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Abstract. This article presents a new algorithm for interval plotting the projection graticule
on the interval Ω = Ωϕ × Ωλ based on the combined sampling technique. The proposed
method synthesizes the uniform and adaptive sampling approaches and treats the discontinu-
ities of the coordinate functions F,G. A full set of the projection constant values represented
by the projection pole K = [ϕk, λk], two standard parallels ϕ′1, ϕ′2 and the central meridian
shift λ′0 are supported. In accordance with the discontinuity direction it utilizes a subdivi-
sion of the given latitude/longitude intervals Ωϕ = [ϕ,ϕ], Ωλ = [λ, λ] to the set of disjoint
subintervals Ωg

k,ϕ,Ω
g
k,λ forming tiles without the internal singularities, containing only “good”

data; their parameters can be easily adjusted. Each graticule tile borders generated over
Ωg
k = Ωg

k,ϕ ×Ω
g
k,λ run along the singularities. For combined sampling with the given thresh-

old α between the adjacent segments of the polygonal approximation, the recursive approach
has been used; meridian/parallel offsets are ∆ϕ,∆λ. Finally, several tests of the proposed
algorithms are involved.
Keywords: digital cartography; mathematical cartography; adaptive sampling; graticule;
meridians; parallels; recursive approach; map projection; great circle; discontinuity; visual-
ization; sphere.

1. Introduction

Maps are an essential part of our history and cultural heritage; a close attention is paid to their
study and research. Working with the map content, its geometric and spatial characteristics
described by the map projection cannot be ignored. The map projection P is defined by the
coordinate functions F (ϕ, λ), G(ϕ, λ) of two independent variables, the latitude ϕ, and the
longitude λ. F,G may have a different form; they may not be continuous, or their analytic
form may not exist. To avoid the discontinuities, the interval Ω = Ωϕ×Ωλ will be divided into
the disjoint set of k “good” subintervals Ωg

k ; their “boundaries” run along the singularities.

A current approach concentrated on uniform sampling of the meridians and parallels with
the steps δϕ, δλ may not be sufficient. Despite its popularity, the equally spaced points
cannot describe the meridian/parallel course without errors; the problems of undersampling
or oversampling are common. Because of the complex/straight shapes of the meridians and
parallels, this technique is not generally recommended. Adaptive sampling brings several
benefits, it adapts to a different curvature of the function, reduces the amount of data and
provides a natural and smooth plot of the function without jumps and unnatural breaks. This
technique is popular in computer graphics; recall the deCasteljau or Chaikin’s algorithms for
the curve approximation. A combination of the uniform and adaptive sampling techniques
synthesizes their advantages, which is discussed in [5].

Taking into account the facts mentioned above, this technique may provide a smooth and
natural depiction of the graticule which is less data-redundant. A full set of the projection
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constant values represented by the projection pole K = [ϕk, λk], two standard parallels ϕ′1, ϕ′2,
and the central meridian shift λ′0 is supported. They have a strong influence on the shape
of the graticule. The last parameter makes the process of the graticule reconstruction more
difficult; an intersection of the meridian m(λ′0) with the parallel p(ϕ) as well as with the
meridian m(λ) need to be determined. Another essential subproblem is represented by the
automatic detection of the discontinuities; this issue refers to many coordinate functions F,G.

Finally, all algorithms will be tested on the real cartographic data represented by several
projections. To illustrate the behavior, properties, and drawbacks of the proposed methods,
the projections with more singularities will be preferred; the Fournier I. projection represents
a typical candidate. Apart from current outcomes in the cartographic or GIS software tools,
several specific applications may occur. Let us mention the problem of the unknown map
projection analysis. Providing the visualization of the results of the detection algorithm
illustrates its efficiency, which, from the “raw numbers”, may not be apparent.

This paper is organized as follows. In Section 3 the mathematical background of the solution is
described. Section 4 is devoted to the proposed combined sampling algorithm, the properties
of which in Section 5 will serve to analyze its behavior on real data.

2. Related Work

The polygonal approximation of the parametric curve based on adaptive sampling is men-
tioned in several papers: the refinement criteria in [12], the approximation by polygonal
curves in [7], the spatial approximation of implicit curves in [17], [10], the affine arithmetic
working in triangulated models in [21]. The curve interpolation algorithms preserving its
speed are described in [23], [25], [26], the adaptive-feed rate technique in [27]. However, the
map projections are never defined by the implicit equations. There are several papers focused
on the approximation and drawing the functions or surfaces containing discontinuities. The
interpolation and approximation of the piece-wise smooth functions are discussed in [2], [9].
Several detection methods for the localization of the singularities of surfaces can be found in
[13], [22], [19], [11], [18], [1], [8], the combined sampling technique in [5]. The reconstructed
projection graticule and its plot may be utilized in many cartographic or GIS applications.
An interesting application is represented by the analysis of the unknown map projection de-
scribed in [6], [4] providing the visualization of results of the detection algorithms, typically
the reconstructed projection graticule.

3. Map projection and its properties

Let S2 be a sphere of the radius R in R3 (reference surface, Earth), A = (0, 0, R), B =
(0, 0,−R) North and South Poles of S2, and σ a plane. For a current point Q = [ϕ, λ] ∈ S2,
different from A,B, and its image P ′ = [X,Y ] ∈ σ, the map projection P : S2 − {A,B} → σ,
P(Q) = P ′, is defined by the coordinate functions F,G, of two independent variables ϕ, λ

X = F (ϕ, λ), Y = G(ϕ, λ), (3.1)

which are continuous with their first order partial derivatives, finite, and independent. A
transformation between the normal and oblique aspects is performed using the laws of spher-
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ical trigonometry

sinϕ′ = sinϕk sinϕ+ cosϕk cosϕ cos ∆λ, (3.2)

tanλ′ = cosϕ sin ∆λ
cosϕ sinϕk cos ∆λ− sinϕ cosϕk

, (3.3)

where ϕ′, λ′ are the spherical coordinates related to K. The inverse transformation has the
form of

sinϕ = sinϕk sinϕ′ − cosϕk cosϕ′ cosλ′, (3.4)

tan ∆λ = cosϕ′ sinλ′
cosϕ′ sinϕk cosλ′ + sinϕ′ cosϕk

, (3.5)

where ∆λ = λ−λk. A meridian of the sphere S2 is a curve m(ϕ, λc), ϕ ∈ [−π
2 ,

π
2 ], λc = const;

its image in P is m̃(ϕ, λc) = (F (ϕ, λc), G(ϕ, λc)). A parallel of the sphere S2 in R3 is a
curve p(ϕc, λ), λ ∈ [−π, π], ϕc = const; its image in P is p̃(ϕc, λ) = (F (ϕc, λ), G(ϕc, λ)). In
the simplified notation m(λ) represents a meridian of the longitude λ, p(ϕ) a parallel of the
latitude ϕ and m̃(λ), p̃(ϕ) their projected variants.

3.1. Map projection singularities

During the graticule construction, several types of singularities occur; see Fig. 3.2. The
sampling algorithm should be adapted to these facts. A meridian or a parallel may intersect
a singularity or may be coincident. There are several simple strategies for handling and
detecting the discontinuities; their overview can be found in [15], [3], [16], [5]. Our approach
is based on the LR criterion described in [20].

Coincidence with the infinite singularity. If the meridian m(λ) coincides with the
infinite singularity c, λ = c, then,

lim
λ→c±

F (ϕ, λ) =∞∨ lim
λ→c±

F (ϕ, λ) = −∞∨ lim
λ→c±

G(ϕ, λ) =∞∨ lim
λ→c±

G(ϕ, λ) = −∞,

(Case A), or,

lim
λ→c±

F (ϕ, λ) = ±∞∨ lim
λ→c±

F (ϕ, λ) = ∓∞∨ lim
λ→c±

G(ϕ, λ) = ±∞∨ lim
λ→c±

G(ϕ, λ) = ∓∞,

(Case B) for any ϕ ∈ (−π/2, π/2). Using the left- and right-boundaries (c+ ε) and (c− ε) in
Case A, the original projected meridian m̃(c) is replaced with

m̃(c) = 0.5 [m̃(c− ε) + m̃(c+ ε)] .

For Case B, the original meridian m(λ) is replaced with two new meridians m−(λ→ c−), and
m+(λ → c+). Analogously, Cases C, D occur, if a parallel p(ϕ) coincides with the infinite
singularity c,

lim
ϕ→c±

F (ϕ, λ) =∞∨ lim
ϕ→c±

F (ϕ, λ) = −∞∨ lim
ϕ→c±

G(ϕ, λ) =∞∨ lim
ϕ→c±

G(ϕ, λ) = −∞,

or, if,

lim
ϕ→c±

F (ϕ, λ) = ±∞∨ lim
ϕ→c±

F (ϕ, λ) = ∓∞∨ lim
ϕ→c±

G(ϕ, λ) = ±∞∨ lim
ϕ→c±

G(ϕ, λ) = ∓∞.
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Figure 3.1: Discontinuities of the coordinate functions F,G and asymptotes: the removable
discontinuity (Hassler projection), the infinite discontinuity (gnomonic projection) at ϕ = 0,
the infinite discontinuity (Apianus and Nicolosi projections) at λ = 0.

For Case C, the originally projected parallel p̃(c) may be replaced with the average

p̃(c) = 0.5 [p̃(c− ε) + p̃(c+ ε)] , (3.6)

for Case D the parallel p(ϕ) is replaced with two new parallels p−(ϕ→ c−), and p+(ϕ→ c+).
The removable discontinuities may be treated analogously to Cases A, C, the jump discon-
tinuities analogously to Cases B, D. An example of the coincidence with the discontinuities
can be found in Fig. 3.2.

Intersection of the singularity. The singularity may not affect the entire meridian or
parallel, but only some inferior points. The meridian m(λ) intersects the infinite singularity
c at the point qi = [ϕi = c, λ], if

lim
ϕi→c±

F (ϕi, λ) =∞∨ lim
ϕi→c+

F (ϕi, λ) = −∞∨ lim
ϕi→c±

G(ϕi, λ) =∞∨ lim
ϕi→c±

G(ϕi, λ) = −∞,

(Case E), or, if

lim
ϕi→c±

F (ϕi, λ) = ±∞∨ lim
ϕi→c±

F (ϕi, λ) = ∓∞∨ lim
ϕi→c±

G(ϕi, λ) = ±∞∨ lim
ϕi→c±

G(ϕi, λ) = ∓∞,

representing Case F. For Case E, the projected meridian point qi is replaced with the average

Xi = 0.5 (F (c− ε, λ) + F (c+ ε, λ)) , Yi = 0.5 (G(c− ε, λ) +G(c+ ε, λ)) .

Treating Case F is more difficult, the entire meridian m(λ) needs be split into two parts at c

m(λ) =
〈〈
m−(ϕi, λ), ϕ ≤ ϕi < c

〉
,
〈
m+(ϕi, λ), c < ϕi ≤ ϕ

〉〉
,
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Figure 3.2: Coincidence with the singularities: the meridian m(λk) passing the transformed
pole K, the meridian m(λk ± π) “opposite” the transformed pole, and the meridian m(±π);
the azimuthal projection.

projected separately. Analogously, Cases G, H occur, if a parallel p(ϕ) intersects the infinite
singularity at the point qi = [ϕ, c = λi],

lim
λi→c±

F (ϕ, λi) =∞∨ lim
λi→c±

F (ϕ, λi) = −∞∨ lim
λi→c±

G(ϕ, λi) =∞∨ lim
λi→c±

G(ϕ, λi) = −∞,

or, if,

lim
λi→c±

F (ϕ, λi) = ±∞∨ lim
λi→c±

F (ϕ, λi) = ∓∞∨ lim
λi→c±

G(ϕ, λi) = ±∞∨ lim
λi→c±

G(ϕ, λi) = ∓∞.

For Case G, the projected parallel point qi is replaced with the average

Xi = 0.5 (F (ϕ, c− ε) + F (ϕ, c+ ε)) , Yi = 0.5 (G(ϕ, c− ε) +G(ϕ, c+ ε)) ,

however, for Case H, the parallel p(ϕ) needs to be split into two parts at c

p(ϕ) =
〈〈
p−(ϕ, λi), λ ≤ λi < c

〉
,
〈
p+(ϕ, λi), c < λi ≤ λ

〉〉
.

The removable discontinuities may be treated analogously to Cases E, G, the jump disconti-
nuities analogously to Cases F, H.
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Figure 3.3: Boundaries Bϕ′i , Bλ′i and their backward projections to the (ϕ, λ) directions.

Detection of singularities. For parametric functions F,G it is necessary to recognize
whether a singularity refers to ϕ or λ coordinate. Therefore, each sampled point qi = [ϕi, λi]
and its boundary B(qi, ε) will be checked for a discontinuity. Suppose Bϕi = [ϕi − ε, ϕi + ε],
Bλi

= [λi − ε, λi + ε] to be the projections of B(qi, ε) to the (ϕ, λ) directions and qϕi+l
=

[ϕi + lh, λi] ∈ Bϕi , qλi+l
= [ϕi, λi + lh] ∈ Bλi

, where h = ε/2, l = −2,−1, 0, 1, 2, to be 5
sampled points. If any point of Bϕi is singular, the singularity has a direction of the meridian
m(λi) and analogously for Bλi

.

For the oblique aspect of P, Bϕ′i = [ϕ′i−ε, ϕ′i+ε], Bλ′i = [λ′i−ε, λ′i+ε] represent the projections
of B(qi, ε) to the (ϕ′, λ′) directions and qϕ′

i+l
= [ϕ′i + lh, λ′i] ∈ Bϕ′i , qλ′i+l

= [ϕ′i, λ′i + lh] ∈ Bλ′i
are the 5 sampled points. If all points of Bϕ′i are singular, the singularity has a direction of the
meridian m(λ′i) and analogously for Bλ′i . While Bϕi , Bλi

refer to directions of the geographic
meridian/parallel, Bϕ′i , Bλ′i are aligned with the transformed meridian/parallel directions, see
Fig. 3.3.

Depending on the direction, the coordinates xi, yi are labeled with ϕ, λ. The infinite disconti-
nuities of coordinates xϕ′

i−k
, yϕ′

i−k
in the latitude/longitude directions are tested by comparing

with the coordinate thresholds x, y. Subsequently, the jump discontinuity is detected using
LR criteria

LRx(ϕ′i, λ′i) =
∣∣F 2
r − F 2

l

∣∣
F 2
r + F 2

l

, LRy(ϕ′i, λ′i) =
∣∣G2

r −G2
l

∣∣
G2
r +G2

l

,

where Fr = 3Fi− 4Fi+1 +Fi+2, Fl = 3Fi− 4Fi−1 +Fi−2, and Gr = 3Gi− 4Gi+1 +Gi+2, Gl =
3Gi − 4Gi−1 + Gi−2. If LRx(ϕ′i, λ′i + lh) > LR ∨ LRy(ϕ′i, λ′i + lh) > LR, l = −2,−1, 0, 1, 2,
then, F or G (or both) are probably not smooth at qi; a discontinuity is aligned with the λ′
direction. Otherwise, if LRx(ϕ′i + lh, λ′i) > LR ∨ LRy(ϕ′i + lh, λ′i) > LR, a discontinuity is
aligned with the ϕ′ direction, where LR = 0.8 represents the threshold. If a discontinuity
is detected, the backward projection of Bϕ′i , Bλ′i to Bϕi , Bλi

is performed; see Fig. 3.3. In
practice, only the internal points qϕ′

i+l
of Bϕ′i , and qλ′i+l

of Bλ′i are converted to the normal
aspect using Eqs. 3.4, 3.5 and their direction is checked. Subsequently, the meridian/parallel
is shifted or split at qi = [ϕi, λi].
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Figure 3.4: The intersections of the meridian m′(λ′0), parallel p(ϕc), and the meridian m(λc)
lead to the ϕ/λ interval partition into two/three subintervals; A represents the North Pole, K
the transformed pole.

3.2. Intersection of the great circle and meridian/parallel arcs

Finding an intersection of the great circle arc and the meridian/parallel arc on the sphere
represents an essential problem of the graticule construction algorithm. While p(ϕ),m(λ)
refer to the normal aspect, commas in the labels indicate the oblique aspect.

The parallel p(ϕc) sampled on Ωλ = [−π, π] intersects m′(λ′0) in at most two points M1 =
[ϕ1, λ1], M2 = [ϕ2, λ2] where λ1 ≥ λ2, and ϕ1 = ϕ2 = ϕc. The interval will be split into the
three parts given by the longitude subintervals

Ωλ,1 = [−π, λ2), Ωλ,2 = (λ2, λ1), Ωλ,3 = (λ1, π].

If λ′0 = 0, then M1 = [ϕc, λk], M2 = [ϕc, λk ± π]. Depending on λk, the longitude interval Ωλ
will be split into three parts Ωλ,1, Ωλ,2, Ωλ,3. If λk ≥ 0

Ωλ,1 = [−π, λk − π), Ωλ,2 = (λk − π, λk), Ωλ,3 = (λk, π],

otherwise,

Ωλ,1 = [−π, λk), Ωλ,2 = (λk, λk + π), Ωλ,3 = (λk + π, π].
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For λ′0 = 0 the meridians m′(0) and m(λc) have just two intersections at the poles: M3 =
[π2 , ·] ≡ A, M4 = [−π

2 , ·] ≡ B; the latitude interval Ωϕ of the meridian m(λc) does not need to
be split, see Fig. 3.4. If λ′0 6= 0, at most one intersection, M3 = [ϕ3, λc] exists. To avoid the
singularity, the meridian m(λc) sampled in Ωϕ = [−π

2 ,
π
2 ] will be split into two parts given by

the latitude subintervals

Ωϕ,1 = [−π2 , ϕ3), Ωϕ,1 = (ϕ3,
π

2 ].

Intersection of two planes. Suppose the planes ρ1(n1), ρ2(n2) given by the normal vectors
n1 = (n1,x, n1,yn1,z), n2 = (n2,x, n2,yn2,z), the points Q1 ∈ ρ1, Q2 ∈ ρ2 and an arbitrary point
Q0 = [x0, y0, y0]. The intersection point M = [xM , yM , zM ] which lies on both planes ρ1, ρ2
will be chosen to minimize the norm [14]

min ‖M −Q0‖22 , subject to (M −Q1)n1 = 0, (M −Q2)n2 = 0.

It leads to the system of linear equations with the Lagrange multipliers λ1, λ2 and the solution
s = A−1b, where

s =


xM
yM
zM
λ1
λ2

 , A =


2 0 0 n1,x n2,x
0 2 0 n1,y n2,y
0 0 2 n1,z n2,z
n1,x n1,y n1,z 0 0
n2,x n2,y n2,z 0 0

 , b =


2x0
2y0
2z0

x1n1,x + y1n1,y + z1n1,z
x2n2,x + y2n2,y + z2n2,z

 .

Because A is sparse and symmetric, its inversion can be found in the analytic form. Let us
put

k0 = n2
1,x, k1 = n2

1,y, k2 = n2
1,z, k3 = n2

2,x, k4 = n2
2,y,

k5 = n2
2,z, k6 = k0 + k1 k7 = k3 + k4, k8 = k3 + k5, k9 = k4 + k5,

k10 = n1,xn2,x, k11 = n1,xn2,x, k12 = n1,zn2,z, k13 = n1,xn2,y, k14 = n1,xn2,z,

k15 = n1,yn2,x, k16 = n1,yn2,z, k17 = n1,zn2,y, k18 = n1,zn2,x, k19 = k15n2,y,

k20 = k17n2,z, k21 = k15n1,x, k22 = k13n1,y, k23 = k0 + k1 + k2, k24 = k3 + k4 + k5,

then
det(A) = 2(k0k9 − 2k10k12 + k2k7 − 2k11(k10 + k12) + k1k8),

and the elements of A−1 are

a11 = (k18 − k16)(k18 − k16)
det(A) , a12 = (k14 − k17)(k18 − k16)

det(A) , a13 = (k13 − k15)(k16 − k18)
det(A) ,

a14 = 2(−k19 − k20 + n1,xk9)
det(A) , a15 = 2[n1,yk15 − k22 + n1,z(k17 − k14)]

det(A) , a22 = (k17 − k14)(k17 − k14)
det(A) ,

a23 = (k13 − k15)(k17 − k14)
det(A) , a24 = 2[n1,yk8 − n2,y(k10 + k12)]

det(A) , a25 = 2[n1,xk13 − k21 + n1,z(k18 − k16)]
det(A) ,

a33 = (k15 − k13)(k15 − k13)
det(A) , a34 = 2[n1,zk7 − n2,z(k10 + k11)]

det(A) , a35 = 2[n2,zk6 − n1,z(k10 + k11)]
det(A) ,

a44 = −4k24

det(A) , a45 = 4(k10 + k11 + k12)
det(A) , a55 = −4k23

det(A) .

The direction n of the line of intersection is given by the cross product n = n1 × n2, its
parametric equation is (x, y, z) = (xM , yM , zM ) + α(nx, ny, nz), where α ∈ [0, 1].
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Intersection of the line and sphere. It is necessary to test, whether the line of in-
tersection intersects a sphere S2 of the radius R with the center C = [xc, yc, zc], given by
(xM + αnx − xc)2 + (yM + αny − yc)2 + (zM + αnz − zc)2 = R2. It leads to the quadratic
equation for α, where

a = n2
x + n2

y + n2
z,

b = 2(xMnx − nxxc + yMny − nyyc + zMnz − zMzc),
c = (xm − xc)2 + (ym − yc)2 + (zm − zc)2 −R2.

For the discriminantD > 0, there are two intersectionsM1 = [x1, y1, z1], andM2 = [x2, y2, z2],
determined from (x1,2, y1,2, z1,2) = (xM , yM , zM ) + α1,2(nx, ny, nz). If D = 0, then M1 ≡M2;
for D < 0 the line does not intersect the sphere. The Cartesian coordinates of intersections
need to be converted to the spherical, where ϕ1,2 = arcsin

(
z1,2/

√
x2

1,2 + y2
1,2 + z2

1,2

)
, λ1,2 =

atan2(y1,2, x1,2).

Practical computation. The meridian plane %1 containing m(λc) passes through the
points P5 = [ϕ5, λc], P6 = [ϕ6λc], and P7 = [ϕ7, λc], where ϕ5 = −π

2 + ε, ϕ6 = 0, ϕ7 = π
2 − ε.

Analogously, the parallel plane %2 containing p(ϕc, λ) is given by the points P8 = [ϕc, λ8],
P9 = [ϕc, λ9], and P10 = [ϕc, λ10], where λ8 = −π + ε, λ9 = 0, λ10 = π − ε, and the meridian
plane %3 containing m′(ϕ′, λ′0) centered at λ′0 is given by three points P11 = [ϕ′11, λ

′
0], P12 =

[ϕ′12, λ
′
0], and P13 = [ϕ′13, λ

′
0], where ϕ′11 = −π

2 + ε, ϕ′12 = 0, ϕ′13 = π
2 − ε.

1. The inverse transformation

Initially, the spherical coordinates [ϕ′i, λ′i] of points P11, P12, P13 related to the pole K =
[ϕk, λk] are transformed to the normal aspect using Eqs. 3.4, 3.5, where i = 11, 12, 13.

2. The transformation to the geocentric coordinates

The spherical coordinates [ϕi, λi] of points P5 − P13 are transformed to the Cartesian
geocentric coordinates xi, yi, zi, where xi = cosϕi cosλi, yi = cosϕi sinλi, zi = sinϕi,
i = 5, ..., 13.

3. Find the analytic representation of planes

The meridian plane of m′(λ′0) is given by the vectors u1, v1, where u1 = P12−P11, v1 =
P13−P11. The vectors u2, v2 of the second meridian plane m(λc) are u2 = P6−P5, v2 =
P7−P5, and the vectors u3, v3 of the parallel plane p(ϕc) are u3 = P9−P8, v3 = P10−P8.
Find the vectors n1, n2, n3 perpendicular to u1, v1, u2, v2, and u3, v3 using the cross
products n1 = u1 × v1, n2 = u2 × v2, n3 = u3 × v3.

4. Compute the line of intersection

For the meridian planes m′(λ′0), and m(λc), set: Q1 ≡ P11, Q2 ≡ P5; for the meridian
m′(λ′0) and parallel p(ϕc) planes, set: Q1 ≡ P11, Q2 ≡ P8, compute Q0 = (P11 + P12 +
P13)/3. Evaluate the line of intersection, compute the cross products n1,2 = n1 × n2,
n1,3 = n1×n3, where the direction n of both lines of intersection is n ≡ n1,2, or n ≡ n1,3.

5. Intersection of the line and sphere

Let S2 be the sphere of the radius R = 1 centered at C = [0, 0, 0]. Depending on the sign
of the discriminantD, evaluate the intersectionsM1 = [x1, y1, z1],M2 = [x2, y2, z2] of the
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Figure 4.1: The Hassler projection in the oblique aspect, K = [50◦, 15◦]; the singularities
involved a) and treated b).

planes %2 and %3. The planes %1, %3 have two intersections denoted as M3 = [x3, y3, z3]
and M4 = [x4, y4, z4].

6. Transformation to spherical coordinates

Finally, the Cartesian coordinates of the intersections M1, M2, M3 will be converted to
the spherical.

4. Graticule reconstruction using the combined sampling

Let Ω = Ωϕ × Ωλ, where Ωϕ = [ϕ,ϕ], and Ωλ = [λ, λ], be the subdomain, inside which
the polygonal approximation of the meridians/parallels is constructed. The points pi =
(F (ϕi, λc), G(ϕi, λc)), 1 ≤ i ≤ nϕ, ϕi ∈ Ωϕ approximate the meridian m(λc), and analogously
for the parallel. The combined sampling procedure represents a generalization of the curve
sampling procedure discussed in [5]. It starts with the uniform sampling procedure, which
after d steps transforms to adaptive sampling. A refinement criterion is based on the angular
difference αi of segments formed by three adjacent points (pi−1, pi, pi+1).

4.1. Graticule construction with singularities

The proposed algorithm based on the stack S implementation is described in Alg. 1. The basic
idea is to find a set of disjoint subsets Ωg

ϕ, Ω
g
ϕ ⊆ Ωϕ, and Ω

g
λ, Ω

g
λ ⊆ Ωλ, where Ωg = Ωg

ϕ×Ω
g
λ,

containing “good” data without singularities that allow for adaptive sampling. Over each
Ωg
j , the borders of which run along discontinuities the graticule fragment is constructed. The

entire graticule is put together from these fragments.

The point qi = [ϕi, λi] is “good” if no singularity at F (qi) and G(qi) occurs. Unlike the
one-dimensional version of the problem, Ω is partitioned in two orthogonal directions (ϕ, λ).
Let the j − th interval Ωj = Ωϕ,j × Ωλ,j , where Ωϕ,j = [ϕ

j
, ϕj ], Ωλ,j = [λj , λj ], contain a

singularity c, c ∈ Ω, with the unknown direction stored in the stack S, and ε, ε > 0, be the
numerical threshold. Suppose ∆ϕ to be the latitude offset between parallels and ∆λ to be
the longitude offset between meridians.
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Algorithm 1 Combined sampling with the singularities, the stack implementation.
1: function Graticule(Lϕ,Lλ, Ωϕ, Ωλ,∆ϕ,∆λ,P, s, d, d, ε, α)
2: S = ∅, s = 0
3: S ← Ωj = Ωϕ ×Ωλ
4: while S 6= ∅ do
5: Ωj = Ωϕ,j ×Ωλ,j = S.pop()
6: Ωj,1 = Ωϕ,j,1 ×Ωλ,j,1 = Ωj , Ωj,2 = Ωϕ,j,2 ×Ωλ,j,2 = Ωj
7: k = 0
8: try
9: Lϕ,j = ∅, Lλ,j = ∅

10: Meridians(Lλ,j , Ωϕ,j , Ωλ,j ,∆λ,P, d, d, ε, α)
11: Parallels(Lϕ,j , Ωϕ,j , Ωλ,j ,∆ϕ,P, d, d, ε, α)
12: Lϕ ← Lϕ,j , Lλ ← Lλ,j
13: catch (SingularityLatError e)
14: if (s < s) then
15: processInt(Ωϕ,j , e.ϕi, Ωϕ,j,1, Ωϕ,j,2, k, s, ε)
16: catch (SingularityLonError e)
17: if (s < s) then
18: processInt(Ωλ,j , e.λi, Ωλ,j,1, Ωλ,j,2, k, s, ε)
19: catch (SingularityError e)
20: if (s > s) then
21: Lϕ = ∅,Lλ = ∅
22: return
23: else
24: if (k > 0) then
25: S ← Ωj,1
26: else if (k > 1) then
27: S ← Ωj,2

Initially, Ωg ≡ Ω is set, so Ωg
ϕ ≡ Ωϕ, Ωg

ϕ ≡ Ωϕ. All adaptively sampled meridian/parallel
points qi are checked for the discontinuities. If a discontinuity c is found, it is classified, and
its direction is determined. Depending on c value, the lower/upper bound of Ωϕ,j or Ωλ,j is
shifted, or, a split to two disjoint intervals is performed:

Ωϕ,j = 〈Ωϕ,j,1, Ωϕ,j,2〉 , Ωϕ,j,1 = [ϕ
j
, c− ε], Ωϕ,j,2 = [c+ ε, ϕj ],

Ωλ,j = 〈Ωλ,j,1, Ωλ,j,2〉 , Ωλ,j,1 = [λj , c− ε], Ωλ,j,2 = [c+ ε, λj ].

Otherwise, the polygonal approximation Lλ,j of the meridian m(λ) or Lϕ,j of the parallel p(ϕ)
is constructed. All disjoint polygonal approximations Lj are stored in the lists of meridians
Lλ and parallels Lϕ. Recall s to be the amount of Ωϕ,j , and Ωλ,j splits. The procedure can
be summarized as follows:

1. The initial phase

Initialize the empty stack S = ∅, Ωg = Ω and push S ← Ω. Set the number of splits
to s = 0.
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Algorithm 2 The construction of meridians.
1: function Meridians(Lλ,j , Ωϕ,j , Ωλ,j ,∆λ,P, d, d, ε, α)
2: λj,start = ∆λ[1 + floor( λj ,

∆λ)]
3: λj,end = ∆λ[ceil( λj

∆λ)− 1]
4: meridianPart(Lλ,j , Ωϕ,j , λj,start,P, d, d, ε, α)
5: for (λ = λj,start;λ ≤ λj,end;λ = λ+ ∆λ) do
6: meridianPart(Lλ,j , Ωϕ,j , λ,P, d, d, ε, α)
7: if (λk ∈ Ωλ,j) then
8: meridianPart(Lλ,j , Ωϕ,j , λ− ε,P, d, d, ε, α)
9: meridianPart(Lλ,j , Ωϕ,j , λ+ ε,P, d, d, ε, α)

10: λk,o = (λk > 0?λk − π : λk + π)
11: meridianPart(Lλ,j , Ωϕ,j , λk,o − ε,P, d, d, ε, α)
12: meridianPart(Lλ,j , Ωϕ,j , λk,o + ε,P, d, d, ε, α)
13: meridianPart(Lλ,j , Ωϕ,j , λj,end,P, d, d, ε, α)

2. Recursive steps

Repeat the following steps until S is empty:

(a) Pop the actual interval Ωj

Pop the actual good interval Ωj ← S from S, where Ωg
j = Ωϕ,j × Ωλ,j , and

Ωϕ,j = [ϕ
j
, ϕj ], Ωλ,j = [λj , λj ].

(b) Create the empty lists

Create new empty lists Lλ,j = ∅, Lϕ,j = ∅ storing the polygonal approximation of
the meridians and parallels.

(c) Create the intervals for feasible splitting

Initialize the newly created intervalsΩj,1 = Ωϕ,j,1×Ωλ,j,1, andΩj,2 = Ωϕ,j,2×Ωλ,j,2,
as Ωj,1 = Ωj , Ωj,2 = Ωj , where Ωϕ,j,1 = [ϕ

j,1, ϕj,1], Ωλ,j,1 = [λj,1, λj,1], and
Ωϕ,j,2 = [ϕ

j,2, ϕj,2], Ωλ,j,2 = [λj,2, λj,2] used for feasible splitting of Ωg
j . Set the

amount of newly created intervals as k = 0.

(d) Create the temporary polygonal approximation Lϕ,j , Lλ,j of the graticule

Create the temporary polygonal approximation of the meridians and parallels on
Ωg
j using adaptive sampling stored in Lϕ,j , Lλ,j .

(e) Copy the temporary polygonal approximation

If no discontinuity appears, add Lλ,j toLλ: Lλ ← Lλ,j , and Lϕ,j toLϕ: Lϕ ← Lϕ,j ,
and go to step (a). Otherwise, c represents the discontinuity of the given type and
direction detected. The following cases, when c = ϕi, or, c = λi, must be treated
in Steps i-iii).

(f) Resolve the singularities by splitting Ωϕ,j , Ωλ,j
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Depending on the singularity c direction, do the following steps:

i. If c = ϕi, then Ωϕ,j needs to be split. Call the function processInt() with
parameters: Ωϕ,j , c, Ωϕ,j,1, Ωϕ,j,2, k, S, ε. The subintervals Ωϕ,j,1, Ωϕ,j,2 are
passing by reference.

ii. If c = λi, then Ωλ,j needs to be split. Call the function processInt() with
parameters: Ωλ,j , c, Ωλ,j,1, Ωλ,j,2, k, S, ε. The subintervals Ωλ,j,1, Ωλ,j,2 are
passing by reference.

iii. If c = ϕi ∨ c = λi, do the following steps. If s > s, the maximum allowed
recursion depth is exceeded without a reasonable solution, clear the polygonal
approximations Lϕ, Lλ. Otherwise, if k > 0, at least one new interval needs
to be created; push Ωj,1 to the stack: S ← Ωj,1. If k > 1, push the second
interval Ωj,2 to the stack: S ← Ωj,2.

For the implementation, see Alg. 1. Its design is robust against common numerical fail-
ures. The singularity value c is stored in the thrown exceptions SingularityLatError,
SingularityLonError, which are derived from the base class SingularityError. The split-
ting procedure is realized in accordance with the singularity direction.

Generate meridians. The procedure creates all meridians inside the given interval Ωj =
Ωϕ,j × Ωλ,j , where Ωϕ,j = [ϕ

j
, ϕj ], Ωλ,j = [λj , λj ]. Initially, the bounding meridians m(λj),

and m(λj) are created. To find the longitude λstart of the first meridian m(λstart), which is
the smallest multiplier of ∆λ higher than λj , and the last meridian m(λend), which is the
largest multiplier of ∆λ lower than λj , use

λj,start = ∆λ[1 + floor(
λj ,

∆λ)], λj,end = ∆λ[ceil( λj∆λ)− 1].

Other meridians m(λj,i) are generated inside the interval [λstart, λend] so that λj = λj,start +
i∆λ, λstart < λ < λend. Due to possible discontinuities, the meridian consists of several parts.
If a discontinuity at c = ϕj is found, the meridian needs to be split at c. If a discontinuity
at c = λj is detected, a meridian needs to be shifted. This is achieved by splitting Ωj at
c = ϕj , or, at c = λj with the additional shift ε. Otherwise, a current meridian m(λj)
is constructed. Finally, the meridians passing along the pole m(λk ± ε) and the opposite
meridians m(λk ± π ∓ ε), forλk ≶ 0 are added. The procedure is summarized in Alg. 2.

Generate parallels. The procedure generates all parallels inside the interval Ωj = Ωϕ,j ×
Ωλ,j , where Ωϕ,j = [ϕ

j
, ϕj ], Ωλ,j = [λj , λj ]. Initially, the bounding parallels p(ϕ

j
), and p(ϕj)

are created. The latitude ϕstart of the first parallel p(ϕstart) is the smallest multiplier of ∆ϕ
higher than ϕ

j
, the last parallel p(ϕend) is the largest multiplier of ∆ϕ lower than ϕj . Other

parallels p(ϕj,i) are generated inside the interval [ϕstart, ϕend] so that ϕj = ϕstart + i∆ϕ,
ϕstart < ϕ < ϕend. If a discontinuity at c = λj is found, the parallel needs to be split at c.
If a discontinuity at c = ϕj is detected, the parallel needs to be shifted. This is achieved by
splitting Ωj at c = ϕj , or, at c = λj . Otherwise, a current parallel p(ϕj) is constructed. The
procedure is summarized in Alg. 3.

Generate a meridian. Combined sampling provides a polynomial approximation of the
meridianm(λ) by the refinement α and the recursion depth d over the interval Ωϕ,j = [ϕ

j
, ϕj ].
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Algorithm 3 The construction of parallels.
1: function Parallels(Lλ,j , Ωϕ,j , Ωλ,j ,∆ϕ,P, d, d, ε, α)
2: ϕj,start = ∆ϕ[1 + floor(

ϕ
j
,

∆ϕ)]
3: ϕj,end = ∆ϕ[ceil( ϕj

∆ϕ)− 1]
4: parallelPart(Lϕ,j , Ωϕ,j , ϕj,start,P, d, d, ε, α)
5: for (ϕ = ϕj,start;ϕ ≤ ϕj,end;ϕ = ϕ+ ∆ϕ) do
6: parallelPart(Lϕ,j , Ωϕ,j , ϕ,P, d, d, ε, α)
7: parallelPart(Lϕ,j , Ωϕ,j , ϕj,end,P, d, d, ε, α)

Suppose m′(λ′0) to be the central meridian. The polygonal approximation consists of two
steps:

1. The partition of m(λ) to the fragments.

Depending on the position of the pole K = [ϕk, λk] and the central meridian m′(λ′0),
the original interval Ωϕ,j of the meridian m(λ) needs to be split along the intersection
point M3 = [ϕ3, λ]. If λ′0 = 0 the meridians m′(0) and m(λ) have just two intersections
M3 = [π/2, ·] ≡ A, M4 = [−π/2, ·] ≡ B at poles A,B (this case is not important for the
algorithm). Otherwise, the solution M3 = [ϕ3, λ3] found from the intersection of two
planes (see Sec. 3.2) holds

ϕ3 ∈ [ϕ
j

+ ε, ϕj − ε] ∧ (|λ3 − λ| < ε) .

If an intersection M3 is found, the splitting procedure

Ωϕ,j,1 = [ϕ
j
, ϕ3 − ε], Ωϕ,j,2 = [ϕ3 + ε, ϕj ],

is undertaken; see Fig. 3.4 and Alg. 4.

2. A combined sampling of the fragments.

The sampling methods will be discussed in Sec. 4.2.

Generate a parallel. The parallel p(ϕ) is intersected by the meridianm′(λ′0) in at most two
points. The original interval Ωλ,j needs to be split along the intersection pointsM1 = [ϕ1, λ1],
M2 = [ϕ2, λ2]; the solution is found from the intersection of two planes (see Sec. 3.2). In
general, the following cases are solved:

• If M1 ∈ Ωλ,j , than λ1 ∈ [λj + ε, λj − ε] and Ωλ,j is split to

Ωλ,j,1 = [λj , λ1 − ε], Ωλ,j,2 = [λ1 + ε, λj ].

• If M2 ∈ Ωλ,j , than λ2 ∈ [λj + ε, λj − ε] and Ωλ,j is split to

Ωλ,j,1 = [λj , λ2 − ε], Ωλ,j,2 = [λ2 + ε, λj ].

• If M1 ∈ Ωλ,j ∧M1 ∈ Ωλ,j , than Ωλ,j is split to

Ωλ,j,1 = [λj , λ1 − ε], Ωλ,j,2 = [λ1 + ε, λ2 − ε], Ωλ,j,3 = [λ2 + ε, λj ].

For practical computation, the coordinates are sorted so that λ1 ≤ λ2; see Alg. 5.
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Algorithm 4 The construction of a meridian from the fragments.
1: function meridianPart(Lλ,j,k, Ωϕ,j , λ,P, d, d, ε, α)
2:

〈
M1

3 ,M
2
3
〉

= m(λ)×m′(ϕ′, λ′0)
3: Lλ,j,1 = ∅, Lλ,j,2 = ∅
4: if

(
ϕ1

3 > ϕ
j

+ ε
)
∧
(
ϕ1

3 < ϕj − ε
)
∧
(∣∣λ1

3 − λ
∣∣ < ε

)
then

5: ϕj,1 = ϕ1
3 − ε, ϕj,2 = ϕ1

3 + ε

6: csMerInit(P, Lλ,j,1, ϕj , ϕj,1, λ, d, d, ε, α)
7: Lλ,j ← Lλ,j1
8: csMerInit(P, Lλ,j,2, ϕj,2, ϕj , λ, d, d, ε, α)
9: Lλ,j ← Lλ,j2

10: else if
(
ϕ2

3 > ϕ
j

+ ε
)
∧
(
ϕ2

3 < ϕj − ε
)
∧
(∣∣λ2

3 − λ
∣∣ < ε

)
then

11: ϕj,1 = ϕ2
3 − ε, ϕj,2 = ϕ2

3 + ε

12: csMerInit(P, Lλ,j,1, ϕj , ϕj,1, λ, d, d, ε, α)
13: Lλ,j ← Lλ,j1
14: csMerInit(P, Lλ,j,2, ϕj,2, ϕj , λ, d, d, ε, α)
15: Lλ,j ← Lλ,j2

4.2. Combined sampling of meridian and parallel fragments

Three sampling techniques denoted as S1, S2, S3 representing a natural extension of the
sampling methods described in [5] will be illustrated on the meridian/parallel approximation.

Sampling method S1. It provides a polynomial approximation of the meridian m(λ) by
the refinement criteria α and the recursion depth d. Both Ωϕ,j,1,Ωϕ,j,2 are partitioned into
four disjoint subintervals with the randomly shifting borders.

1. The initial phase

Let Lλ,j,k = ∅ be the empty set. Compute xa = F (a, λ), ya = G(a, λ) and xb = F (b, λ),
yb = G(b, λ), where pa = [xa, ya] and pb = [xb, yb]. If a singularity in a or b is detected,
throw an exception. Add the initial vertex to Lλ,j,k: Lλ,j,k ← pa, where pa = (xa, ya).
Set the recursion depth d = 1. The procedure is summarized in Alg. 6.

2. The recursive procedure

Enter the recursive procedure and do the following substeps:

(a) If d > d or b− a < ε, stop the recursive procedure and go to Step 3.

(b) For a given Ωϕ,j,k = [a, b], the interval is split by three points

ϕ1 = a+ 1
2r1(b− a), ϕ2 = a+ r2(b− a), ϕ3 = a+ 3

2r3(b− a),

into the approximate quarters

Ωϕ,j,k,1 = [a, ϕ1], Ωϕ,j,k,2 = [ϕ1, ϕ2] Ωϕ,j,k,3 = [ϕ2, ϕ3], Ωϕ,j,k,4 = [ϕ3, b],

where r1, r2, r3 are the random numbers inside the interval [0.45, 0.55].
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Algorithm 5 The construction of a parallel from the fragments.
1: function parallelPart(Lϕ,j,k, Ωλ,j , ϕ,P, d, d, ε, α)
2: 〈M1,M2〉 = p(ϕ)×m′(ϕ′, λ′0)
3: Lϕ,j,1 = ∅, Lϕ,j,2 = ∅, Lϕ,j,3 = ∅
4: if (λ1 > λj + ε) ∧ (λ1 < λj − ε) ∧ (λ2 > λj + ε) ∧ (λ2 < λj − ε) then
5: λ1,2 = min(λ1, λ2), λ1,2 = max(λ1, λ2)
6: λj,1 = λ1,2 − ε, λj,2 = λ1,2 + ε, λj,2 = λ1,2 − ε, λj,2 = λ1,2 + ε

7: csParInit(P, Lϕ,j,1, λj , λj,1, ϕ, d, d, ε, α)
8: Lϕ,j ← Lϕ,j1
9: csParInit(P, Lϕ,j,2, λj,2, λj,2, ϕ, d, d, ε, α)

10: Lϕ,j ← Lϕ,j2
11: csParInit(P, Lϕ,j,3, λj,3, λj , ϕ, d, d, ε, α)
12: Lϕ,j ← Lϕ,j3
13: else if (λ1 > λj + ε) ∧ (λ1 < λj − ε) then
14: λj,1 = λ1 − ε, λj,2 = λ1 + ε

15: csParInit(P, Lϕ,j,1, λj , λj,1, ϕ, d, d, ε, α)
16: Lϕ,j ← Lϕ,j1
17: csParInit(P, Lϕ,j,2, λj2 , λj , ϕ, d, d, ε, α)
18: Lϕ,j ← Lϕ,j2
19: else if (λ2 > λj + ε) ∧ (λ2 < λj − ε) then
20: λj,1 = λ2 − ε, λj,2 = λ2 + ε

21: csParInit(P, Lϕ,j,1, λj , λj,1, ϕ, d, d, ε, α)
22: Lϕ,j ← Lϕ,j1
23: csParInit(P, Lϕ,j,2, λj2 , λj , ϕ, d, d, ε, α)
24: Lϕ,j ← Lϕ,j2

(c) If a singularity in [ϕ1, λ], [ϕ2, λ], or [ϕ3, λ] occurs, throw a new exception according
to the discontinuity direction.

(d) Otherwise, evaluate the function values x1 = F (ϕ1, λ), y1 = G(ϕ1, λ), x2 =
F (ϕ2, λ), y2 = G(ϕ2, λ), x3 = F (ϕ3, λ), y3 = G(ϕ3, λ), at new vertices p1, p2,
p3.

(e) For d ≤ d, this step begins with uniform sampling of the meridian points. If
d > d, it transforms to the adaptive method. Check the refinement criteria α1 =
α(pa, p1, p2), α2 = α(p1, p2, p3), α3 = α(p2, p3, pb), and the recursive depth d.
When the meridian is not sufficiently smooth, or d ≤ d, it needs to be refined.
Hence, the recursive subdivision is necessary.

(f) If α1 > α, call the recursive procedure with the increased depth d = d+ 1 for the
interval [a, ϕ1].

(g) Add the new point p1 to the polynomial approximation of m̃(λ) : Lλ,j,k ← p1.

(h) If α1 > α∨α2 > α, call the recursive procedure with the increased depth d = d+1
for the interval [ϕ1, ϕ2].

(i) Add the new point p2 to the polynomial approximation of m̃(λ) : Lλ,j,k ← p2.
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Algorithm 6 Combined sampling of the meridian, the initial phase.
1: function csMerInit(P, Lλ,j,k, a, b, λ, d, d, d, ε, α)
2: Lλ,j,k = ∅
3: if discontinuity in (a, λ) in ϕ direction then
4: throw LatSingularityException (a)
5: if discontinuity in (a, λ) in λ direction then
6: throw LonSingularityException (λ)
7: if discontinuity in (b, λ) in ϕ direction then
8: throw LatSingularityException (b)
9: if discontinuity in (b, λ) in λ direction then

10: throw LonSingularityException (λ)
11: xa = F (a, λ), ya = G(a, λ)
12: Lλ,j,k ← Point(xa, ya)
13: csMer(P, Lλ,j,k, a, b, xa, ya, xb, yb, d, d, d, ε, α)
14: xb = F (b, λ), yb = G(b, λ)
15: Lλ,j,k ← Point(xb, yb)

(j) If α2 > α∨α3 > α, call the recursive procedure with the increased depth d = d+1
for the interval [ϕ2, x3].

(k) Add the new point p3 to the polynomial approximation of m̃(λ) : Lλ,j,k ← p3.

(l) If α3 > α, call the recursive procedure for the interval [ϕ3, b].

3. Add the last point

Add the last point pb to the polynomial approximation of m̃(λ) : Lλ,j,k ← pb and finish
the adaptive sampling procedure.

The procedure is summarized in Alg. 7. Unfortunately, this technique does not involve the
angles α between the adjacent segments from the previous iteration. While the newly created
segments of the polygonal approximation of m(λ) can fulfill the condition of αi ≤ α, their
joining to the previous/next segments may not hold this requirement. In general, this issue
affects curves of the complex shape, where the average maximum value αi

.= 1.25α.

Sampling method S2. The first improvement is represented by the refinement of the
recursive condition. The original conditions α1 > α, α1 > α ∨ α2 > α, α2 > α ∨ α3 > α, and
α3 > α, are replaced with the new

α1 > α ∨ α2 > α ∨ α3 > α, (4.1)

identical for all recursive calls. This approach brings a slightly increased amount of the
recursive calls, while the average maximum value falls to αi

.= 1.15α. In most situations, this
issue does not significantly affect the smoothness of the polynomial approximation and its
perception by the user. However, exceeding the threshold may not always be acceptable.

Sampling method S3. Unlike S1, S2, the improved sampling method S3 takes into ac-
count angles between the newly created and adjacent segments from the previous iteration.
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Algorithm 7 Combined sampling of the meridian points, the recursive phase, method S1.
1: function csMer(P, Lλ,j,k, a, b, xa, ya, xb, yb, d, d, d, ε, α))
2: if (d > d) ∨ (b− a < ε) then
3: return
4: r1 = rand(0.45, 0.55), r2 = rand(0.45, 0.55), r3 = rand(0.45, 0.55)
5: ϕ1 = a+ 1

2r1(b− a), ϕ2 = a+ r2(b− a), ϕ3 = a+ 3
2r3(b− a)

6: if discontinuity in (ϕi, λ)i in ϕ direction then
7: throw LatSingularityException (ϕi), i = 1, 2, 3
8: if discontinuity in (ϕi, λ)i in λ direction then
9: throw LonSingularityException (λ), i = 1, 2, 3

10: xi = F (ϕi, λ), yi = G(ϕi, λ), i = 1, 2, 3
11: pa = Point(xa, ya), pb = Point(xb, yb), pi = Point(xi, yi), i = 1, 2, 3
12: α1 = α(pa, p1, p2), α2 = α(p1, p2, p3), α3 = α(p2, p3, pb)
13: if (α1 > α) ∨ (d <= d) then
14: csMer(P, Lλ,j,k, a, ϕ1, xa, ya, x1, y1, d+ 1, d, d, α);
15: Lλ,j,k ← Point(x1, y1)
16: if (α1 > α) ∨ (α2 > α) ∨ (d <= d) then
17: csMer(P, Lλ,j,k, ϕ1, ϕ2, x1, y1, x2, y2, d+ 1, d, d, α);
18: Lλ,j,k ← Point(x2, y2)
19: if (α2 > α) ∨ (α3 > α) ∨ (d <= d) then
20: csMer(P, Lλ,j,k, ϕ2, ϕ3, x2, y2, x3, y3, d+ 1, d, d, α);
21: Lλ,j,k ← Point(x3, y3)
22: if (α3 > α) ∨ (d <= d) then
23: csMer(P, Lλ,j,k, ϕ3, b, x3, y3, xb, yb, d+ 1, d, d, α);

For a given Ωϕ,j,k = [ak, bk], its predecessor Ωϕ,j,k−1 = [ak−1, bk−1] and successor Ωϕ,j,k+1 =
[ak+1, bk+1] are Ωϕ,j,k−1 = pred(Ωϕ,j,k), Ωϕ,j,k+1 = succ(Ωϕ,j,k), where bk−1 = ak, ak+1 = bk.
Analogously, for the polygonal approximation of Ωϕ,j,k bounds are pa,k−1 = pred(pa,k),
pb,k+1 = succ(pb,k), where pa,k−1 = [xa,k−1, ya,k−1], pa,k = [xa,k, ya,k] ≡ pb,k−1, pb,k =
[xb,k, yb,k] ≡ pa,k+1, pb,k+1 = [xb,k+1, yb,k+1], and xa,k−1 = F (ak−1, λ), xa,k = F (ak, λ), xb,k =
F (bk, λ), xb,k+1 = F (bk+1, λ); see Fig. 4.2

The approximate quarters of Ωϕ,j,k denoted as Ωϕ,j,k,l, l = 1, ..., 4, have the form of

Ωϕ,j,k,1 = [ak, ϕ1,k], Ωϕ,j,k,2 = [ϕ1,k, ϕ2,k] Ωϕ,j,k,3 = [ϕ2,k, ϕ3,k], Ωϕ,j,k,4 = [ϕ3,k, bk],

The idea of modification is straightforward, an information about previous and subsequent
quarters of Ωϕ,j,k,l is stored

Ωϕ,j,k,l−1 = pred(Ωϕ,j,k,l), Ωϕ,j,k,l+1 = succ(Ωϕ,j,k,l).

While the first quarter lacks its predecessor, the last quarter lacks the successor. For a
current recursive depth d, the segment (pa,k, pb,k) of the polygonal approximation is split to
the quarters, where p1,k, p2,k, p3,k are the newly created vertices at the recursive depth d+ 1
representing the “projected bounds” of newly created intervals Ωϕ,j,k,1,...,Ωϕ,j,k,4. Unlike S1,
S2, the angles αi are measured not only between the newly created segments
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Figure 4.2: Illustration of the combined sampling method S3 for the meridian m(λ).

α1 = α(pa,k, p1,k, p2,k), α2 = α(p1,k, p2,k, p3,k), α3 = α(p2,k, p3,k, pb,k),

in the recursive depth d+ 1, but also between the adjacent segments

α0 = α(p3,k−1, pa,k, p1,k), α4 = α(p3,k, pb,k, p1,k+1),

where p3,k−1 is the projected lower bound of Ωϕ,j,k−1,4 (a projected third quarter of the
interval Ωϕ,j,k−1 previous to Ωϕ,j,k) with the latitude

ϕ3,k−1 = ak + 1
2r0(ak−1 − ak),

p1,k+1 is the projected first-quarter Ωϕ,j,k+1,1 of the next interval Ωϕ,j,k+1 with the latitude

ϕ1,k+1 = bk + 1
2r4(bk+1 − bk),

and r0, r4 are the random numbers generated according to the principles mentioned above.
The modified condition for the recursive call has the form of

α0 > α ∨ α1 > α ∨ α2 > α ∨ α3 > α ∨ α4 > α. (4.2)

In general, the improved performance of S3 occurs only in specific situations when the sampled
function has a complex shape (meridians of Bonne projections). However, the significant
disadvantage is represented by the increased amount of sampled points in the highly curved
areas. The recursive step has a slightly different form:

1. If d > d or bk − ak < ε, stop the recursive procedure and go to Step 3.

2. For a given Ωϕ,j,k = [ak, bk], its predecessor Ωϕ,j,k−1 = [ak−1, bk−1], and successor
Ωϕ,j,k+1 = [ak+1, bk+1], the interval is split by three points, the positions are close to
the quarters of the interval

ϕ1,k = ak + 1
2r1(bk − ak), ϕ2,k = ak + r2(bk − ak), ϕ3,k = ak + 3

2r3(bk − ak).

Geoinformatics FCE CTU 17(2), 2018 49



T. Bayer: Plotting the map projection graticule with discontinuities

Algorithm 8 Combined sampling of the meridian points, the recursive phase, method S3.
1: function csMer(P, Lλ,j,k, ak, bk, ak−1, bk+1, xa, ya, xb, yb, d, d, d, ε, α))
2: if (d > d) ∨ (bk − ak < ε) then
3: return
4: ri = rand(0.45, 0.55), i = 0, ..., 4
5: ϕ1,k = ak + 1

2r1(bk − ak), ϕ2,k = a+ r2(bk − a), ϕ3,k = a+ 3
2r3(bk − ak)

6: ϕ3,k−1 = ak + 1
2r1(bk−1 − ak), ϕ1,k+1 = bk + r4(bk+1 − bk)

7: if discontinuity in (ϕi,k, λ) in ϕ direction then
8: throw LatSingularityException (ϕi,k), i = 1, 2, 3
9: if discontinuity in (ϕi,k, λ) in λ direction then

10: throw LonSingularityException (λ), i = 1, 2, 3
11: x3,k−1 = F (ϕ3,k−1, λ), y3,k−1 = G(ϕ3,k−1, λ)
12: xi,k = F (ϕi,k, λ), yi,k = G(ϕi,k, λ), i = 1, 2, 3
13: x1,k+1 = F (ϕ1,k+1, λ), y1,k+1 = G(ϕ1,k+1, λ)
14: pa,k = Point(xa,k, ya,k), pb,k = Point(xb,k, yb,k)
15: pi,k = Point(xi,k, yi,k), i = 1, 2, 3
16: p3,k−1 = Point(x3,k−1, y3,k−1), p1,k+1 = Point(x1,k+1, y1,k+1)
17: α1 = α(pa,k, p1,k, p2,k), α2 = α(p1,k, p2,k, p3,k), α3 = α(p2,k, p3,k, pb,k)
18: α0 = α(p3,k−1, pa,k, p1,k), α4 = α(p3,k, pb,k, p1,k+1)
19: if (α0 > α) ∨ (α1 > α) ∨ (α2 > α) ∨ (α3 > α) ∨ (α4 > α) ∨ (d <= d)) then
20: csMer(P, Lλ,j,k, ak, ϕ1,k, ϕ3,k−1, ϕ2,k, xa,k, ya,k, x1,k, y1,k, d+ 1, d, d, α)
21: Lλ,j,k ← Point(x1,k, y1,k)
22: if (α0 > α) ∨ (α1 > α) ∨ (α2 > α) ∨ (α3 > α) ∨ (α4 > α) ∨ (d <= d) then
23: csMer(P, Lλ,j,k, ϕ1,k, ϕ2,k, ϕa,k, ϕ3,k, x1,k, y1,k, x2,k, y2,k, d+ 1, d, d, α)
24: Lλ,j,k ← Point(x2,k, y2,k)
25: if (α0 > α) ∨ (α1 > α) ∨ (α2 > α) ∨ (α3 > α) ∨ (α4 > α) ∨ (d <= d) then
26: csMer(P, Lλ,j,k, ϕ2,k, ϕ3,k, ϕ1,k, bk, x2,k, y2,k, x3,k, y3,k, d+ 1, d, d, α)
27: Lλ,j,k ← Point(x3,k, y3,k)
28: if (α0 > α) ∨ (α1 > α) ∨ (α2 > α) ∨ (α3 > α) ∨ (α4 > α) ∨ (d <= d) then
29: csMer(P, Lλ,j,k, ϕ3,k, bk, ϕ2,k, ϕ1,k+1, x3,k, y3,k, xb,k, yb,k, d+ 1, d, d, α)

Subsequently, the third quarter ϕ3,k−1 of the previous interval Ωϕ,j,k−1 representing
the lower bound of Ωϕ,j,k−1,4 and the first quarter ϕ1,k+1 of the next intervals Ωϕ,j,k+1
representing the upper bound of Ωϕ,j,k+1,1, are evaluated.

(a) If a singularity in [ϕ3,k−1, λ], [ϕ1,k, λ], [ϕ2,k, λ], [ϕ3,k, λ], or [ϕ1,k+1, λ] occurs, throw
a new exception according to the discontinuity direction.

(b) Otherwise, evaluate the function values x3,k−1 = F (ϕ3,k−1, λ), y3,k−1 = G(ϕ3,k−1, λ),
x1,k = F (ϕ1,k, λ), y1,k = G(ϕ1,k, λ), x2,k = F (ϕ2,k, λ), y2,k = G(ϕ2, λ), x3,k =
F (ϕ3,k, λ), y3,k = G(ϕ3,k, λ), x1,k+1 = F (ϕ1,k+1, λ), y1,k+1 = G(ϕ1,k+1, λ), at new
vertices p1,k, p2,k, p3,k and the supplementary vertices p3,k−1, p1,k+1.

(c) For d ≤ d, this step begins with uniform sampling of the meridian points. If
d > d, it transforms to the adaptive method. Check the refinement criteria
α0 = α(p3,k−1, pa,k, p1,k), α1 = α(pa,k, p1,k, p2,k), α2 = α(p1,k, p2,k, p3,k), α3 =
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Figure 4.3: The discontinuity treatment without its classification using the proposed algorithm
in polyconic projection; the doubled equator is visible under magnification.

α(p2,k, p3,k, pb,k), α4 = α(p3,k, pb,k, p1,k+1), and the recursive depth d. When a
meridian is not sufficiently smooth, or d ≤ d, it needs to be refined; the recursive
subdivision is necessary.

(d) If the condition given by Eq. 4.2 is held, call the recursive procedure with the
increased depth d = d + 1 for the interval Ωϕ,j,k,1 = [ak, ϕ1,k], its predecessor
Ωϕ,j,k−1,4 = [ϕ3,k−1, ak], and successor Ωϕ,j,k,2 = [ϕ1,k, ϕ2,k].

(e) Add the new point p1,k to the polynomial approximation of m̃(λ) : Lλ,j,k ← p1,k.

(f) If the condition given by Eq. 4.2 is held, call the recursive procedure with the
increased depth d = d + 1 for the interval Ωϕ,j,k,2 = [ϕ1,k, ϕ2,k], its predecessor
Ωϕ,j,k,1 = [ak, ϕ1,k], and successor Ωϕ,j,k,3 = [ϕ2,k, ϕ3,k].

(g) Add the new point p2,k to the polynomial approximation of m̃(λ) : Lλ,j,k ← p2,k.

(h) If the condition given by Eq. 4.2 is held, call the recursive procedure with the
increased depth d = d + 1 for the interval Ωϕ,j,k,3 = [ϕ2,k, ϕ3,k], its predecessor
Ωϕ,j,k,2 = [ϕ1,k, ϕ2,k], and successor Ωϕ,j,k,4 = [ϕ3,k, bk].

(i) Add the new point p3,k to the polynomial approximation of m̃(λ) : Lλ,j,k ← p3,k.

(j) If the condition given by Eq. 4.2 is held, call the recursive procedure for the last
interval Ωϕ,j,k,4 = [ϕ3,k, bk], its predecessor Ωϕ,j,k,3 = [ϕ2,k, ϕ3,k], and successor
Ωϕ,j,k+1,1 = [bk, ϕ1,l+1].

The procedure is summarized in Alg. 8.

A combined sampling of the parallel. Analogously, the parallel p(ϕ) is sampled over
the interval Ωλ,j = [λj , λj ]. The polygonal approximation consists of two steps: a partition
of p(ϕ) to the fragments and combined sampling of the fragments.

Each parallel fragment needs to be sampled, Ωϕ,j,1, Ωϕ,j,2, Ωϕ,j,3 are partitioned into four
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disjoint subintervals. While for adaptive meridian m(λ) sampling are: λ = const, ϕ ∈ Ωϕ,j ,
for parallel p(ϕ) sampling are: ϕ = const, λ ∈ Ωλ,j . Therefore, the randomly generated
parallel points

λ1 = a+ 1
2r1(b− a), λ2 = a+ r2(b− a), λ3 = a+ 3

2r3(b− a),

split the interval Ωλ,j,k to the approximate quarters

Ωλ,j,k,1 = [a, λ1], Ωλ,j,k,2 = [λ1, λ2] Ωλ,j,k,3 = [λ2, λ3], Ωλ,j,k,4 = [λ3, b].

The remaining steps are analogous. This method can treat all kinds of discontinuities, without
specific knowledge of ε; for practical computations is ε = 0.001◦. It has a disadvantage - the
duplication of lines along singularities if the discontinuities are not classified. For the disconti-
nuity c = ϕ = 0◦ in the polyconic projection, this issue is illustrated in Fig. 4.3. A hemisphere
constructed in the normal aspect is composed of two sub-intervals [−π/2, 0), (0, π/2]. Hence,
the equator is doubled, which does not look aesthetically pleasing, but it is visible only under
magnification.

5. Experiments and results

The principles mentioned above will be illustrated on the several tests. While the first analy-
sis compares the behavior and properties of combined sampling, the second test reconstructs
the Fournier I. projection graticule in the oblique aspect (several discontinuities in the coor-
dinate functions are involved). Finally, the last experiment illustrates the splitting procedure
efficiency depending on the threshold ε. The results are summarized in Tabs. 1-5.

5.1. Comparison of uniform and combined sampling

During this test, the uniform and combined sampling techniques will be compared regarding
the data representation compactness measured by the amount of the sampled meridian points
nmer and parallel points npar. Additionally, the maximum angles αm, αp between the sampled
meridian and parallel segments together with their mean values α̃m, α̃p are measured; these
indicators depend on the sampling density. For the uniform sampling, the sampling steps δϕ,
δλ are fixed, while the adaptive sampling is driven by the sampling angle α. Our experiments
will be carried out for combined sampling with α = 1◦, 2◦, 5◦, the recursive depth is d = 1,
and for the uniform sampling where δϕ, δλ will be set providing the analogous amount of the
sampled points. 8 projections are involved in testing: equidistant cylindrical, conic, azimuthal,
Bonne and Hassler (ϕ1 = 50◦), Nicolosi, Littrow, and Adams I World conformal. The results
are summarized in Tab. 1.

While S1, S2 exceed the αm, αp values (+20% for S1, +15% for S2), S3 provides values satis-
fying the given criteria (-7%) without a significant increment of sampled points. Cylindrical,
conic and azimuthal projections illustrate the adaptive sampling efficiency; for the straight
meridians/parallels, only 2% of points are sufficient for the shape estimation (uniform sam-
pling cannot achieve this efficiency).

Concerning the criteria mentioned above the results are compared in Tab. 2. The sampling
steps δϕ, δλ have been set so that the amount of sampled points nmer, npar is analogous. In
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Table 1: Combined sampling of the graticule for α = 1◦, 2◦, 5◦, methods S1, S2, S3 are
compared.

Projection # nmer npar αm αp α̃m α̃p

Equidistant
cylindrical

S1 195/195/195 190/190/190 0/0/0 0/0/0 0/0/0 0/0/0
S2 195/195/195 190/190/190 0/0/0 0/0/0 0/0/0 0/0/0
S3 195/195/195 190/190/190 0/0/0 0/0/0 0/0/0 0/0/0

Equidistant
conic

S1 195/195/195 9961/6973/2464 0/0/0 1.02/2.27/4.98 0/0/0 0.53/0.75/2.16
S2 195/195/195 10066/7678/2470 0/0/0 1.00/2.13/4.06 0/0/0 0.52/0.69/2.16
S3 195/195/195 10090/8734/2470 0/0/0 0.99/1.99/4.41 0/0/0 0.52/0.60/2.16

Equidistant
azimuthal

S1 195/195/195 12352/9091/2494 0/0/0 1.08/2.04/4.87 0/0/0 0.56/0.76/2.78
S2 195/195/195 13186/9238/2494 0/0/0 1.09/2.06/4.89 0/0/0 0.52/0.74/2.78
S3 195/195/195 13786/9706/2506 0/0/0 1.00/1.90/4.78 0/0/0 0.50/0.71/2.77

Bonne
S1 14250/7206/2901 6610/3613/1576 1.21/2.27/5.68 1.05/2.06/4.98 0.45/0.88/2.20 0.46/0.84/1.98
S2 15171/7599/3099 6766/3778/1630 1.05/2.52/5.00 1.00/2.00/4.82 0.42/0.84/2.07 0.45/0.81/1.91
S3 16839/8367/3483 6958/4330/1654 1.00/1.99/4.98 1.00/1.99/4.96 0.38/0.76/1.84 0.44/0.71/1.82

Hassler
S1 16452/7170/3342 8839/5779/1912 1.14/2.13/5.77 1.22/2.25/4.91 0.41/0.96/2.09 0.51/0.78/2.39
S2 17391/7479/3519 9370/5974/1966 1.07/2.17/5.20 1.03/2.11/4.99 0.40/0.92/1.99 0.48/0.75/2.32
S3 19899/8379/4191 9826/6670/2002 1.00/2.00/4.96 1.00/1.99/4.76 0.35/0.82/1.66 0.46/0.67/2.28

Nicolosi
S1 14018/6503/3227 5519/2495/1124 1.14/2.29/5.64 1.15/2.16/5.50 0.43/0.94/1.92 0.42/0.95/2.12
S2 14468/6944/3320 5804/2564/1208 1.00/2.00/4.96 1.01/2.00/4.94 0.42/0.88/1.86 0.40/0.92/1.96
S3 15176/8156/3488 6224/2912/1352 1.00/2.00/4.93 1.00/1.99/4.89 0.40/0.74/1.77 0.37/0.81/1.76

Littrow
S1 6513/3279/1470 12011/7052/2507 1.10/2.15/5.43 1.14/2.27/5.17 0.50/1.00/2.30 0.51/0.87/2.48
S2 6963/3615/1587 12242/7334/2606 1.06/2.22/4.90 1.05/1.99/5.27 0.47/0.91/2.12 0.50/0.84/2.38
S3 8121/4374/2151 13796/7931/2903 1.00/2.00/4.86 1.00/1.98/4.98 0.40/0.75/1.55 0.45/0.77/2.13

Adams I.
S1 7083/3669/1788 4430/2285/887 1.07/2.00/4.93 1.06/2.10/6.16 0.44/0.86/1.82 0.44/0.83/2.04
S2 7449/4017/2097 4778/2534/1046 1.07/2.08/4.96 1.02/2.01/4.86 0.42/0.78/1.53 0.41/0.74/1.74
S3 8085/4689/2148 4562/2618/1058 1.00/2.00/4.89 0.98/1.99/4.44 0.38/0.67/1.49 0.40/0.72/1.72

Table 2: Uniform sampling of the graticule with the determined steps δϕ, δλ compared to S3;
the amounts of sampled points nmer, npar are preserved.

Projection α δϕ δλ nmer ∆nmer npar ∆npar αm ∆αm αp ∆αp α̃m ∆α̃m α̃p ∆α̃p

Equidistant
cylindrical

1 40.00 45.00 195 +0.0% 190 +0.0% 0 - 0 - 0 - 0 -
2 40.00 45.00 195 +0.0% 190 +0.0% 0 - 0 - 0 - 0 -
5 40.00 45.00 195 +0.0% 190 +0.0% 0 - 0 - 0 - 0 -

Equidistant
conic

1 45.00 0.68 195 +0.0% 10070 -0.2% 0 - 0.78 -21.2% 0 - 0.52 +0.0%
2 45.00 0.78 195 +0.0% 8778 +0.5% 0 - 0.90 -54.8% 0 - 0.60 +20.0%
5 45.00 2.74 195 +0.0% 2470 +0.0% 0 - 3.19 -27.7% 0 - 2.14 -0.9%

Equidistant
azimuthal

1 45.00 0.50 195 +0.0% 13718 -0.5% 0 - 0.50 -50.0% 0 - 0.50 +0.0%
2 45.00 0.71 195 +0.0% 9652 -0.6% 0 - 1.06 -79.3% 0 - 0.71 +0.0%
5 45.00 2.74 195 +0.0% 2508 +0.1% 0 - 4.11 -14.0% 0 - 2.75 -0.7%

Bonne
1 0.42 0.99 16770 -4.1% 6916 -6.0% 8.53 +753.0% 1.14 +14.0% 0.38 +0.0% 0.44 +0.0%
2 0.85 1.59 8307 -0.7% 4332 +0.0% 9.96 +295.2% 1.83 -8.0% 0.76 +0.0% 0.71 +0.0%
5 2.05 4.23 3471 -0.3% 1672 +1.2% 9.61 +93.0% 3.24 -34.7% 1.79 -2.7% 1.87 +2.8%

Hassler
1 0.36 0.70 19539 -1.8% 9842 +0.2% 0.82 -18.0% 0.70 -30.0% 0.35 +0.0% 0.46 +0.0%
2 0.85 1.04 8307 -0.9% 6650 -0.3% 1.93 -3.5% 1.04 -50.7% 0.83 +1.2% 0.68 +1.5%
5 1.73 3.43 4134 -1.4% 2014 +0.6% 3.92 -21.0% 5.14 +8.0% 1.69 +1.8% 2.25 -3.0%

Nicolosi
1 0.45 1.17 15200 +0.2% 6200 -0.4% 1.13 +13.0% 0.87 -13.0% 0.36 -10.0% 0.38 -5.0%
2 0.85 2.51 8132 -0.3% 2920 +0.3% 1.42 -29.0% 1.87 -6.0% 0.75 +1.4% 0.98 +21.0%
5 2.00 5.40 3496 +0.2% 1360 +0.6% 3.34 -32.2% 5.96 +21.9% 1.78 +0.6% 1.75 -0.6%

Littrow
1 0.77 0.45 8112 -0.1% 13718 -0.6% 4.94 +394.0% 2.88 +288.0% 0.40 +0.0% 0.47 +4.4%
2 1.66 0.86 4329 -1.0% 7980 +0.6% 9.39 +369.5% 4.95 +150.0% 0.76 +1.3% 0.86 +11.7%
5 3.28 2.38 2184 +1.5% 2926 +0.8% 9.49 +95.3% 9.54 +91.6% 1.54 -0.7% 2.38 +11.7%

Adams I.
1 0.88 1.51 8073 -0.2% 4598 +0.8% 7.39 +739.0% 5.02 +412.2% 0.43 +13.2% 0.31 -22.5%
2 1.52 2.73 4719 +0.6% 2622 +0.1% 9.26 +363.0% 8.29 +316.6% 0.74 +10.5% 0.54 -25.0%
5 3.35 6.49 2145 -0.1% 1064 +0.6% 9.96 +103.7% 9.00 +102.7% 1.62 +8.7% 1.26 -26.7%
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a) b)

Figure 5.1: Comparison of the uniform a) and combined b) sampling (S3) for the Bonne
projection, α = 5◦; the adaptive polygonal approximation is smoother.

the higher-curvature regions, the combined sampling technique provides a smoother approxi-
mation of the meridians/parallels. A typical example is represented by the Bonne, Littrow or
Adams I. projections, where uniform sampling does not provide good results. The maximum
angles between the sampled elements are more than five times higher. If meridians or parallels
are represented by the circular arcs, the combined sampling does not bring any advantage
and may cause a minor deterioration of the average values αm, αp (Nicolosi projection). Raise
the steps δϕ, δλ reduces the advantage of adaptive sampling (and thus α) even for the high-
curvature regions (see Bonne projection in Fig. 5.1). In general, uniform sampling preserves
the curvature worse and provides more redundant data.

5.2. Detection of discontinuities: Fournier I. projection

The Fournier I. projection equations have a complex form and contain several discontinuities
both in the latitudinal and longitudinal directions. In accordance with [24], the projection
equations are written as follows. If (λ− λ0) = 0 or |ϕ| = π/2,

X = 0, Y = Rϕ.

If ϕ = 0,

X = R (λ− λ0) , Y = 0.

If |λ− λ0| = π/2,

X = R (λ− λ0) cosϕ, Y = R
π

2 sinϕ.

Otherwise,

C = π2

4 , P = π |sinϕ| , S = C − ϕ2

P − 2 |ϕ| , A = (λ− λ0)2

C
− 1,

B = S2 −A[C − PS − (λ− λ0)2],
and

Y = R signϕ
√
B − S
A

, X = R(λ− λ0)

√
1− Y 2

R2C,

where Y takes the sign of ϕ. The singularities are shown in Fig. 5.2.
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Figure 5.2: Fournier I. projection with the highlighted singularities leading to the subdivision
into the tiles; normal aspect of the projection.

Testing a normal aspect of the projection. Suppose that the graticule will be generated
over the entire planisphere, so Ω = Ωϕ ×Ωλ, Ωϕ = [−π/2, π/2], Ωλ = [−π, π] with the offset
of meridians and parallels ∆ϕ = ∆λ = 15◦, the sampling step is α = 1◦. Let us describe the
selected steps of the algorithm; see Fig. 5.3:

• Initialize “good data” as Ωg = Ω and push S ← Ωg. Pop the current interval Ωj =
Ωϕ,j × Ωλ,j from S, detect the removable discontinuity at ϕ = 0, split Ωj to Ωϕ,j,1 =
[−π/2, 0), Ωϕ,j,2 = (0, π/2]; see Step b). Create the new subintervalsΩj,1 = Ωϕ,j,1×Ωλ,j ,
Ω,j,2 = Ωϕ,j,2 ×Ωλ,j , and push S ← Ωj,1, S ← Ωj,2.

• Due to the discontinuity at λ = −π/2, the current interval Ωj popped from the stack is
split to Ωλ,j,1 = [−π,−π/2), Ωϕ,λ,2 = (−π/2, π]; see Step c). The created subintervals
Ωj,1 = Ωϕ,j ×Ωλ,j,1, Ωj,2 = Ωϕ,j ×Ωλ,j,2 are pushed to the stack S ← Ωj,1, S ← Ωj,2.

• Subsequently, the current interval Ωj = (0,−π/2] × [−π,−π/2) popped out from the
stack is free from singularities, the graticule fragment over Ωj is constructed; see Step
d).

• Unfortunately, the next current interval Ωj = (0,−π/2]×(−π/2, π] contains a removable
singularity at λ = π/2. It is split to Ωλ,j,1 = [−π/2, π/2), Ωϕ,λ,2 = (π/2, π], the created
subintervals Ωj,1 = Ωϕ,j×Ωλ,j,1, Ω,j,2 = Ωϕ,j×Ωλ,j,2 are pushed to the stack S ← Ωj,1,
S ← Ωj,2; see Step e).

• Subsequently, the current interval Ωj = (0,−π/2]× [−π/2, π/2) popped from the stack
is free from singularities, the graticule fragment over Ωj is constructed; see Step f). The
lack of discontinuities refers to the next popped interval Ωj = (0,−π/2]× [π/2, π), over
which the graticule is constructed; see Step g).
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a) b)

c) d)

e) f )

g) h)

i) j)

k) l)

Figure 5.3: Reconstruction of the graticule from the tiles generated along the set of Ωg,
Fournier I projection.
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Figure 5.4: Fournier I. projection with the highlighted singularities leading to the subdivision
into the tiles; an oblique aspect of the projection, K = [50◦, 20◦].

Testing an oblique aspect of the projection. For the oblique aspect of the projection,
several new discontinuities appear. Suppose the arbitrary pole K = [50◦, 20◦], the central
meridian shift is λ′0 = 0◦. Due to the latitude singularity at ϕk = 50◦, the latitude interval
Ωϕ,j will be split into two parts:

Ωϕ,j,1 = [−90◦, 50◦), Ωϕ,j,2 = (50◦, 90◦].

Analogously, the longitude singularity at λk − 180◦ = −160◦ splits the interval Ωλ,j into the
three parts:

Ωλ,j,1 = [−180◦,−160◦), Ωλ,j,2 = (−160◦, 15◦), Ωλ,j.3 = (15◦, 180◦].

The reconstructed graticule with the highlighted singularities is depicted in Fig. 5.4.

5.3. Measuring the quantitative parameters of the algorithm

The algorithms have been tested on the construction of the several graticules with the shifted
central meridian λ0. In all cases, the entire planisphere is covered by the graticule with the
offset of ∆ϕ = ∆λ = 10◦. Only the map projections with the singularities are involved in
testing: Fournier I., Van der Grinten I., Ortelius Oval, Nicolosi, Hassler. While the Hassler
projection has the only singularity at ϕ = 0◦, the Ortelius projection is singular at λ−λ0 = 0,
and the Fournier I., Van der Grinten I., and Nicolosi projections add singularities at λ−λ0 =
±π

2 . The graphical issues, amount of splits ns, processed tiles nt, interval resizing nr, deleted
intervals nd, and possible failures of the algorithm will be investigated.

The impact of the central meridian shift λ′0. To verify the properties, behavior and
numerical stability of the procedures, the following shifts λ′0 = {0◦, 30◦, ..., 150◦, 180◦} of the
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Table 3: The amount of splits ns, processed tiles nt, interval resizing nr, and deleted intervals
nd for different values of λ′0 representing multiples of 30◦.

Projection λ′0 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

Fournier I.
nt 7 3 3 11 3 3 7
ns 3 1 1 5 1 1 3
nr 0 0 0 0 0 0 0
nd 0 0 0 0 0 0 0

Van der
Grinten I.

nt 7 3 3 3 3 3 3
ns 3 1 1 1 1 1 1
nr 0 0 0 0 0 0 0
nd 0 0 0 0 0 0 0

Ortelius
Oval

nt 3 1 1 1 1 1 1
ns 1 1 1 1 1 1 1
nr 0 0 0 0 0 0 0
nd 0 0 0 0 0 0 0

Nicolosi
nt 7 3 3 7 3 3 3
ns 3 1 1 3 1 1 1
nr 0 0 0 0 0 0 0
nd 0 0 0 0 0 0 0

Hassler
nt 1 1 1 1 1 1 1
ns 1 1 1 1 1 1 1
nr 0 0 0 0 0 0 0
nd 0 0 0 0 0 0 0

Table 4: The amount of splits ns, processed tiles nt, interval resizing nr, and deleted intervals
nd for different values of λ′0 which are not the exact multiples of 30◦.

Projection λ′0 0.001◦ 30.001◦ 60.001◦ 90.001◦ 120.001◦ 150.001◦ 180.001◦

Fournier I.
nt 5 3 3 8 3 3 5
ns 1 1 1 3 1 1 1
nr 1 0 0 0 0 0 0
nd 0 0 0 0 0 0 0

Van der
Grinten I.

nt 4 3 3 4 3 3 4
ns 1 1 1 1 1 1 1
nr 0 0 0 1 0 0 0
nd 0 0 0 0 0 0 0

Ortelius
Oval

nt 2 1 1 2 1 1 1
ns 0 0 0 0 0 0 0
nr 0 0 0 0 0 0 0
nd 0 0 0 0 0 0 0

Nicolosi
nt 5 3 3 8 3 3 5
ns 1 1 1 3 1 1 1
nr 1 0 0 0 0 0 1
nd 0 0 0 0 0 0 0

Hassler
nt 4 3 3 3 3 3 4
ns 1 1 1 1 1 1 1
nr 0 0 0 0 0 0 0
nd 0 0 0 0 0 0 0
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Table 5: The amount of splits ns, processed tiles nt, interval resizing nr, deleted intervals nd
depending on λ′0 and the threshold ε.

Projection λ′0 0.001◦ 30.001◦ 60.001◦ 90.001◦ 120.001◦ 150.001◦ 179.999◦

Fournier I.
nt 4/17/145/

1435
3/17/145/

1435
3/17/145/

1435
13/65/661/
6591

3/17/145/
1435

3/17/145/
1435

4/17/145/
1435

ns 1/1/1/2 1/1/1/2 1/1/1/2 5/5/5/6 1/1/1/2 1/1/1/2 1/1/1/2
nr 1/7/71/

1212
0/7/71/
1212

0/7/71/
1212

1/27/325/
5786

0/7/71/
1212

0/7/71/
1212

1/7/71/
1212

nd 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1

Van der
Grinten I.

nt 5/27/265/
2633

5/27/259/
2577

5/27/259/
2577

5/27/259/
2577

5/27/259/
2577

5/27/259/
2577

5/27/259/
2633

ns 1/1/3/4 1/1/1/2 1/1/1/2 1/1/1/2 1/1/1/2 1/1/1/2 1/1/1/2
nr 1/12/130/

2311
1/12/128/

2283
1/12/128/

2283
1/12/128/

2283
1/12/128/

2283
1/12/128/

2283
1/12/128/

2311
nd 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1

Ortelius
Oval

nt 2/2/5/58 1/1/1/1 1/1/1/1 2/2/1/1 1/1/1/1 1/1/1/1 2/2/5/58
ns 0/0/1/3 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/3
nr 0/0/1/38 0/0/0/0 0/0/0/0 1/1/0/0 0/0/0/0 0/0/0/0 1/1/2/39
nd 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

Nicolosi
nt 5/47/453/

4519
3/47/453/

4519
3/47/453/

4519
13/95/969/

9576
3/47/453/

4519
3/47/453/

4519
4/47/453/

4519
ns 1/1/1/2 1/1/1/2 1/1/1/2 5/5/5/6 1/1/1/2 1/1/1/2 1/1/1/2
nr 1/22/225/

4254
0/22/225/

4254
0/22/225/

4254
1/42/479/
8828

0/22/225/
4254

0/22/225/
4254

1/22/225/
4254

nd 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1 0/0/0/1 0/0/1/1

Hassler
nt 3/3/5/31 3/3/5/31 3/3/5/31 3/3/5/31 3/3/5/31 3/3/5/31 3/3/5/31
ns 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1
nr 0/0/1/14 0/0/1/14 0/0/1/14 0/0/1/14 0/0/1/14 0/0/1/14 0/0/1/14
nd 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

central meridian representing multiples of 30◦, are involved. All projections are proposed
in the oblique aspect, where K = [50◦, 20◦]. The results are summarized in Tab. 3. It is
evident that the quantitative parameters of the algorithm depend on λ′0. If λ′0 coincides with
the singularity, the number of interval corrections as well as the amount of processed tiles
increase and vice versa; the maximum values can be found for λ′0 = {0◦, 90◦, 180◦}, which is in
accordance with the detected singularities. Taking into account the complexity of equations,
the less complicated formulas with few singularities are constructed from a smaller amount
of tiles. Due to the position of K and λ′0, there are neither resized nor empty intervals. In
general, only a few subdivisions are carried out.

The impact of the numerical inaccuracy. The impact of numerical inaccuracies will also
be illustrated. All projections are proposed in the transverse aspect, where K = [0◦, 90◦]. The
central meridian shifts are not the exact multiples of 30◦, but λ′0 = {0.001◦, 30.001◦, ..., 150.001◦,
179.999◦}. Therefore, some resizing steps are expected. The results are summarized in Tab.
4. Comparing the quantitative parameters, the number of processed tiles nt decreased, but
some intervals need to be resized. After this refinement they become correct; only a single
resizing step is required. However, there was no need for a deletion of the empty interval. It
is evident that “simple” equations are insensitive to the projection aspect.
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Figure 5.5: The list of reconstructed graticules of Fournier I., Van der Grinten I., Ortelius
Oval, Nicolosi, and Hassler projections using combined sampling, α = 5◦; the central meridian
shifts λ′0 = 90.001◦, λ′0 = 179.999◦.
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The impact of the central meridian shift λ′0 and the numerical threshold ε. The
last test measures the quantitative parameters of the algorithms depending on the value of
the threshold ε. This value has a strong influence on whether the result will be classified as a
singularity. For testing, the following values are involved: ε = {1.0e−6, 1.0e−7, 1.0e−8, 1.0e−9};
the cartographic parameters remain unchained. The results are summarized in Tab. 5. It
is evident that the amount of tiles nt strongly depends on ε, especially if a singularity at λ′
exists. Increasing ε by one order of magnitude, the amount of tiles nt changes in the same
manner. Taking into account the results, it does not make a sense to use values ε < 1.0e−7.
The algorithm is slowing down; its computational demands significantly grow up. It also
becomes unstable and may lead to the stack overflow. Comparing the analyzed projections,
the worst results are provided by the Nicolosi projection, where nt almost doesn’t depend
on λ′0. In the most pessimistic case, almost 10 000 tiles are required. On the contrary, the
Hassler projection with nt < 35 needs less effort.

Summarize the facts, the reconstruction algorithm depends on the number of singularities as
well as on the threshold ε. For ε ≥ 1.0e−6, only a few splits are required. All the reconstructed
graticules of the analyzed projections for λ′0 = 90.001◦, and λ′0 = 179.999◦ can be found in
Fig. 5.5.

6. Conclusion

This article presented a new algorithm for the combined sampling of the projection graticule
handling all constant values of the projection. The proposed method combines the uniform
and adaptive sampling techniques with the triple recursive subdivision. It controls handling
the discontinuities and their directions; the detection criterion is presented in Sec. 3.1. In
general, the splitting procedure is sensitive to ε(if λ′0 → ε) as well as to the numerical errors
of intersections m′(λ) and m(λ), m′(λ) and p(ϕ). From the topological point of view, the
meridian and parallel intersections lack the vertex, which can cause some problems in GIS
processing; the dissolve operation needs to be applied before. The discontinuity detection
without its classification (or, a wrong classification) leads to the duplication of lines along the
singularities.

The idea of splitting the interval to the set of disjoint intervals without the singularities is
efficient and works for any common projection and its coordinate functions. Compared to the
uniform sampling, our experiments confirmed that the combined sampling techniques S1-S3
require fewer data in regions with the high curvature (more than five times lower values of
α). For the circular arcs, circles or ellipses the uniform sampling is slightly more efficient.
The lowest data redundancy refers to the straight lines, only 1% of the uniform sampling
data is sufficient for the polygonal approximation. This is beneficial for the cylindrical, conic,
azimuthal and pseudocylindrical projections. A minor disadvantage of the proposed solution
is a slightly complicated implementation of the algorithms, the source code in C++/Java is
available in the GitHub repository

https://github.com/bayertom/graticule.
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