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The problem of model predictive control of continuous isothermal crystallizers, using a detailed moment equation model 
is analysed. The mean size of the crystalline product and the variance of crystal size are the controlled variables, while the 
manipulated variables are the input concentration of the solute and the flow-rate. The controllability and observability, as 
well as the coupling between the inputs and the outputs are analyzed by simulation using the linearised model. The 
crystallizer has proved to be a nonlinear multi-input multi-output system with strong coupling between the state variables. 
It is shown that the mean crystal size and the variance of can be controlled nearly separately by the residence time and the 
inlet solute concentration, respectively. By seeding, the controllability of the crystallizer increases significantly. The 
linear model predictive controller synthesized using the moment equation model appears to be an efficient controller for 
continuous crystallizers. 
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Introduction 

Model predictive control (MPC) refers to a class of com-
puter control algorithms that utilize an explicit process 
model to predict the future response of the plant. At each 
control interval an MPC algorithm attempts to optimize 
future plant behaviour by computing a sequence of future 
manipulated variable adjustments. The first input in the 
optimal sequence is then sent into the plant, and the entire 
calculation is repeated at subsequent control intervals [1]. 
Originally developed to meet the specialized control 
needs of power plants and petroleum refineries, MPC 
technology can now be found in a wide variety of ap-
plication areas including chemicals (Honeywell has MPC 
at polypropylene units at TVK, Hungary), food pro-
cessing (Honeywell is right now working on a dairy pro-
duct unit at the UK), automotive and aerospace applica-
tions. The presented work is an opening to an another 
new application, the MPC control of continuous crystal-
lizers. 
 Crystallization is a widely used cleaning, separation 
and grain producing technique in the chemical industry, 
particularly at the pharmaceutical works. From the point 
of view of controlling a crystallizer the main quality crite-
ria are the properties of the produced crystals, first of all 
the size-distribution and the mean size.  
 Crystallization is a multi-variable system, with multi 
input and multi output (MIMO) often with strong coupl-

ing. Thus a good, up-to-date control is possible using a 
model-based MIMO control system. There are only few 
examples in the literature for this [2-5]. Since one can do 
nothing to change the size distribution of the crystals in 
the system once crystals have grown beyond a stable 
nucleus size. Therefore a predictive type of control would 
be better than the corrective type. One of the main prob-
lems is that for a proper model-based control of the size-
distribution, because of the mentioned properties of the 
population balance equation, high-order control is re-
quired, which means serious difficulties. But the crystal-
lizers are dissipative systems [6], so that a crystallizer as a 
dynamical system possesses finite dimensional global 
attractors [7] that create an adequate basis for the syn-
thesis and usage of good quality, low-order model-based 
control systems. At the same time it means that for the 
synthesis of the model-based control system of crystal-
lizers the moment equation model, generated from popu-
lation balance equation governing the crystal size distri-
bution can be used. Chui and Cristofides [8] applied this 
property to design a nonlinear SISO controller. 
 In this paper a model-based MIMO control system of 
a continuous isothermal crystallizer is presented. For the 
synthesis of the control system a multi-variable state-
space model is composed. Linear controllability and ob-
servability analysis is presented, and the coupling of the 
inputs and the outputs are analysed. The efficiency of the 
developed model predictive controller is demonstrated by 
simulation.  
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Concept of MPC 

In model predictive control, the control action is pro-
vided after solving – on-line at each sampling instant – 
an optimization problem, and the first element in the op-
timized control sequence is applied to the process (re-
ceding horizon control). The “moving horizon” concept 
of MPC is a key feature that distinguishes it from clas-
sical controllers, where a pre-computed control law is 
employed. The major factor of the success of predictive 
control is its applicability to problems where analytic 
control law is difficult, or even impossible to obtain. 

The methodology of all the controllers belonging to 
the MPC family is characterized by the following strat-
egy, represented in Fig.1 (y is the output, w is the set-
point and u is the input): 
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Fig 1. MPC horizons 

 Prediction horizon (Hp) represents the number of 
samples taken from the future over which MPC com-
putes the predicted process variable profile and mini-
mizes the predicted error. The control signals change 
only inside the control horizon, Hc remaining constant 
afterwards 

1,...,),1()( −=−+=+ pcc HHjHkujku   (1) 
The basic steps: 

1. As it is shown, in the MPC future outputs for a de-
termined prediction horizon Hp are predicted at 
each instant k using a prediction model. These pre-
dicted outputs 

pHjkjky ,...1),(ˆ =+ (means the 
value at the instant k+j, calculated at instant k) 
depend on the known values up to instant k (past 
inputs and outputs) and the future control signals 

1,...0),( −=+ pHjkjku , which are those to be sent 
to the system and to be calculated. 

2. The set of control signals is calculated by op-
timizing a cost function in order to keep the process 
as close as possible to the reference trajectory 

. This criterion usually takes the 
form of a quadratic function of the errors between 
the predicted output signal and the reference tra-
jectory. The control effort is included in the ob-
jective function in most of the cases. An explicit 
solution can be obtained if the criterion is quadratic, 

the model is linear and there are no constraints, 
otherwise an iterative optimization method has to 
be used. 

pHjjkw ,...1),( =+

3. The control signal )( kku is sent to the process whilst 
the next control signals calculated are rejected, be-
cause at the next sampling instant y(k+1) is already 
known and step 1 is repeated with this new value 
and all the sequences are brought up to date. Thus 
the )11( ++ kku  is calculated (which in principle 
will be different to the )1( kku +  because of the 
new information available) using a receding ho-
rizon concept. 

 
 In order to implement this strategy, the basic struc-
ture shown is Fig.2 is used. A model is used to predict 
the future plant outputs, based on past and current 
values and on the proposed optimal future control ac-
tions. These actions are calculated by the optimizer 
taking into account the cost function (where the future 
tracking error is considered) as well as the constraints. 
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Fig.2: Basic structure of MPC 

 The process model plays, in consequence, a decisive 
role in the controller. The chosen model must be cap-
able of capturing the process dynamics so as to pre-
cisely predict the future outputs as well as being simple 
to implement and to understand. As MPC is not a 
unique technique but a set of different methodologies, 
there are many types of models used in various formula-
tions. Honeywell uses mostly black-box models at the 
refineries, getting them by stepping the plant. The new 
tendency is using chemical engineering, so called “grey-
box” models. The presented case study clearly fills this 
requirement. 
 The optimizer is another fundamental part of the 
strategy as it provides the control actions. If the cost 
function is quadratic, its minimum can be obtained as an 
explicit function (linear) of past inputs and outputs and 
the future reference trajectory. In the presence of in-
equality constraints the solution has to be obtained by 
more computationally taxing algorithms. The size of op-
timization problems depends on the number of variables 
and on the prediction horizon used and usually turn out 
to be relatively modest optimization problems which do 
not require sophisticated computer codes to be solved. 
However the amount of time needed for the constrained 
and robust cases can be various orders of magnitude 
higher than that needed for the unconstrained case and 
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the bandwidth of the process to which constrained MPC 
can be applied is considerably reduced. 
 For a continuous-time model (the cost function is 
discrete), the MPC problem can be represented as 
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Here, )( kku  is the input  calculated from informa-

tion available at time k, 

)(ku

)( kky  is the output  cal-
culated from information available at time k, Hc is the 
control horizon and Hp is the prediction horizon, while 
x denotes the state variable. Constraint (3) corresponds 
to satisfaction of the continuous-time model equations 
over the prediction horizon, while (4) enforces the re-
quirement that all inputs beyond the control horizon are 
held constant. Algebraic equation (5) represents con-
straints for the model, and for the sake of completeness 
Eqs (6) and (7) correspond to the constraints on the in-
put and output variables, respectively.  

)(ky

 The process model is assumed to have the following 
discrete-time representation, 

  (8) [ ),(),()1( kukxFkx =+ ]
]  (9) [ ,)()( kxhky =

where x is the n-dimensional vector of state variables, u 
is the m-dimensional vector of manipulated input vari-
ables, and y is the p-dimensional vector of controlled 
output variables. Such a model can be obtained by dis-
cretizing a continuous-time, state-space model or by de-
riving a state-space realization of a discrete-time, input-
output model. It is important to note that time delays 
can be handled by augmenting the state vector such that 
the resulting state-space model has no delays. 
 The optimization problem for the prototypical MPC 
formulation is [9]: 
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where )1()()( kjkukjkukjku −+−+=+∆ , φ and L 
are (possibly) (non)linear functions of their arguments. 
The optimization problem is solved to the constraints 
discussed below. The functions φ and L can be chosen 
to satisfy a wide variety of objectives, including minim-
ization of overall process cost. However, economic op-
timization may be performed by a higher-level system 
which determines appropriate setpoints for the MPC 
controller. In this case it is meaningful to consider quad-
ratic functions of the following form: 
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where  and  are steady-state targets for u 
and y, respectively, and Q, R, S are positive definite 
weighting matrices. The principal controller tuning 
parameters are Hc, Hp, Q, R, S and the sampling period 
∆t. 

)(kus )(kys

 The prediction outputs are obtained from the model 
(8-9). Successive iterations of the model equations yield 
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where )()( kxkkx =  is a vector of current state vari-
ables. If the control horizon (Hc) is less than the pre-
diction horizon (Hp), the output predictions are ge-
nerated by setting inputs beyond the control horizon 
equal to the last computed value:  

.,)1()( pcc HjHkHkukjku ≤≤−+=+   

 Note that the prediction )( kjky +  depends on the 
current stable variables, as well as on the calculated 
input sequence. Therefore, MPC requires measurements 
or estimates of the state variables.  
 Solution of the MPC problems yields the input se-
quence { })1(),...,1(),( kHkukkukku c −++  Only the 
first input vector in the sequence is actually imple-
mented: )()( kkuku = . Then the prediction horizon is 
moved forward one time step, and the problem is re-
solved using new process measurements. This receding 
horizon formulation yields improved closed-loop per-
formance in the presence of unmeasured disturbances 
and modelling errors. 
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Case Study: Continuous crystallizer 

Moment equation model 

The mathematical model of a continuous MSMPR 
crystallizer consists of the population balance equation 
for crystals, of the balance equations for sol-vent and 
crystallizing substance, and of the equations describing 
the variation of the equilibrium saturation concentration. 
In the present analysis, the crystallizer is assumed to be 
isothermal, thus the equilibrium saturation concentration 
c* is constant during the course of the process.  
 It is assumed that the following conditions are 
satisfied:  
 (1) the volumetric feed and withdrawal rates of the 
crystallizer are constant and equal, thus the working 
volume is constant during the course of the operation;  
 (2) the crystals can be characterized by a linear di-
mension L; 
 (3) all new crystals are formed at a nominal size 
Ln≅0 so that we assume Ln=0; 
 (4) crystal breakage and agglomeration are neg-
ligible;  
 (5) no growth rate fluctuations occur;  
 (6) the overall linear growth rate of crystals G is 
size-dependent and has the form of the power law ex-
pression of supersaturation  

 ;  (14) ( aLcckG g
g +−= 1*)( )

 (7) the primary nucleation rate Bp is described by the 
Volmer model  
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the secondary nucleation rate Bs is described by the 
power law relation 
   (16) jb

bb cckB 3*)( µ−=
where µ3 is the third of the ordinary moments of the 
population density function n, which are defined as  
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 With these assumptions the population balance equa-
tion governing the crystal size dynamics becomes: 
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subject to the following initial and boundary conditions: 
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Here, n(L,t)dL expresses the number of crystals having 
sizes in the range L to L+dL at time t in a unit volume of 
suspension. 
The mass balance of the crystallizing substance has the 
form 

 [ ] [ cin
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with the initial condition 
    (23) 0)0( cc =
where the voidage of suspension ε is related to n and L 
by  
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Finally, the mass balance of the solvent is written in the 
form 
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cdV ε
ε

−=    (25) 

with the initial condition 
 .    (26) 0)0( svsv cc =

 Therefore, the state at time t≥0 of the continuous 
isothermal MSMPR crystallizer is given by the triple 
[c(t),csv(t),n(t)], and its dynamics is described by the dis-
tributed parameter model formed by the mixed set of 
partial and ordinary differential eqs (18), (22) and (25), 
subject to the initial and boundary conditions (19-21) 
(23) and (26). The evolution in time of this system oc-
curs in the state space R2×N that is the Descartes 
product of the vector space R2 of concentrations and of 
the function space N of the population density func-
tions. Consideration of dynamical problems of crystal-
lizers in this product space, however, seems to be quite 
complex and not constructive. In the present study, we 
concentrate on a reduced case, considering the problem 
in a finite dimensional state space model based on the 
moments of the population density function instead of 
the distributed parameter system (18)-(21). 
 Since the overall crystal growth rate (14) is a linear 
function of size L, the population balance Eq. (18) can 
be converted into an infinite set of recursive ordinary 
differential equations for the moments of population 
density function: 

 ( ) bpVBq
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which can be closed by Eq.(22), describing the mass 
balance of the crystallizing substance, at the equation 
for the third order moment. Then Eq.(22) takes the form 
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while Eq.(12) can be rewritten as 
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where csv stands for the concentration of solvent. Here, 
because of the selective withdrawal, the voidage in the 
crystallizer and that in the outlet stream are not equal. 
 Therefore, the first four moment equations from the 
system (27-28) with Eqs (29-30) provide a closed mo-
ment equations model of the crystallizer. 

Dimensionless equations. Scaling 

We introduce the following set of dimensionless vari-
ables 
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into Eqs (27)-(30), where st, sc and sm, m=0,1,2,3, are 
scale factors defined as 
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and max{cin} denotes the maximal value of inlet con-
centration, as well as the set of dimensionless para-
meters 
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Then the dimensionless governing equations take the 
form: 
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 It follows from physical reasoning that the phys-
ically admissible solutions to Eqs (31-34) should sat-
isfy the constraints  
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where x0m denotes the maximal value of the zero order 
moment, while  
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where Vsv is the volume of solvent in the crystallizer. 
 The parameters, which in the case of primary and 
secondary nucleation form the vectors of real numbers 
pp=(τ,α,g,β,Dap,ke,γ) and pb=(τ,α,g,β,Dab,b,j), res-
pectively, are also bounded: 
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 As a consequence, the state of crystallizer (31)-(34) 
is represented by the vector of variables (x0,x1,x2,x3,y, 
ysv), and its time evolution occurs in the feasible region 
of solutions (38) of the six-dimensional state space R6. 
 The behaviour of crystallizer in the neighbourhood 
of a stationary state may be deduced by examining the 
eigenvalues of the Jacobian matrix of Eqs (36-38) at this 
state which becomes 
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where in the case of primary nucleation 
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while for secondary nucleation 
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 In order to formulate the state-space model, we 
define 
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To summarize as a control engineering problem: vector 
of state-variables is x=(x0,x1,x2,x3,,y,ysv), its changes rep-
resented by a nonlinear state space model (51)-(55); the 
input vector of is u=(x0in,x1in,x2in,x3in,yin,w) and the out-
put is defined as y=x. 

Analysis of the model 

Stability and bifurcation 

In linear dynamics, one seeks the fundamental solutions 
from which one can build all other solutions. In non-
linear dynamics, the main questions are: What is the 
qualitative behaviour of the system? Which and how 
many non-wandering sets (i.e. a fixed point, a limit 
cycle, a quasi-periodic or chaotic orbit) occur? Which of 
them are stable? How does the number of non-
wandering sets change while changing a parameter of 
the system (called control parameter)? The appearance 
and disappearance of a non-wandering set is called a 
bifurcation. Change of stability and bifurcation always 
coincide.  
 The number of attractors in a nonlinear dynamical 
system can change when a system parameter is changed. 
This change is called bifurcation. It is accompanied by a 
change of the stability of an attractor. In a bifurcation 
point, at least one eigenvalue (λ) of the Jacobian matrix 
gets a zero real part. There are three generic types of so-
called co-dimension-one bifurcations (the term co-

dimension counts the number of control parameters for 
which fine tuning is necessary to get such a bifurcation). 
 Back to the crystallizer, changing the value of ke, the 
parameter of primary nucleation rate and observing the 
supersaturation, Hopf bifurcation occurs as it shown in 
Fig.3. 
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Fig. 3: Bifurcation diagram ke-yS of the crystallizer 

 For further studies of controlling the crystallizer an 
operating point has been chosen from the region of 
stable steady states exhibiting only damped oscillations, 
that is at ke=0.01. 

Controllability and observability 

There are two basic problems we need to consider. The 
first one is the coupling between the input and the state: 
Can any state be controlled by the input? This is a con-
trollability problem. Another is the relationship between 
the state and the output: Can all the information about 
the state be observed from the output? This is an ob-
servability problem. 
 For the controllability and observability test a lin-
earized model (at the operating point) of the nonlinear 
system was used. 

 
xcy

BuAxx
T=

+=&
   (56) 

where the state transition matrix (A) is the Jacobi matrix 
of the system, the input matrix (B) can also be derived 
from the model and the output matrix (cT) is a diagonal 
matrix. 
 For a MIMO system the necessary and sufficient 
conditions for the system to have completely control-
lability is 

 nRank =⎥⎦
⎤

⎢⎣
⎡ − BABAABB 1n2 L   (57) 

 For the general system the necessary and sufficient 
condition of a linear system for complete observability 
is 

 nRank
T

nTTT =⎥⎦
⎤

⎢⎣
⎡ − cAcAcAc 12 )()( L   (58) 

 The results of the calculation is that the linearized 
system is completely controllable and observable at a 
certain operating point.  
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Relative –gain array 
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 (61) The relative-gain array provides exactly a methodology, 
whereby we select pairs of input and output variables in 
order to minimize the amount of iteration among the 
resulting loops. It was first proposed by Bristol and 
today is a very popular tool for the selection of control 
loops. where  denotes the predicted process outputs, 

 and  are the minimum and the maximum 

prediction horizons,  is the control horizon, Q and R 
are positive definite weighting matrices. 

)(ˆ jk +y

1pH 2pH

cH

 In our crystallization system the control variables 
can be the mean size of crystals, the variance of the 
crystal size (σ2) and the productivity, i.e. the total vol-
ume of the crystals: 
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 The manipulated variables are the input concentra-
tion of the solute and the flow-rate: 

 .  (60) wuyu in ==== 6251 , ϑϑ

 An optimization algorithm will be applied to com-
pute a sequence of future control signals that minimizes 
the cost function. For unconstrained control based on 
linear process model(s) and quadratic cost function the 
control sequence can be analytically calculated. After 
tuning the , the  and 3=cH 11 =pH 52 =pH .  
 By seeding, the controllability of the crystallizer in-
crease, the overshoots and the oscillation are smaller. 
The results of the controlling study have shown that the 
linear MPC is an adaptable and feasible controller as it 
illustrated by Fig.4. Here, the first two rows are the out-
puts (solid lines) with the corresponding setpoints 
(dashed lines), while the third and fourth rows present 
the time variations of the inputs of the crystallizer. Note 
that since the volume of the crystal suspension was kept 
constant the mean residence time was varied by 
changing the volumetric feed. 

 For the crystallizer we have two outputs and two 
inputs, there are three possible pairs of control variables, 
so three different relative-gain arrays can be formed and 
computed (The value 0 and 1 are rounded.): 
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The results show that controlling the mean size and the 
variance together would be very difficult. However, by 
putting crystal grains to the input (seeding), the control 
of the variance also becomes possible. The new 
different relative-gain array: 

Fig.4. Performance of the MPC of the continuous isothermal 
MSMPR crystallizer 

  
⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
∆
∆

2

1

2

1

24.124.0
24.024.1

ϑ
ϑ

υ
υ

 In this case, the mean-size and the variance can be 
nearly separately controlled. For the further experiments 
these two outputs will be selected. The system is very 
sensible to the quality and the quantity of the seeding. It 
is assumed to be fixed to a suitable operating point. 

Results of simulations 

The cost function is chosen to satisfy a wide variety of 
objectives, including minimization of overall process 
costs. However, economic optimization may be per-
formed by a higher-level system which determinates the 
appropriate setpoints for the controller. In this case cost 
function is formulated reflecting the reference tracking 
error and the control action. The general expression of 
such an objective function is 
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