sensors
can be gathered indirectly (by the measurement of image coordinates of ground control points)
or directly from records of the on-the-board navigation system. On the contrary, active
imaging is dependent (due to the sequential measurement principle andthe motion of the
carrier vehicle) on direct methods.

Referring to the direct georeferencing EOP is typically measured by the GNSS and inertial
measurement unit (IMU). GNSS provides absolute position with sufficient frequency (at least
1Hz) and IMU sensor attitude and acceleration. Final trajectory is deduced by combining
GNSS and IMU observations [1].

The Aerial survey product is mostly provided in “national coordinates”. It means the co-
ordinate system realised by a combination of the national geodetic datum with a national
map projection with the associated vertical system. The model for direct georeferencing is
designed for cartesian space but national coordinates do not fulfill the condition and therefore
cause various geometrical distortions. There are two ways to obtain accuratedata in national
coordinates (See Fig. 1): restitution of the scene in cartesian (usually Earth-fixed) frame and
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transforming the scene to national coordinates or restitution of the scene in national coordi-
nates with the corrected observation vector. Further text refers to active imaging, especially
to georeferencing of LiDAR data.

Figure 1: Accurate georeferencing in national coordinates for LiDAR.

Direct Georeferencing for active imaging

Reference frames and EOP transformation

The EOP should be transformed into desired reference frame. Overview of reference frames
purveys Tab 1. Detailed description of transformations can be found in [9] and [6]. Brief
summary contain Fig. 2.

Table 1: Overview of the reference frames

frame description
e Earth-centered earth fixed frame realized by International Terrestrial Frame
n Eccentric earth fixed frame of national ellipsoid
l Tangent frame of national ellipsoid
p Projection frame established by national map projection
b Body frame realised by acceleromerers of IMU

Model for georeferencing of LiDAR data

According to [10], the coordinates of ground pointXG can be (in cartesian frame) expressed as

XG = XEO +REORscanXrange = XEO +Xdg, (1)

where XEO and REO are sensor position vector and the rotation matrices formed by angular
EOP, respectively, Rscan and Xrange are scan angle matrix and range vector, respectively. The
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Figure 2: Schema of EOP transformation

second term forms the observation vector for direct georeferencing Xdg. If the georeferencing
is carried out in national coordinates (p-frame), XEO can be given by exact formulas (usually
provided by state mapping authority), contrariwise Xdg is skewed due to datum scale change
and p-frame geometry. We may assume that the correct position of ground point in p-frame
Xptrans
G is given by georeferencing in e-frame and subsequently rigorous transformation to

p-frame. Then we gain the correct observation vector in p-frame X ṕ
dg as

X ṕ
dg = Xptrans

G −Xp
EO. (2)

Our task is to modify vector Xp
dg to X ṕ

dg. It will be to apply processes published in [10] as a
practical approach. It involves some simplifications and refers to conformal map projection.

Correction of p-frame distortions

According to [10], the method consists of four subsequent steps (Fig. 3).

Datum scale distortion. The Cartesian e-frame and n-frame have a different scale (if they
have not used the same datum). Hence the length of the observation vector is different
as well and it should be multiplied by scale factor mdatum .

Decomposition of Xp
dg to height component Zdg (it is always negative), horizontal distance

D and horizontal angle ϕ (Fig. 4). It will be called “spatial observations”.

Application of map projection corrections to spatial observations. The Earth curva-
ture correction hec is added to Zdg, D is transformed to the geodesic distance S and
to the projected length D´, skew-to-normal correction ζ and arc-to-chord correction δ
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is added to horizontal angle (normal-section-to-geodesic correction ξ is not taken into
account, because it is numerically insignificant)

Composition of map-projected observations to X ṕ
dg

Figure 3: Sequence of correction of observation vector in p-frame

IMU works based on Newtonian laws and its Z-axis is aligned with plumb line. If the vertical
datum is not gravity-related, the gravimetric correction is required to be added in observations
[5]. Decomposition of Xp

dg is executed by simple equations

Zdg = Zdg, D =
√
X2

dg + Y 2
dg, ϕ = tgXdg

Ydg
· (3)

The Earth curvature correction

Height and length component are deduce from geometry in Fig. 5 and Fig. 6. hec can be
expressed as

hec = cosα |GP| = cosα(|OF | 1
cosα − |OG|), (4)

G and F can be approximately regarded as locating at a same arc with the radius R + HG,
then

hec = cosα[(R+HG) 1
cosα − (R+HG)], (5)

due to the small value of α we can simplify cosα≈1− 1
2α

2

hec≈
α2

2 (R+ hG), (6)

α = atan D

R+HS − Zdg
≈ D

R+HS − Zdg
, (7)

where HS is the sensor projection centre. By combining (6), (7) we can obtain
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Figure 4: Decomposition of observation vector according to [10]

hec = D2(R+HG)
2(R+HS + Zdg)2 , (8)

HG = HS + Zdg, (9)

hec = D2

2(R+HS + Zdg) · (10)

Correction of length component

The first step is the conversion of the horizontal distance D to the geodetic distance S. S is
always much shorter than the radius of reference sphere, therefore we can approximate the
geodesic line by a circular arc. By using (7) we can form a relationship

S = Rα = Ratan D

R+ hS + Zdg
, (11)

from the definition of the map projection scale factor we obtain the equation for calculation
projected length

D́ = mS = mRatan D

R+ hS + Zdg
, (12)

where m stands for the map projection length factor. For this purpose it is sufficient to
compute m in one point (preferably in the position of sensor projection centre).
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Figure 5: Map projection distortion. G´ is the coresponding projected point of the G accord-
ing to [10].

Correction of horizontal angle

Since the normal-section-to-geodesic correction distinguishes negligible values, it should be
applied to skew-to-normal and arc-to-chord corrections. Skew-to-normal corrections express
the angle between the directions of the spatial straight line and its corresponding normal
section. Regardless to used coordinate system it is given by [4]

ζ = hG
2ρm

e2 sin(2α)cos2ϕG, (13)

where ϕG and hG are the geodetic latitude and ellipsoidal height of the ground point re-
spectively, ρm represents the curvature radius in the meridian plane and α is azimuth of
observation vector. For practical calculations hG should be replace by hS + Zdg.

Arc-to-chord correction is angle between tangent of projected geodesic and its corresponding
chord line. Computation is individual for each map projection.

Experiment

The asset of the above-mentioned procedure was proven in [10]. Since the real LiDAR data
is distorted by variety of random and systematic errors, the simulated data was used for the
experiment. It was an applied method based on (2). It compared coordinates of ground
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Figure 6: Detail for deriving the Earth curvature correction. O stands for centre of the
reference sphere (rotated 90 degrees clockwise).

points restituted in e-frame and transformed to p-frame (assume as the “correct” data) and
the coordinates of ground points restituted in p-frame with application of correction. Most
differences gain sub-millimeter values (Tab 2.)

Table 2: Experiment published in [10]. Error statistic of simulated data (mdatum= 1,00005;
Krassovsky ellipsoid, UTM projection)

Relative flight correction mean error [mm] σ [mm] max error [mm]
height plane height plane height plane height

500m no 152.9 16.1 56.9 5.6 258.6 25
yes 0.2 0 0.1 0 0.3 0

2000m no 611.7 -41.9 227.7 89 1043.2 -254.9
yes 0.6 0.3 0.3 0.2 1.1 -0.4

8000m no 2446.8 -1871.1 914.9 1224.2 4313.5 -5278.4
yes 2.7 0 1.2 3.6 5.2 -7.2

Situation in the Czech Republic

The Earth curvature correction is area-independent thus we will discuss the other components
in the most frequent national coordinates in the area of the Czech Republic: S-JTSK (Datum
of Uniform Trigonometric Cadastral Network) / Bpv (Baltic Vertical Datum - After Adjust-
ment) and UTM 33(34)N / ellipsoidal height (GRS80). Regardless to a projection used, we
can compute the skew-to-normal correction as [3]

ζ́́ = 0, 108 hG
1000 sin (2α) cos2ϕG· (14)

As the correction attains a value of 0,07´´ in extreme cases (Sněžka Mountain, azimuth 45°),
we can disrespect it.
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S-JTSK/Bpv

Change of the datum scale between WGS 84 to S-JTSK is -8.750 ppm, i.e if the observation
vector is 1 km length it cause its shortening by 8.75 mm. This factor should be taken into
account esspetialy in the case of high survey flights.

S-JTSK use double conformal conical Krovak projection (EPSG code 5514). Local scale is
given by [2]

m = αR cosU
N cosϕ, (15)

where the first part marks constants α = 1.000597, N radius of the cross section and U
spherical latitude. The projection has 2 undistorted parallels. The local scale causes distortion
in the range from -10cm/km to 14cm/km.The difference between D and D´ in some selected
locations shows Tab.3

Arc-to-chord correction is given (after removing high-order terms) as [8]

δ = (D́G − D́S) [2KS
RG
RS

+KG
RS
RG

], (16)

Ki = sinS0 − sinSi
6 sinS0

≈5.314510−9∆Ri, (17)

∆Ri = Ri −R0, R0 = 1298039m,Ri =
√
X2
i + Y 2

i , D́i = atan Yi
Xi
, (18)

where R means distance of the point from krovak´s projection origin, D́i angle beetween
X-axis and the point form projection origin and Si cartographic parallel. The undistorted
parallel has been chosen as S0 = 78◦30́ . For calculation parameters of the ground point,
we can use the rough position obtained by the uncorrected vector Xp

dg.The magnitude of the
correction depends on the length of the horizontal distance, orientation of Xp

dg and distance
from undistorted cartographical parallels. It attains a size of few (in extreme case up to 10)
arcseconds.

UTM/elipsoidal height (GRS80)

For practical applications, elipsoid GRS80 and elipsoid WGS 84 are identical, thus themdatum
is the same. The local scale of each UTM strip is given by this simplified formula:

m = (1 + λ2

2 cos2ϕ)m0, (19)

where λ is longitude (measured from central meridian of the strip), ϕ is latitude and m0
thescale factor of the central meridian. For the reduction of the scale distortion at the
boundaries of the strips m0 = 0, 9996 has been chosen. It follows the distortion -40cm/km at
the central meridian and +17cm/km on the boundary of the strip. The length distortion of
both projections shows Fig. 7.

After some simplification and removing high-order terms we can compute arc-to-cord correc-
tion as

δ = −Ydg(3XS +Xdg)
6m2

0R
2 · (20)
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Figure 7: Scale distortion of UTM 33N (up), S-JTSK (down). Unit of the values is cm/km.
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Table 3: Difference between D and D´ in some selected locations.

Location H D S-JTSK UTM 33N
[m] [m] m D’[m] ∆D [m] m D’[m] ∆D [m]

Jizera 1166 1000 1.00006 999.877 -0.123 0.99962 999.437 -0.563
Zruč nad Sázavou 400 1000 0.9999 999.837 -0.163 0.9996 999.537 -0.463

Znojmo 300 1000 0.99994 999.893 -0.107 0.9997 999.653 -0.347

Conclusion

Mathematically, the only rigid way of direct georeferencing is to restitute the scene in an
e-frame. However, after applying the above mentioned corrections, the residuals of the p-
frame deformations are negligible in comparison with the noise of GNSS/IMU measurements.
Although some formulas are simplified, remaining residuals are below 1 cm even by the relative
flying height 8000m. The least impacted have angular corrections, and it can be ignored in
the case of low relative flying height (up to 1000 m).

One of the main arguments for the choice of frames for georeferencing can be computational
costs. The most demanding step comprises transformation of EOP to national coordinates
(approximately four times higher computation time than the transformation of ground points).
However, the GNSS/IMU record data with a frequency up to several hundred Hz and the state-
of-the-art LiDAR systems emit pulses with frequency even 500 kHz [10]. Therefore the number
of ground points is much higher than the number of EOP observation and transformation of
ground points cause consequently higher computation effort.

Georeferencing in national coordinates is strictly recommended to verify whether software
take into account the p-frame corrections.
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