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Abstract. This article presents a new algorithm for interval plotting of the function y = f(x)
based on combined sampling. The proposed method synthesizes the uniform and adaptive
sampling approaches and provides a more compact and efficient function representation. Dur-
ing the combined sampling, the polygonal approximation with a given threshold α between
the adjacent segments is constructed. The automated detection and treatment of the disconti-
nuities based on the LR criterion are involved. Two implementations, the recursive-based and
stack-based, are introduced. Finally, several tests of the proposed algorithms for the different
functions involving the discontinuities and several map projection graticules are presented.
The proposed method may be used for more efficient sampling the curves (map projection
graticules, contour lines, or buffers) in geoinformatics.
Keywords: function; adaptive sampling; combined sampling; recursive approach; stack; dis-
continuity; polygonal approximation; visualization; map projection; plotting; GIS; Octave;
Mathematica.

1. Introduction

A function y = f(x) on interval Ω = [a, b] may have different form. For efficient plotting,
its polygonal approximation needs to be constructed. A current approach concentrated on
uniform sampling with the step δx may not be sufficient. Despite its popularity, the equally
spaced points cannot describe its course without errors; the problems of undersampling or
oversampling are common. Adaptive sampling brings several benefits, it adapts to a different
curvature of the function, reduces the amount of redundant data and provides a natural and
smooth plot of the function without the jumps and breaks. This technique is popular in
computer graphics; recall the well-known deCasteljau or Chaikin’s algorithms for the curve
approximation. Combining the uniform and adaptive sampling approaches their advantages
can be synthesized. The resulted representation is more compact, efficient and smooth.

A function may contain points of discontinuities that need to be detected. A subdivision
of the given interval Ω, to the set of disjoint subintervals Ωg

k without the internal singular-
ities, containing only “good” data needs to be undertaken. In other words, the polygonal
approximation of the function needs to be split into the several disjoint parts. The pro-
posed method works by the requirements mentioned above. A broad set of the singularities
can be detected and treated using the multiple criteria. Subsequently, for each interval Ωg

k ,
a polygonal approximation of f(x) is constructed using combined sampling. Since there are
many sophisticated solutions built-in the high-end systems (Mathematica, Maple), our simple
algorithm based on the recursive approach is efficient and easy-to-implement.

This paper is organized as follows. In Section 3, the combined sampling technique for 1D
functions is presented. Section 4 deals with the detection of singularities, Section 5 describes
the combined sampling of the discontinuous functions. In Section 6, the combined sampling
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technique is tested on the set of several functions. Subsequently, its behavior on four map
projections is analyzed.

2. Related Work

There are several strategies for plotting the function y = f(x) on interval Ω = [a, b]. The
naive approach based on sampling of f in a fixed amount of the equally spaced points is
described in [20]. The simple functions suffer from oversampling, while the oscillating curves
are under-sampled; these issues are mentioned in [14]. Another approach based on the interval
constraint plot constructing a hull of the curve was described in [6], [13], [20]. The automated
detection of a useful domain and a range of the function is mentioned in [41]; the generalized
interval arithmetic approach is described in [40].

A significant refinement is represented by adaptive sampling providing a higher sampling
density in the higher-curvature regions. The are several algorithms for the curve interpo-
lation preserving the speed, for example: [37], [42], [43]. The adaptive feed rate technique
is described in [44]. An early implementation in the Mathematica software is presented in
[39]. By reducing data, these methods are very efficient for the curve plotting. The polygo-
nal approximation of the parametric curve based on adaptive sampling is mentioned in the
several papers. The refinement criteria, as well as the recursive approach, are discussed in
[15]. An approximation by the polygonal curves is described in [7], the robust method for
the geometric and spatial approximation of the implicit curves can be found in [27], [10], the
affine arithmetic working in the triangulated models in [32]. However, the map projections
are never defined by the implicit equations. Similar approaches can be used for graph drawing
[21].

Other techniques based on the approximation by the breakpoints can be found in many
papers: [33], [9], [3]; these approaches are used for the polygonal approximation of the closed
curves and applied in computer vision.

3. Combined sampling

In this section, the proposed combined sampling technique providing the polygonal approxi-
mation of the parametric curve involving the discontinuities will be presented. The modified
method will be used for the function f(x) reconstruction and plot. Based on the ideas of
splitting the domain into the subintervals without the discontinuities, it represents a typical
problem solvable by the recursive approach.

3.1. Polygonal approximation of the curve

Let y = f(x), M ⊂ R, f : M → R be a function of a real variable x, and the set M represents
the domain of the function f . Let Ω = [a, b], a ∈ M , b ∈ M be the subdomain inside which
the polynomial approximation pi = (xi, f(xi)), 1 ≤ i ≤ n of the curve f is constructed, where
x1 = a < x1 < ... < xn = b. This approach leads to a discrete reconstruction of f from the
set of sampled points.

The behavior of f should be reconstructed concerning its curvature. The classical approach
based on uniform sampling from the equidistant points xi with the step δ, where δ = xi+1−xi,
provides a good approximation only if δ → 0. For the straight parts of the curve, many
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Figure 3.1: Adaptive (AS) and uniform (US) sampling of the meridian of the longitude λ =
−180◦ in the Sanson projection for angles αi = 1◦, 5◦, 10◦.

almost colinear segments are constructed; too much redundant data is generated. Conversely,
for larger δ, the shape of the function in the high-curvature areas may not be captured
adequately, which is discussed in [15].

In general, the main disadvantages of uniform sampling, the problems of undersampling or
oversampling, are referred. For a current density of the sample, the equally spaced points
cannot describe the function course without errors.

3.2. Combined sampling technique

By avoiding colinear segments as well as a better adaptation to the different curvature, adap-
tive sampling respects the behavior of the function more naturally. It leads to the more
compact data representation of the curve while its shape, as well as its aesthetic look, are
preserved. A comparison of adaptive and uniform sampling for the meridian curve is illus-
trated in Fig. 3.1. Uniform sampling requires more data to maintain the same curvature
represented by the angle αi between the adjacent segments (pi−1, pi) and (pi, pi+1). The dif-
ference increases depending on the curvature. In general, for adaptive sampling, the required
amount of points is about one order less. Unfortunately, two issues are referred in [15]:

1. For specific functions, some narrow subintervals in the early iterations may be skipped
and stay unprocessed.

2. For some periodic functions, a refinement based on the iterative subdivision into the
segments of the same length may not be successful, if the function values at these points
are equal.

To avoid the problems in the first case, it is natural to take advantage of both methods
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Figure 3.2: Illustration of the proposed algorithm: an adaptive sampling of the function y =
x2, x ∈ [−2, 2] for the depths of recursion d = 1, 2, 3.

and propose the combined sampling method. Uniform sampling represents the initial step,
later steps refining the curve approximation are provided by adaptive sampling. The second
problem may overcome adding the partial randomness to the generated segments.

Refinement criteria. An important role is played by the refinement criteria smoothing
the polyline [15]. Suppose (pi−1, pi, pi+1) to be three consecutive sampled points of the curve.
The primary criterion is represented by the angular difference of both segments

αi = α(pi−1, pi, pi+2) = arccos |u · v|
‖u‖ ‖v‖

± π, u = pi+1 − pi, v = pi−1 − pi.

Different criteria can provide the analogous results: recall the distance of pi from pi−1, pi+1,
or, the local length ratio [29].

Combined sampling algorithm without the singularities

The combined sampling algorithm is based on the idea of the hierarchical reconstruction of
the curve shape, which follows the recursive approach with the multiple calls mixing the
uniform and adaptive techniques. Unlike a simple algorithm discussed in [15], the proposed
method can handle the singularities and discontinuities of f and requires a lower recursion
depth. Initially, sampling without the treatment of singularities will be presented.

Suppose d to be the current depth of the recursion, d to be the minimum and d to be the
maximum recursion depth. Combined sampling returns a polynomial approximation of the
curve by the refinement criteria α and the recursion depth d. Our algorithm combines the
uniform and adaptive sampling techniques and subdivides Ω into a specified number of the
disjoint subintervals Ωk of the similar size during each recursive step, where k = 4. Hence,
Ω is split into the approximate quarters with the randomly shifting borders, which are not a
direct multiple of 0.25.

Initially, if d ≤ d the interval is subdivided into four subintervals regardless of α; four new
segments of the polygonal approximation are created. Subsequently, when d > d, between
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Algorithm 1 Combined sampling, the initial phase.
1: function csInit(f, L, a, b, d, d, d, ε, α)
2: L = ∅
3: ya = f(a), yb = f(b)
4: if discontinuity in a then
5: throw SingularityException (a)
6: if discontinuity in b then
7: throw SingularityException (b)
8: L← Point(a, ya)
9: as(f, L, a, b, ya, yb, d, d, d, ε, α)

10: L← Point(b, yb)

each pair of four new consecutive segments, the refinement criterion αk, k = 1, ..., 3, is eval-
uated and compared to α. If αk > a and b− a > ε, two adjacent segments are created. The
interval is subdivided into 2-4 new until the visually “smooth” polynomial approximation of
the curve is obtained. In other words, uniform sampling is followed by adaptive sampling
refining the properties of the insufficiently estimated segments.

Let L = {pi}ni=1 be the polynomial approximation of f(x) and Ω = [a, b] a subdomain. The
algorithm may be summarized as follows:

1. The initial phase

Let L = ∅ be the empty set. Compute ya = f(a) and yb = f(b). If a singularity in
a or b is detected, throw the exception. Add the initial vertex to L: L ← pa, where
pa = (xa, ya). Set the recursion depth d = 1.

2. The recursive step

Enter the recursive procedure and do the following substeps:

(a) If d > d or b− a < ε stop the recursive procedure and go to Step 3.

(b) For a given Ω = [a, b], the interval is split by the three points

x1 = a+ 1
2r1(b− a), x2 = a+ r2(b− a), x3 = a+ 3

2r3(b− a),

into the approximate quarters

Ω1 = [a, x1], Ω2 = [x1, x2] Ω3 = [x2, x3], Ω4 = [x3, b],

where r1, r2, r3 are the random numbers inside the interval [0.45, 0.55]. This step
prevents a situation, when f(a) = f(b) = f(x1) = f(x2) = f(x3), but their inter-
mediate points do not held this condition; it is typical for some periodic functions
(for example, if y = sin 2x, and Ω = [0, 2π]).

(c) If a singularity in x1, x2, or x3 occurs, throw the new exception with the argument
indicating the singularity.

(d) Evaluate the function values y1 = f(x1), y2 = f(x2), and y3 = f(x3) at new
vertices p1, p2, p3.
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Algorithm 2 Combined sampling, the recursive phase.
1: function cs(f, L, a, b, ya, yb, d, d, d, α)
2: if d > d ∨ (b− a < ε) then
3: return
4: r1 = rand(0.45, 0.55), r2 = rand(0.45, 0.55), r3 = rand(0.45, 0.55)
5: x1 = a+ 1

2r1(b− a), x2 = a+ r2(b− a), x3 = a+ 3
2r3(b− a)

6: if discontinuity in xi then
7: throw SingularityException (xi), i = 1, 2, 3
8: y1 = f(x1), y2 = f(x2), y3 = f(x3)
9: pa = Point(a, ya), pb = Point(b, yb), pi = Point(xi, yi), i = 1, 2, 3

10: α1 = α(pa, p1, p2), α2 = α(p1, p2, p3), α3 = α(p2, p3, pb)
11: if (α1 > α) ∨ (d <= d) then
12: cs(f, L, a, x1, ya, y1, d+ 1, d, d, α);
13: L← Point(x1, y1)
14: if (α1 > α) ∨ (α2 > α) ∨ (d <= d) then
15: cs(f, L, x1, x2, y1, y2, d+ 1, d, d, α);
16: L← Point(x2, y2)
17: if (α2 > α) ∨ (α3 > α) ∨ (d <= d) then
18: cs(f, L, x2, x3, y3, y3, d+ 1, d, d, α);
19: L← Point(x3, y3)
20: if (α3 > α) ∨ (d <= d) then
21: cs(f, L, x3, xb, y3, yb, d+ 1, d, d, α);

(e) Check the refinement criteria α1 = α(pa, p1, p2), α2 = α(p1, p2, p3), α3 = α(p2, p3, pb),
and the recursive depth d. When the curve is not sufficiently smooth, or d ≤ d, it
needs to be refined. For d ≤ d, this step begins with uniform sampling; for d > d
it transforms to adaptive sampling.

(f) If α1 > α, call the recursive procedure with the increased depth d = d+ 1 for the
interval [a, x1).

(g) Add new point p1 to the polynomial approximation of f(x): L← p1.

(h) If α1 > α∨α2 > α, call the recursive procedure with the increased depth d = d+1
for the interval (x1, x2).

(i) Add new point p2 to the polynomial approximation of f(x): L← p2.

(j) If α2 > α∨α3 > α, call the recursive procedure with the increased depth d = d+1
for the interval (x2, x3).

(k) Add new point p3 to the polynomial approximation of f(x): L← p3.

(l) If α3 > α, call the recursive procedure for the interval (x3, xb].

3. Final step

Add the last point pb to the polynomial approximation of f(x) : L← pb and finish the
combined sampling procedure.
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Method M3. By summarizing the facts mentioned above the proposed algorithm uses a
triple recursion. In each step, the refined f(x) is approximated by at least three new points.
For the pseudocode, see Algs. 1, 2. Compared to [15], this solution has a dramatically im-
proved performance and requires fewer subdivisions. Due to the significantly higher recursion
depth d, for fast and efficient estimation of the f(x) curvature, a single recursive step is not
sufficient. This issue is illustrated in Tab. 1; our method is labeled as M3, a single recursion
step method as M1.

4. Singularity detection

This section describes several simple strategies for handling and detecting the discontinu-
ities; their overview can be found in [24], [2], [26]. Early methods are based on the Markov
models [18], [28], [25]. Currently, there are several approaches: applications of the Fourier
transformation [5], [12], [4], [23], [17], [16], [11], wavelets [35], [45], Chebyshev series [31],
triangulations [19]. Geometric measures of the curvature are described in [38], [22], [34], [1],
[30], [36], the statistical-based methods in [8], [26].

Unlike the solutions searching for all discontinuities of f at entire Ω, each sampled point xi
is checked for a discontinuity; the removable, jump and infinite discontinuities are involved.
These testing criteria are local, they analyze behavior of the function in a boundary B(xi, ε)
of xi, covered by the equally spaced points xi−2 = xi− 2h, xi−1 = xi− h, and, xi+1 = xi + h,
xi+2 = xi+2h, where h = ε/2. For practical computation ε = 0.001. An infinite discontinuity
is detected if

(|fi−k| > y) ∨ (fi−k ≡ ±Inf) ∨ (fi−k ≡ NaN) , k = −2, .., 2.

where y is the given threshold, NaN and Inf are the symbols for the positive infinity and
the result of the undefined operation. The remaining discontinuities may be found using the
criteria measuring the smoothness by changes in the variation. Two criteria, WENO and LR,
described in [30], are presented. The WENO criterion wj(x), j = 0, 1, 2, is written as

wj(x) = αi∑2
j=0 αi

, αj = 1
(ISj + ε)2 ,

where

IS0 = 13
12(fi−2 − 2fi−1 + fi)2 + 1

4(fi−2 − 4fi−1 + fi)2,

IS1 = 13
12(fi−1 − 2fi + fi+1)2 + 1

4(fi−1 − fi+1)2,

IS2 = 13
12(fi+2 − 2fi+1 + fi)2 + 1

4(fi+2 − 4fi+1 + fi)2.

If w0(x) > 1/3∨w1(x) > 1/3∨w2(x) > 1/3, f is probably not smooth at xi. The LR criterion
has the following form

LR(x) =
∣∣f2
r − f2

l

∣∣
f2
r + f2

l

, (4.1)

where fr = 3fi− 4fi+1 + fi+2, fl = 3fi− 4fi−1 + fi−2. If LR > 0.8, f is probably not smooth
at xi. For practical computations, the criteria provide similar results. However, the WENO
criterion seems to be more sensitive, and a steep slope classifies as the jump discontinuity.
This issue is widely discussed in [30].
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Table 1: The depth of recursion for different values of the refinement criteria α in the methods
M1 and M3 (proposed).

Method Refinement criterion α[◦]
20 15 10 5 2 1 0.5 0.2 0.1

M1 7 9 9 19 55 105 217 535 1071
M3 3 3 3 7 15 27 57 121 297

5. Combined sampling with the singularities

The proposed method checks for a discontinuity at each sampled point xi ∈ Ω using the
rules mentioned above, where the amount of discontinuities denoted as k is not a priori
known. It does not represent a rigid mathematical solution describing the behavior of the
analyzed function, but only a simple method applicable to the technical computing. Our
approach follows a heuristic sufficient for most functions, especially for the meridian or parallel
coordinate functions. As a result, the set of disjoint subsets Ωg, Ωg ⊆ Ω, containing “good”
data that allows for adaptive sampling is constructed; this technique was used in [26]. The
point xi is classified as “good” if no singularity at f(xi) occurs. An interval Ω containing
only “good” points is classified as “good” and labeled as Ωg. Unfortunately, the procedure
cannot be generalized for higher-dimensional problems.

Suppose the j − th interval Ωj = [aj , bj ] containing a singularity c, c ∈ Ωj , and ε, ε > 0,
representing the numerical threshold. In general, several cases need to be distinguished:

• Case 1: the coincidence with the lower bound

If aj ≡ c, the discontinuity c coincides with the lower bound of the interval Ωj .

• Case 2: the proximity to the lower bound

If aj < c ∧ |c− aj | < ε, the discontinuity c is close the lower bound of the interval Ωj .

• Case 3: the coincidence with the upper bound

If bj ≡ c, the discontinuity c coincides with the upper bound of the interval Ωj .

• Case 4: the proximity to the upper bound

If bj > c ∧ |c− bj | < ε, the discontinuity c is close the upper bound of the interval Ωj .

• Case 5: the interior singularity

If aj < c < bj , where |c− aj | > ε∧|c− bj | > ε, the discontinuity c lies inside the interval
Ωj .

For practical computation in the floating-point arithmetic, Cases 1, 2 and Cases 3, 4 may be
joined, and we search for the discontinuity close to the lower or upper bounds. The modified
conditions are:

• Cases 1+2: the proximity/coincidence to the lower bound

If aj ≤ c ∧ |c− aj | < ε, the discontinuity c coincides or it is close to the lower bound of
the interval Ωj .
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• Cases 3+4: the proximity/coincidence to the upper bound

If bj ≥ c∧ |c− bj | < ε, the discontinuity c coincides or it is close to the upper bound of
the interval Ωj .

Another two essential cases need to be resolved:

• Case 6: Too narrow interval

If bj − aj < ε, an “empty” interval Ωj arises.

• Case 7: The incorrect interval

If aj > bj , the incorrect interval Ωj appears.

In general, they occur due to the behavior of the sampled function as well as a result of
the floating-point arithmetic. For our problem, the empty interval is “unpromising” and
(probably) does not contain any important data1. Moreover, there is no chance of the possible
improvement; the interval cannot be expanded. In most cases, the “incorrect” intervals are
also empty, or they become empty during the next processing. In general, these intervals may
be rejected from further processing; Cases 6, 7 can be solved simultaneously.

Depending on the position of the singularity c, three types of operations are performed:

• Delete empty/incorrect Ωj

The empty or incorrect interval Ωj is deleted.

• Shrinking Ωj

The interval Ωj with the discontinuity c close to the bounds is shrunk from the left/right.
For Cases 1+2, aj = aj + ε, for Cases 3+4, bj = bj − ε.

• Splitting Ωj

The interval Ωj with the internal discontinuity c is split so that the new disjoint intervals
Ωj,1 = [aj , c− ε], and Ωj,2 = [c+ ε, bj) are created.

It is obvious that the Case 6 appears as the result of the incorrect split or shrink operations,
while the Case 7 is the result of the incorrect shrink operation.

5.1. Combined sampling algorithm involving the singularities

Let us summarize the facts mentioned above into the algorithm. Our implementation is based
on the stack S, see Alg. 3, the amount of Ωj splits denoted s represents the recursion depth.
The basic idea is to set Ωg ≡ Ω, to loop over all the adaptively sampled points pi, to check for
a singularity c in the boundary B(xi, ε) of pi and to make a decision about the Ωj boundaries.
If no singularity occurs, all points are classified as good, and the polygonal approximation Lj
of the curve is constructed. All disjoint polygonal approximations Lj are stored in the list L.
The discontinuities are localized successively, one by one. The stack-based approach consists
of two phases (initial and recursive):

1However, for some specific types of non-continuous functions this data may be important (functions with
isolated points) and cannot be skipped.

Geoinformatics FCE CTU 17(2), 2018 17



T. Bayer: Efficient plotting the functions with discontinuities

Algorithm 3 Combined sampling with the singularities, the stack implementation.
1: function csSingStack(f,L, aj , bj , s, d, d, ε, α)
2: S = ∅, s = 0
3: S ← Ωj = [aj , bj ]
4: while S 6= ∅ do
5: Ωj = S.pop()
6: try
7: Lj = ∅
8: csInit(f, Lj , aj , bj , 1, 1, d, d, ε, α)
9: L← Lj

10: catch (SingularityException e)
11: c = e.x
12: if (s > s) then
13: L = ∅
14: return
15: else
16: k = 0, Ωj,1 = Ωj , Ωj,2 = Ωj
17: processInt(Ωj , c, Ωj,1, Ωj,2, k, s, ε)
18: if (k > 0) then
19: S ← Ωj,1
20: else if (k > 1) then
21: S ← Ω2,1

1. The initial phase

Initialize the empty stack S = ∅. Create Ωg = [a, b] and push S ← Ωg.

2. The recursive steps

Repeat the following steps until S is empty:

(a) Pop the actual good interval Ωg
j ← S from S and get aj , bj .

(b) Create the empty list Lj = ∅.

(c) Create the temporary polygonal approximation of f on Ωj = [aj , bj ] using com-
bined sampling stored in Lj .

(d) If no discontinuity appears, add Lj to L: L ← Lj and go to step (a). Otherwise,
c represents the discontinuity that must be treated in Steps e-h).

(e) If s > s, the maximum allowed recursion depth is exceeded without a reasonable
solution. Clear the polygonal approximation L.

(f) Otherwise, initialize the newly created intervals Ωj,1 = [aj,1, bj,1], Ωj,2 = [aj,2, bj,2],
as Ωj,1 = Ωj , Ωj,2 = Ωj , and the amount of created intervals as k = 0.

(g) Call the function processInt with parameters Ωj , c, Ωj,1, Ωj,2, k, S, ε refining
the interval Ωj ; see Alg. 4. The subintervals Ωj,1, Ωj,2 are passing by reference.
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(h) If at least one new interval needs to be created, then k > 0. Push Ωj,1 to the stack:
S ← Ωj,1. If k > 1, push the second interval Ωj,2 to the stack: S ← Ωj,2.

Processing the interval. The procedure processInt(Ωj , c, Ωj,1, Ωj,2, k,S, ε) refines the
interval Ωj . Depending on the c value, the Ωj bounds are shifted, or Ωj is split to Ωj,1, Ωj,2.
It can be summarized as follows:

1. If aj > bj , Ωj represents an incorrect interval, return.

2. If |bj − aj | < ε, Ωj represents an “empty” interval, return. As mentioned above, for
some functions with the multiple jump discontinuities the empty interval cannot be
skipped.

3. If aj ≤ c∧|c− aj | < ε, the discontinuity c is close to the lower bound of the interval Ωj .
Shift the lower bound aj,1 = aj + ε of Ωj,1 and increase the amount of created intervals
k = k + 1.

4. If bj ≥ c∧|c− bj | < ε, the discontinuity c is close to the upper bound of the interval Ωj .
Shift the upper bound bj,1 = bj − ε of Ωj,1 and increase the amount of created intervals
k = k + 1.

5. If aj < c < bj , then |c− aj | > ε ∧ |c− bj | > ε, the discontinuity c is inside the interval
Ωj which needs to be split to Ωj,1, Ωj,2. Shift the upper bound bj,1 = c − ε of Ωj,1
and the lower bound aj,2 = c + ε of Ωj,2. Increase the amount of the created intervals
k = k + 2 and splits s = s+ 1.

6. If at least one new interval needs to be created, then k > 0. Push Ωj,1 to the stack:
S ← Ωj,1. If k > 1, push the second interval Ωj,2 to the stack: S ← Ωj,2.

For the implementation, see Alg. 4. Analogously, the singularity value c is stored in the
thrown exception, and processed in the try-catch block. In general, the stack-based imple-
mentation is more stable than a common recursion and does not suffer from too high value
of the recursion depth d; especially for the small values of ε.

5.2. Utilization in geoinformatics

The proposed methods may be used for the polygonal approximation of curves when a more
compact and efficient representation is required. The circles, circular arcs, ellipses or offsets
of curves (e.g., buffers) cannot be internally stored in the *.shp files. It can also be used for
the contour lines simplification (removing the adjacent segments, where αi < α). Another
utilization for which the algorithm was originally developed, is a more efficient reconstruc-
tion of the map projection graticule. The coordinate functions F (ϕ, λ), G(ϕ, λ) of the map
projection depend on ϕ, λ and may contain several discontinuities. Therefore, the problem
needs to be generalized, and its solution must be adapted for these facts. The algorithm for
the map projection graticule construction will be presented in the next paper.

6. Experiments and results.

The proposed methods for combined sampling have been tested for the set of 9 functions; the
ability to detect and treat the discontinuities represents an important factor.
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Algorithm 4 Processing the interval: shift bounds or split.
1: function processInt(Ωj , c, Ωj,1, Ωj,2, k, s, ε)
2: if (aj > bj) then
3: return
4: if |bj − aj | < ε then
5: return
6: if (aj ≤ c) ∧ (|c− aj | ≤ ε) then
7: aj,1 = aj + ε
8: k = k + 1
9: else if (bj ≥ c) ∧ (|c− bj | ≤ ε) then

10: bj,1 = bj − ε
11: k = k + 1
12: else if (aj < c < bj) ∧ (|c− aj | > ε) ∧ (|c− bj | > ε) then
13: bj,1 = c− ε, aj,2 = c+ ε
14: k = k + 2
15: s = s+ 1

6.1. List of functions

In all cases is Ω = [−5π, 5π], ε = 0.001, α = 1◦, the thresholds s, d have not been set. The
first function

f1(x) =
{

1 + x, x ≥ 0,
0, x < 0,

has the jump discontinuity at x = 0. The polyline representation contains only 4 points
divided into two intervals Ωg

1 = [−5π,−1.3 · 10−4], Ωg
2 = [1.6 · 10−4, 5π], the amount of splits

is s = 1, no recursion is required d = 0. The second function

f2(x) = e−500x2
,

is quite steep and does not contain any discontinuity. These facts led to the polygonal
approximation formed by 266 points, Ωg = Ω, no splits, s = 0, the maximum recursion depth
is d = 3. The third function

f3(x) = sin(x)/x,

has a removable discontinuity at x = 0, where f(0) = 1. Ω is divided into two subintervals
Ωg

1 = [−5π,−1.3 · 10−4], Ωg
2 = [1.6 · 10−4, 5π], the amount of splits is s = 1, no recursion

required d = 0, the polygonal approximation contains 122 points. The fourth function

f4(x) = x/ sin(x),

has jump discontinuities at x = ±π ± kπ. Hence, Ω is split into 9 sub intervals: Ωg
1 =

[−15.692,−12.579], Ωg
2 = [−12.554,−9.434], Ωg

3 = [−9.415,−6.290], Ωg
4 = [−6.277,−3.145],

Ωg
5 = [−3.138, 3.138], Ωg

6 = [3.145, 6.277], Ωg
7 = [6.290, 9.415], Ωg

8 = [9.434, 12.554], Ωg
9 =

[12.579, 15.692]. The amount of splits s = 8 as well as the recursion depth d = 6, provide the
polygonal approximation containing 984 points. The next function

f5(x) = x sin(5/x),
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Figure 5.1: The polygonal approximation of functions f1(x), ..., f9(x) created by the combined
sampling technique; the discontinuities involved.

has a discontinuity at x = 0, and f(0) = 0. Ω should be divided in two subintervals, but the
algorithm creates 12 subintervals in 42 splits: Ωg

1 = [−15.708,−0.015], Ωg
2 = [−0.009,−0.008],

Ωg
3 = [−0.007,−0.006], Ωg

4 = [−0.005,−0.004], Ωg
5 = [−0.004,−0.003], Ωg

6 = [−0.003, 0.003],
Ωg

7 = [0.003, 0.004], Ωg
8 = [0.004, 0.005], Ωg

9 = [0.005, 0.006], Ωg
10 = [0.006, 0.007], Ωg

11 =
[0.008, 0.009], Ωg

12 = [0.015, 15.708]. As a result of the recursion depth d = 9, the total
amount of points is n = 6032. While the graphical representation is aesthetically pleasing,
the polygonal representation contains redundant data; this is due to the false detection of
discontinuities provide by LR criterion. The next function

f6(x) = 1/(tan 2x tan 0.5x),

has the infinite singularities at x = ±1/2π ± kπ, and at x = 0 ± k2π (total 15). The
adaptive sampling procedure with the recursion depth d = 7 creates 755 points in 16 new
intervals Ωg

1 = [−15.708,−14.138, Ωg
2 = [−14.137,−12.598], Ωg

3 = [−12.535,−10.996], Ωg
4 =

[−10.995 − 7.855], Ωg
5 = [−7.853,−6.315], Ωg

6 = [−6.251,−4.713], Ωg
7 = [−4.712,−1.571],

Ωg
8 = [−1.570,−0.032], Ωg

9 = [0.032, 1.570], Ωg
10 = [1.571, 4.712], Ωg

11 = [4.713, 6.251], Ωg
12 =

[6.315, 7.853], Ωg
13 = [7.855, 10.995], Ωg

14 = [10.996, 12.535], Ωg
15 = [12.598, 14.137], Ωg

16 =
[14.138, 15.708] with s = 15 splits. The next function

f7(x) = e−2x/(x− 1),
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Algorithm 5 Plotting the function f9(x) involving discontinuities in the Octave v. 4.4
scripting language.
xmin = -5*pi; xmax = -xmin;
eps = 0.001; lrmax = 0.8;
x = xmin:0.001:xmax;
f = @(x)exp(x)./tan(x);
y = f(x);
d = lr( f, x, eps) > lrmax;
x(d==1) = nan;
y(d==1) = nan;
plot(x,y,’-r’);
xlim([xmin,xmax])
ylim([xmin,xmax])
set(gca,’XLim’,[xmin xmax])
set(gca,’YLim’,[xmin xmax]])
xlabel(’x’);
ylabel(’f(x)’);
axis equal;

has the infinite singularity at x = 1, Ω is divided into two subintervals Ωg
1 = [−4.286, 1.000],

Ωg
2 = [1.000, 15.708]. The amount of splits is s = 1 as well as the recursion depth d = 6,

provide the polygonal approximation by 163 points. The next function

f8(x) = x2 sin 2x/(2x− 1),

has the infinity singularity at x = 0.5, Ω is divided into two subintervalsΩg
1 = [−15.708, 0.500],

Ωg
2 = [0.500, 15.708]. The amount of splits is s = 1 and the recursion depth d = 7 bring the

polygonal approximation by 1948 points. The last function

f9(x) = ex/ tan x,

has infinite singularities at x = ±kπ (total 11). The adaptive sampling procedure with the
recursion depth d = 6 creates 1109 points in 10 new intervals Ωg

1 = [−15.708,−12.567], Ωg
2 =

[−12.566,−9.425], Ωg
3 = [−9.425,−6.283], Ωg

4 = [−6.2837,−3.142], Ωg
5 = [−3.141,−0.001],

Ωg
6 = [0.001, 3.119], Ωg

7 = [3.165, 5.925], Ωg
8 = [7.224, 8.138], Ωg

9 = [10.979, 11.012], Ωg
10 =

[14.137, 14.138], with s = 10 splits.

The polygonal approximations of all analyzed functions can be found in Fig. 5.1. It is
evident that their courses have been estimated correctly. However, for some functions, the
proposed combined sampling algorithm brings less redundant representation (f5). In general,
this method cannot compete with the well-known high-end solutions (Mathematica) involving
the robust numerical techniques, but it may provide a reasonable representation of functions
in technical computing.

6.2. Comparison with other systems

For comparison, the functions will be plotted in two well-known systems. While the open-
source software is represented by Octave (v. 4.4), the commercial software by Wolfram
Mathematica (v. 11).
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Figure 6.1: Functions f1(x), ..., f9(x) plotted in the Wolfram Mathematica software, v. 11.

Octave. Unfortunately, the open-source software Octave (v. 4.4) does not support a correct
plotting the functions involving discontinuities. The main idea of our solution is based on
splitting Ω to the subintervals Ωg by putting NaN numbers between Ωg, where the function
is undefined. The discontinuities are detected by the LR criterion given by Eq. 4.1. From a
mathematic point of view, more characteristics of the function behavior need to be studied
(first and second derivatives, asymptotes, local/global minima, ...), but this is outside the
scope of the paper. The script can be found in Alg. 5.

The previous results set the numerical characteristics: Ω = [−5π, 5π], ε = 0.001, LR = 0.8,
sampling step h = 0.001. A curve is sampled uniformly by 10000π (approx. 31 000) points;
this “relatively large” value has been set empirically. In general, the obtained results are
analogous to the proposed method. Unfortunately, the algorithm is sensitive to the values
of h, and LR. For the larger values of h, h = 0.01, only a subset of functions is sampled
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Table 2: Uniform and combined sampling of the graticules of the equal area cylindrical, conic,
azimuthal and Werner-Staab projections using combined sampling. The quantitative parame-
ters are presented.

Projection Sampling nmer npar αm αp α̃m α̃p

Equal area cylindrical Uniform 1443 1406 0.00 0.00 0.00 0.00
Combined 195 190 0.00 0.00 0.00 0.00

Equal area conic Uniform 1443 1406 0.00 2.20 0.00 2.20
Combined 195 1612 0.00 5.01 0.00 1.89

Equal area azimuthal Uniform 1443 1406 0.00 5.00 0.00 5.00
Combined 195 2476 0.00 4.74 0.00 2.81

Werner-Staab Uniform 1443 1406 9.27 5.00 3.86 2.93
Combined 2334 1747 4.99 5.00 2.36 2.34

correctly.

Mathematica. Wolfram Mathematica v. 11, the well-known system for technical comput-
ing, developed for three decades, supports automatic plotting the functions with the disconti-
nuities. The script has a straightforward form; see Alg. 6. For the functions f1(x), ..., f8(x) the
analogous discontinuities have been detected. Unfortunately, for f9, the asymptote x = −3π
has not been recognized; see Fig. 6.1. Moreover, the asymptote x = −2π is hard to distin-
guish. If we understand Mathematica as the reference software, our proposed algorithm may
be found as a simple and efficient tool for plotting a general function of the one variable.
However, many situations may appear when it fails.

Algorithm 6 Plotting the function f9(x) involving the discontinuities in the Mathematica
v. 11 scripting language.
xmin = -5*Pi; xmax = -xmin;
F[x_] := Exp[x]/Tan[x]};
Plot[F[x], x, xmin, xmax, PlotRange -> xmin, xmax, xmin, xmax, AxesLabel -> x, f[x],
AxesOrigin -> 0, 0, AspectRatio -> Automatic, PlotStyle -> Red];

6.3. Construction of the map projection graticule

In the last test, where the graticules of several map projections are reconstructed, the uniform
and adaptive sampling techniques are compared regarding the data representation compact-
ness. It is measured by the amount of the sampled meridian points nmer, and parallel points
npar. Maximum angles αm, αp between the sampled meridian and parallel segments together
with their mean values α̃m, α̃p are measured. The graticule is constructed over the entire
planisphere, so Ω = Ωϕ×Ωλ, where ϕ ∈ [−π/2, π/2], and λ ∈ [−π, π], the offsets between the
meridians and parallels are ∆ϕ = ∆λ = 10◦. In uniform sampling, the sampling steps of the
meridians and parallels are δϕ = δλ = 2◦; combined sampling uses α = 2◦. For the circular
arcs, uniform and combined sampling provide the analogous density of points representing
the polygonal approximation. On the contrary, uniform sampling brings a higher density of
the sampled points for the straight lines and vice versa for most of the curves. Four map
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Figure 6.2: The reconstructed graticules of the equal area cylindrical, conic, azimuthal and
Werner-Staab projections using the combined sampling technique.

projections are involved in testing: equal-area cylindrical, conic (ϕ1 = 45◦), azimuthal, and
Werner-Staab, their coordinate functions are continuous on Ω. The results are summarized
in Tab. 2.

For the straight segments, uniform sampling provides the redundant data; this issue refers to
the cylindrical projection as well as to the meridians of the conic and azimuthal projections.
While the constant curvature leads to the similar results (parallels of conic, azimuthal and
Werner-Staab projections), in the higher-curvature regions, the combined sampling provides
a smoother approximation (meridians of Werner-Staab projection). In general, combined
sampling preserves the curvature better (see αm, αp, α̃m, α̃p values) and brings less redundant
data which requires more sampled points. The reconstructed graticules can be found in Fig.
6.2. The modified version of the algorithm treating the discontinuities in the coordinate
functions F,G will be presented in the next paper.

7. Conclusion

This article presented a new algorithm combining the uniform and adaptive sampling tech-
niques applicable to the functions involving the discontinuities, which are detected by the LR
criterion. It can be used for the polygonal approximation of the curves when a more compact,
efficient and less redundant representation is required. A typical example is represented by
the circles, circular arcs, ellipses or offsets of curves, but it can be easily applicable to the map
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projection graticule and similar problems in GIS and cartography. The illustrating examples
indicate that the functions involving the discontinuities widely applied in technical practice
can be plotted efficiently. However, there are many more complex functions, where the pro-
posed solutions are not sufficient and need to be refined. A typical situation is represented
by the isolated point, which is currently thrown. Another benefit is the relatively simple
stack-based implementation. The source code written in Java can be found in the GitHub
repository

https://github.com/bayertom/sampling.

The next paper brings an extension of this algorithm for combined sampling of the map
projection graticules, when the coordinate functions F,G involve the discontinuities.
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