
HUNGARIAN JOURNAL
OF INDUSTRIAL CHEMISTRY

VESZPREM
Vol. 30. pp. 241-245 (2002)

CLASSIFICATION NEURAL NETWORKS IMPROVE:MENT USING GENETIC
ALGORITHMS

A. WOINAROSCHY, V. PLESUand K. WOINAROSCHY

(Department of Chemical Engineering, University Politehnica of Bucharest,
1-5, Polizu Street, Bucharest 78126, ROMANIA)

Received: April 8, 2002

The aim of the present work consists the development of a procedure capable to realize a high accurate classification
neural network with a reduced number of neurons. In order to avoid local minima. the weights of a proposed three-layer
network were computed using a common genetic algorithm. The performances of the genetic algorithm were strongly
improved by several means that make an increased balance between exploration and exploitation of the search space.
Thus, in order to decrease the number of genes, respectively weights, the dimension of the output vector was minimized
by identification of classes with binary numbers. A very favorable effect was obtained by seeding the initial population
with a good chromosome obtained by the use of the classical "delta-rule" learning procedure. It was also investigated the
effect of the initial population size, the bounds imposed to the weights of the inter-neuronal connections, the number of
neurons in the hidden layer, fitness expression, etc.

Keywords: neural networks, genetic algorithms, classification

Introduction

An important field of neural network applications in
bioprocessing and chemical engineering consists in
classification problems, like process fault detection and
diagnosis, detection and location of gross errors in
experimental data sets, spectral analysis, models
discrimination and identification of model parameters,
etc. There are several types of neural networks used for
classification problems: back-propagation, radial-basis­
function, learning-vector-quantization, probabilistic
networks, networks based on adaptive-resonance-theory,
and so on. Each type has some advantages and
consequently disadvantages, depending on the nature of
the problem. Representatives for chemical and
biochemical processes are the problems with non­
uniform decision regions where the data points of each
class are scattered. For these problems radial-basis­
function and back-propagation networks perform better
[1,2]. The use of gradient of the error function during
the learning stage affects the performances of these
networks due to ending into a local minimum. In fact,
the gradient technique is an example of a hill-climbing
~trategy, which exploits the best solution for possible
Improvement; on the other hand, it neglects exploration
of the search space. Random search is a typical example

of a strategy, which explores the search space ignoring
the exploitations of the promising regions of the space.
For small spaces, classical exhaustive methods usually
suffice; for larger spaces special artificial intelligence
techniques must be employed. Genetic algorithms are
among such techniques, being a class of general purpose
(domain independent) search methods which strike a
remarkable balance between exploration and
exploitation of the search space [3]. For several years,
genetic algorith.ms have been used to evolve the neural
networks structure. as well as the weights of the inter­
neuronal connections (e.g. see (4-71). The aim of the
present work consists in an extended investigation of the
features of genetic algorithms in order to realize a high
accurate classification neural network with a reduced
number of neurons.

Methodology

The investigations were done on the three layers
networks with linear transfer function for the input layer,
and sigmoid transfer function for the hidden and output
layers. Because the number of neurons in the input layer
is imposed by the number of elements of the vectors that
are classified, the structural variables of these networks

242

Table 1 The effects of several factors on the performances of
chemical reactor fault-diagnosis network

B Nh N0 RMS error
Percentage of wrong

S;p classifications (%)

100 [-100; 100] 3 4 0.3478 27.20

200 [-100; 100] 3 4 0.3418 26.25

500 [-100; 100] 3 4 0.2974 25.00

500 [-50; 50] 3 4 0.3827 26.25

500 [-100; 100] 3 4 0.2974 25.00

500 [-250; 250] 3 4 0.4840 37.50

500 [-100; 100] 3 4 0.2974 25.00

500 [-100; 100] 5 4 0.2701 21.25

500 [-100; 100] 7 4 0.1845 16.25

500 [-100; 100] 9 4 0.2395 18.75

500 [-100; 100] 3 4 0.2974 25.00

500 [-100; 100] 3 3 0.1411 20.00

500 [-100; 100] 3 2 0.2398 21.25

equal the number of neurons in the hidden and output
layers. The number of neurons in the output layer
depends on the rule of classes codification. There are no
theoretical guidelines to establish the number of hidden
neurons. Different from the mentioned works, here each
chromosome corresponds with a complete set of the
weights of the inter-neuronal connections for a given
structure of the network (respectively , each gene
represent a weight). The structural variables,
respectively, the number of neurons in the hidden and
output layers, were step-by-step modified in an external
loop: the procedure starts with the minimum numbers of
the corresponding neurons and these are progressively
increased up to imposed limits.

The genetic algorithm used is a MATLAB
implementation [8] that can be downloaded at
ftp://ftp.eos.ncsu.edu/pub/simul/GAOT. Float

. representation of chromosomes has been used. The
selection of candidate chromosomes for crossover and
mutation is made according with a ranking selection
function based on the normalized geometric distribution.
Three types, of crossover are applied: simple,
interpolated, and ext:rapolated crossover. In_ the simple
eroesover, the crossover point is randomly selected. The
~lated c.roowve:r performs an interpolation along
the line formed by the two parents. The extrapolated
~ves performs an extrapolation along the line
fonned by the two parents in the direction of better
parent. Four types of mutation are applied: boundary,
multi-nonuniform. nonuniform, and uniform mutation.
Boundary mutation changes one gene of the selected
chromosome randomly either to its upper or lower
bound. Multi-nonuniform mutation changes aU genes.
whereas nonuniform mutation changes one of the genes
in a chromosome on the base of a non-uniform
probability distribution. This Gaussian distribution starts
wide~ and narrows to a point distribution as the current
generation approaches to the maximum generation.
Uniform mutation changes one of the genes based on a
uniform probability distribution. The numbers of

applications of the different crossover and mutati~n
operators are imposed as parameters of the genetic
algorithm. The investigation of the effects of these
parameters was out of the aims of the present work, and
their default· values have been used, respectively for
each generation: 2 simple, 2 interpolated, and 2
extrapolated crossover, 4 boundary, 6 multi-nonuniform,
4 nonuniform, and 4 uniform mutation.

Due to the use of a maximization algorithm, the
chromosome fitness corresponds to the negative value of
RMS error. The attempts to use o~her expressions for
chromosome fitness (e.g. the average relative error) did
not give meaningful improved results.

Applications

Chemical reactor fault-diagnosis

This application and the corresponding data are
presented in [9]. The input vector contains reactor inlet
temperature, reactor inlet pressure, and feed flowrate.
The elements of the output vector are three fault classes:
low conversion, low catalyst selectivity, and catalyst
sintering.
The following factors were studied:

a) the size of initial population (Sip);
b) the bounds imposed to the weights of the inter­

neuronal connections (B);
c) the number of neurons in the hidden layer (Nh);
d) the.number of neurons in the output layer (No);

The last factor corresponds to different rules of
classes codification. There are four types of outputs,
corresponding to four classes: the correct operating
regime, and the three fault regimes. ~he classical
codification corresponds to the use of four output
neurons, as follows: [1 0 0 0]; [0 1 0 0]; [0 0 1 0]; [0 0
01]. Also, there are possible other two codification
methods: a codification using three output neurons,
respectively: [0 0 0]; [1 0 0]; [0 1 0]; [0 0 1], and a
codification with two output neurons: [0 0]; [0 1]; [1 0];
[1 1]. The last codification is in fact the binary
representation of each class number.

Our investigations in the field of classification neural
networks indicated that the activity and corresponding
response of the output neurones must close to 0 or 1. A
neural network with one output neuron (having the
smallest number of the inter-neuronal connections
weights) for which the above mentioned 4 classes are
codified with the activity domains: 0-0.25; 0.25-0.5; 0.5-
0.75; 0.75-1 cannot be trained to give a correct
classification.

Due to the random generation of the initial
population of the genetic algorithm, each test was
repeated five times. The results presented in the Table 1
represents the corresponding average values. In all tests,
for a correct comparison of the results, the total number
of generations (the stopping criterion) was the same,
respectively 1000.

Fig.] The evolution of mean(....) and best (-)fitness for the
optimum neural network

The analysis of these results indicates that:

Expansion of the initial population size has a
favorable effect due to increasing the probability to
generate individuals with a good fitness.
Unfortunately, this effect is present only in simple
cases, for well-defined problems with smooth
response surface. For highly complex. problems, the
search space in which genetic algorithm usually
operates is so large, that taking few additional
chromosomes into initial population cause a very
small, or no detectable effect, unless the problem
surface is very smooth.

- A too small, or a too large range of the weights
values has a non-favorable effect: in the first
situation the optimization solution is arbitrarily
restricted, and in the second case the search space is
unreasonably enlarged.

- As in the case of gradient-based learning algorithms,
there is an optimum number of neurons in the hidden
layer for each neural network application, and the
corresponding value must be establish through an
iterative procedure.

- Similarly, the best rule of classes codification and
the corresponding number of neurons in the output
layer must be found by iterations.

With the best values of the investigated factors from
Table 1, respectively Sip= 500; B= [-100; 100]; Nh= 1;
No= 3, and by the aid of the genetic algorithm the
weights of the corresponding neural network were
established. This exhibit excellent results: RMS error
= 0.007 and no wrong classification (related to the
training set, due to the absence in the original mentioned
reference [9] of a test set). The corresponding evolution
of the genetic algorithm is represented in Fig.l.

It is remarkable that the best values of RMS error
obtained for this example by BAUGHMAN and LIU [9]
(using the classical "delta rule" as learning procedure) at
the end of 50,000 training iterations were: 0.088 for a
network with 3 neurons in the· hidden layer and sigmoid
transfer function, and 0.037 for a network with 5

243

neurons in the hidden layer and hyperbolic tangent
transfer function.

Consistency analysis of fuzzy sets

This case study was already presented in literature [10]
as an application of a modified back-propagation neural
network. The reason of the actual selection consists in
the fact that the· application represents a difficult
classification problem· involving non-linearly separable
patterns.

In many chemical processes due to several reasons
there are some variables that cannot be measured
directly on-line (e.g. biological or catalyst activity). In
these cases the values of measured variables are fuzzy
sets. Related to system constraints and feasible domains
of the variables these fuzzy sets must be consistent.

In order to use a graphic representation, a
hypothetical example with two measured variables, x1
and x2, and one unmeasured variable, x3, all restricted to
a system of three strongly non-linear constrains, was
considered:

- O.Sx3+0.275x1x3+0.261x; x3+0.18xt x3+x2=0 (3)

The feasible domains of the variables are:

The number of variables is incidentally ~e same as
the number of constraints. Usually, the number of
variables is greater than the number of constraints. The
measured values of the variables correlated with the
feasible domains of all variables, and with constraints'
violations will generate several classes of errors,
depending on combination of violated restrictions. For
this application the following four classes were
considered:

A -all restrictions are satisfied;
B -constraint (1) is violated regardless of constraint (2)

and constraint (3);
C- constraint (2) is violated and constraint (1) and

constraint (3) are respected;
D -constraint (3) is violated regardless of constraint (1)

and constraint (2).

These four domains, the data from the training set
(points numbered from 1 to 124), and test data (prefix
T) are indicated in Fig.2. It can be observed that all
learning data correspond to points placed on. or near the
bounds.

The best results obtained by the aid of the genetic
algorithm at the end of 500 generations are exposed in
Table 2.

The best result obtained in [10J using the classical
"delta rule" as learning procedure corresponds to a

244

Table 2 The best results obtained by the aid of the genetic
algorithm with no-seeding and with seeding the initial

population with a chromosome having RMS error= 0.1012
(S;p = 500; B = [-130; 130]; Nh= 5; No= 2)

Procedure Trial number RMS error
Percentage of wrong
classifications(%)

No-seeding 1 0.2816 25.00

No-seeding 2 0.2506 22.58

No-seeding 3 0.2466 20.77

o-seeding 4 0.1445 12.10

No-seeding 5 0.2446 20.97

o-seeding Mean 0.2336 20.32

Seeding 1 0.0907 3.22

Seeding 2 0.0895 6.45

Seeding 3 0.0902 5.65

Seeding 4 0.0894 6.45

Seeding ·5 0.0902 4.84

Seeding Mean 0.0900 5.32

Fig._ The four patterns das ification e ample

percentage of wrong cla sifi ations of 9.70 ~ and ' as
gi en by a modified ba k-propagation neural netv ork
with neuron in the hidden layer neuron in the
out ut layer and hyperb lie tangent transfer fun tion.

It i bvious that in thi ca e the results gi en by
genetic algorithm are wor e than that obtained using the
las ical "delta rule" learning pro edure. Due to thi

fact, a hybrid pro edure was propo ed: in a fir t stage
the arch is made with the aid of "delta rule" learning
procedure; next in the second tage the initial
population of chromo omes is eeding \! rith the be t
olution fr m the end of the fir t stage. Th resul

obtained with thl " e ding" procedure are encouraging.
Thu for th con idered network. "delta rule" learning
pr edure give thew ights orresponding "th a
error of 0.1012. Thi olution a improved \i ith 10%
by the genetic algorithm. Th re ults obtain d ith
eeding the initial population are gi en al in Table

-1
N N N "' "' "' " =F I I
~

I I

~ ~
I

~ ~ rD ~ rD rD
Connection

Fig.3 Changes of the weights of the inter-neuronal .
connections between the input and hidden layers (I - input; H

-hidden; B -bias)

9 0 0 0 ~ 0 C\1 C\1 C\1

9 0 0

I c\J cJ, .;. rb I c\J cJ,
I I I I I I

Connection

Fig.4 Changes of the weights of the inter-neuronal
connections between the hidden and output layers (H­

hidden; 0- output; B- bias)

The improved solution was obtained mainly due to
changes of the weights of the inter-neuronal connections
between the hidden and output layers (Figs.3 and 4).

For this difficult classification problem, the mean
percentage of wrong classifications given by this hybrid
procedure is with 82% better than the best solution
corresponding to a larger neural network obtained in
[10].

The corresponding evolutions of the genetic
algorithm for "no-seeding" and "seeding" procedure are
repre ented in Fig.5, and respectively Fig.6.

Conclusions

The genetic algorithms are an exciting way to realize
high a urate classification multilayer neural networks.
Different from other works, we search for the network
tru ture in an external iterative loop. We consider that

this two- tage procedure gives a better control of the
re ults. Also, this procedure allows the selection of a
ne tructural variable, respectively the number of
neurons in the output layer. Thi means different rules of
las es codification, and the equivalent modifications in

the training data sets. To realize these in a single
optimization loop seems to be a little bit complicated.

aybe the two- tage procedure i many computer time

Fig.5 The evolution of mean(....) and best (-)fitness for
"no-seeding" procedure

consumers, but our interest was focused on the accuracy
of the results. It is obvious that, in order to realize high
accurate classification multilayer neural networks for
practical applications (e.g. process control or expert
systems), the network performances are much more
important than the computer time spent for this.

Another direction of investigation in this work was
the performance of a hybrid algorithm composed from
"delta rule" and genetic algorithms. In fact this
hybridization was realized by seeding the initial
population from the genetic algorithm with the best
solution obtained with classical "delta rule" learning
procedure. Despite the warning of some authors [111
that by seeding the genetic algorithm chases after a local
minimum, and takes time to find its way out, very good
results were obtained with this procedure in a difficult
classification problem.

Our research, realized in the frame of two
applications, finished with good results, so we can
conclude that the use of the genetic algorithms
represents a promising way to realize high accurate
classification multilayer neural networks.

SYMBOLS

B bounds imposed to the weights of the inter-
neuronal connections

Nh number of neurons in the hidden layer
No the number of neurons in the output layer
Sip size of initial population
xi variables in Eqs. (1)-(3)

245

Fig.6The evolution ofmean (....)and best (-)fitness for
"seeding" procedure

REFERENCES

1. ALDRICH C. and VAN DEVENIER J. S. J.: Chern.
Eng. Sci., 1994, 49(9), 1357-1368

2. ALDRICH C. and VANDEVENTER J. S. J.: Ind. Eng.
Chern. Res., 1995, 34(1), 216-224

3. MICHALEWICZ Z.: Genetic Algorithms + Data
Structures = Evolution Programs, 3rd ed., Springer
Verlag, Berlin, 1996

4. HARPS. A., SAMAD T. and GUHA A.: Towards the
Genetic Synthesis of Neural Networks in: Davies, L.
(Ed.): Handbook of Genetic Algorithms, Van
Nostrand Reinhold, New York, 1991

5. MANIEZZO V.: lEE Trans. Neural Net., 1994, 5 (I),
E~3 .

6. GAO F., LIM., WANG F., WANG B. and YUE P. L.:
Ind. Eng. Chern. Res., 1999, 38(11), 4330-4336

7. BOOZARJOMBHRY R. B. and SVRCEK W. Y.:
Comput. Chern. Engng., 2001, 25(10), 1075-1088

8. HOUCK C. R., JoiNES J. A. and KAY M. G.: NCSU­
IE, Technical Report, North Carolina State
University, 95-09, 1995

9. BAUGHMAN D. R. and LIU Y. A.: Neural Networks
in Bioprocessing and Chemical Engineering,
Academic Press, San Diego, 1995

10. WOINAROSCHY A., ISOPESCU R., NITA I. and DINU
S.: Data Filtering via Artificial Neural Nets. 5lh
World Congress of Chemical Engineering, San
Diego, vol. I, 1011-1016, 1996

11. HAUPT R. L. and HAUPT S. E.: Practical Genetic
Algorithms, Wiley, New York,1998

	Page 248
	Page 249
	Page 250
	Page 251
	Page 252

