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Process models play important role in computer aided process engineering, since most of advanced process monitoring, 
control, and optimization algorithms relay on a model of the process. In most of the cases, some parameters of the model 
should be estimated based on some experiments. One of the factors affecting the model prediction quality is the accuracy 
of these estimated parameters. Establishing optimal experiment design can maximise the confidence on the parameters, 
hereby increasing the confidence on the model prediction. The aim of this paper is to work out a modern experiment 
design tool to minimize the number of experiments while maximizing of their information content. This paper illustrates 
the applicability of ES for the design of feeding profile for a fed-batch biochemical reactor. The results illustrate that if 
the model structure is not accurate, the evolutionary strategy can result in more satisfactory parameter values than the 
classical sequential quadratic programming and nonlinear least squares algorithms. 
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Introduction 

Process models play important role in computer aided 
process engineering since most of advanced process 
monitoring, control, and optimization algorithms relay 
on a model of the process. Unfortunately often some of 
the parameters of these models are not known a priori, 
so they must be estimated from experimental data. 

The accuracy of these parameters largely depends on 
the information content of the experimental data 
presented to the parameter identification algorithm [1]. 
Establishing optimal experiment design (OED) can 
maximise the confidence on the parameters. For the 
identification of the parameters of dynamic models this 
approach has been utilized in [2-5]. In these studies 
experiment design is concerned with the following 
questions: How does one adjust time-varying controls, 
initial conditions, and/or other design parameters of the 
experiments to generate the maximum amount of 
information for the purpose of estimating the 
parameters with greatest precision.  

For nonlinear models, OED is based on an iterative 
algorithm because the optimal parameters of the 
experiments depend on the model parameters that are 
going to be estimated based on the result of the 
designed experiment. Consequently, OED estimates the 
model parameters and designs the experiment 
iteratively. Both parameter estimation and experiment 
design are based on nonlinear optimization of certain 
cost-functions. In practice, the applied nonlinear 
optimization algorithms have great influence on the 
whole procedure, because for nonlinear dynamical 

models the design of the experiment is a hard 
optimization problem. As an effective optimization 
algorithm, this paper proposes the application of 
evolutionary strategy (ES) for this purpose. ES is a 
stochastic optimization algorithm that uses the model of 
natural selection [7]. 

In this paper, OED are applied for fed-batch 
biochemical reactor. One of the factors affecting the 
modelling of biochemical systems is that accurate 
description of biochemical reaction is generally not 
available a priori. Hence usually a simplified kinetic 
model, e.g. Monod model, is used to describe the 
microbial dynamics. Some results were presented for 
experiment design of biochemical systems in [4-6], but 
these works assumes that the model structure is 
perfectly known. This paper discusses the application of 
OED based on models that have structural uncertainty. 
Our results illustrate that although the model structure 
used for the design of the experiments is not accurate, 
OED with ES can result in satisfactory parameter 
values. 

The paper organized as follows: The first section 
reviews the theory of optimal experiment design. The 
second section proposes the application of evolutionary 
strategy for OED. The third section presents the 
application example. Finally, conclusions are given in 
the fourth section. 
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Optimal input design for parameter estimation 

The case study considered in this paper belongs to the 
following general class of process models: 
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where u is the manipulated input, y is the output 
(vector), x is the state (vector) of the system and p 
denotes the unknown model parameters. The p 
parameters are unknown and should be estimated based 
on data taken from experiments. For the estimation of 
these parameters classical parameter identification 
approach is used that is based on the minimization of 
the square error between the output of the system and 
the output of the model: 
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in which  is the output of the system for a certain u(t) 
input profile, and y is the output of the model for the 
same u(t) input profile with p parameters, Q is a user 
supplied square weighting matrix that represents the 
(variance of the) measurement error. 

y~

The accuracy of the parameter estimation depends 
on the applied u(t) input profile. The goal of the 
experiment design is to determine an optimal input 
profile in the sense of the parameter estimation leads to 
optimal parameters with maximal confidence. 

The basic element of the experiment design 
methodology is the Fisher information matrix F, which 
combines information on (i) the output measurement 
error and (ii) the sensitivity of the model output with 
respect to the model parameters: 
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in which p0 is the nominal parameter vector. The Fisher 
information matrix F provides an approximate 
quantification of the attainable parameter estimation 
quality in the neighbourhood of the nominal parameter 
vector p0 for a particular experiment as the inverse of 
matrix F approximates the parameter estimation 
covariance matrix. 

The optimal design criterion aims the minimization 
of a scalar function of the F matrix. Among the existing 
criteria, the D-optimal criterion and the modified E-
optimal criterion suggested by Bernaerts et al. [1] are 
studied in this work. 
i. The D-optimal criterion minimizes the determinant 

of the covariance matrix, and thus minimizes the 
volume of the joint confidence region: 
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ii. E-optimal criterion minimizes the condition number 
of F, i.e. the ratio of the largest to the smallest 
eigenvalue of F: 
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These values correspond to the uncertainty of the 
parameter estimation problem. Fig. 1 and 2 illustrate the 
effect of the input profile on the model output in case of 
the case study that will be presented later in the 
Application Example session. The contour plots show 
the square error of model output with respect to its 
parameters around the p0 nominal parameters: 
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One can see that when an E-optimal input profile is 
used, then the parameter uncertainty region is smaller. 
This means that, if the p0 nominal parameters are close 
to the optimal p* parameters, the parameter estimation 
based on this profile (Fig. 1) most likely results in 
accurate parameters than the estimation based on a 
manually selected profile (Fig. 2). 
These figures suggest that when one has only a draft 
estimate on the parameters of a complex dynamical 
model, he/she should use it to design an u(t) input 
profile for a parameter estimation procedure (eq. 2-3) 
rather than to use data taken from a non-optimized input 
profile for the identification. 
In the following session a new optimization algorithm 
will be presented for the effective design of the 
experiments. 
 
For nonlinear models, OED results in an iterative 
procedure due to the fact that the parameters of the 
designed experiment depends on the model parameters 
itself, see Fig. 3. 
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Fig. 1 Contour plots of the identification cost (Ji) with respect 

to parameters for an E-optimized feeding profile 
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Fig. 2 Contour plots of the identification cost (Ji) with respect 

to parameters for a manually selected feeding profile 
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Fig. 3 Scheme of parameter estimation with OED 

Both the parameter estimation and the experiment 
design steps of this iterative scheme represent a 
complex nonlinear optimization problem, hence the 
effectiveness of the applied optimization algorithms 
have great influence on the performance of the whole 
procedure. The classical solution is to use nonlinear 
least squares (NLS) algorithm for parameter estimation 
eq. 2-3, and sequential quadratic programming (SQP) 
for the experiment design eq. 5 or eq. 6. 

 
Evolutionary Strategy 

This paper proposes the application of evolutionary 
strategy (ES) instead of the utilization of NLS and SQP. 
ES is a stochastic optimization algorithm that uses the 
model of natural selection. The advantage of ES is that 
it has proved particularly successful in problems that are 
highly nonlinear, that are stochastic, and that are poorly 
understood [7]. 

Evolution strategy is the member of evolutionary 
algorithms. The design variables in ES are represented 
by n-dimensional vector , where 

x
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j represents the jth potential solution, i.e. the jth the 
member of the population. The mutation operator adds 

zj,i normal distributed random numbers to the design 
variables: xj,i = xj,i + zj,i, where zj,i = N(0,σj,i) is a random 
number with σj,i standard deviation. To allow better 
adaptation to the objective function’s topology, the 
design variables are accompanied by these standard 
deviation variables which are so-called strategy 
parameters. Hence the σj strategy variables control the 
step size of standard deviations in the mutation for jth 
individual. So en ES-individual aj = (xj, σj) consist of 
two components: the design variables and the strategy 
variables. 

Before the design variables are changed by mutation 
operator, the standard deviations σj are mutated using a 
multiplicative normally distributed process: 
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The ( )( )1,0Nexp ⋅′τ  is a global factor which allows an 
overall change of the mutability, and the ( )( )1,0Nexp i⋅τ  
allows individuals to change of their mean step sizes σj,i. 
So τ’ and τ parameters can be interpreted as global 
learning rates. Schwefel suggests setting them as [8]: 
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Throughout this work discrete recombination of the 
object variables and intermediate recombination of the 
strategy parameters were used: 
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where F and M denotes the parents, j is the index of the 
new offspring. 
 

Application Example 

The case study of this paper is a fed-batch bioreactor 
with non-monotonic kinetics [6]. The following 
equation describes the mass balance of the reactor: 
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where S is the mass of the substrate [g], X is the mass of 
the micro-organism [g DW], V is the volume [L], u is 
the inlet flowrate [L/h], CS,in = 500 g/L is the substrate 
concentration in the inlet feed, σ = µ/YX/S + m is the 
specific substrate consumption rate, where, YX/S = 0.47 g 
DW/g, m = 0.29 g/g DW h, while µ [1/h] is the kinetic 
rate. The initial conditions: S(t=0) = 500 g, X(t=0) = 
10.5 g DW, V(t=0) = 7 L. The maximum volume is Vmax 
= 10 L, and the maximum inlet flowrate is umax = 0.3 
L/h. 
Two kinetic models of the µ kinetic rate were 
considered: 
Monotonic kinetic (Monode model): 
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Non-monotonic kinetic (Haldane model): 
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where CS = S/V.  
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The majority of the OED applications in the 
literature assume that the structure of the model used for 
the design of the experiment is perfectly known. 
However, the model structure is often inaccurate in 
practice. For example, a simplified kinetic model is 
often used to describe the microbial dynamics due to the 
lack of lack of accurate knowledge of the microbial 
dynamics. 

The purpose of this study is to illustrate the 
complications that may arise from this structural 
uncertainty. Therefore, in this simulated example, we 
use different kinetic models during the simulation of the 
system (considered as a real, unknown process) and in 
the model itself. It is assumed that the ‘true’ process can 
be described by a non-monotonic kinetic equation (eq. 
13), while the model contains a monotonic kinetic 
model (eq. 12).  

The system was simulated with µm = 0.1 1/h, KP = 1 
g/L and KI = 500 g/L. The goal was to find the 
unknown parameters of the model: µmax and KS (the 
other parameters were assumed to be accurately 
known). The µmax and KS parameters were estimated by 
optimization, see eq. 2 and 3. Because the measurement 
of the micro-organism concentration CX is quite difficult 
in practice, it was assumed that only the substrate 
concentration CS is measured. Consequently, in this 
application example, the system output is S~~ =y  [g], 
which was generated by the simulation of equations 
(11) and (12), and the model output is y = S [g], which 
it was calculated with the use of equations (11) and 
(13). 

We applied the iterative OED methodology to 
design the feeding profile u(t) with E-optimal criterion 
equations (4) and (6). The D-optimal criterion was not 
used, because our experience showed that the E-
optimality is better suited for this problem. Because the 
number of experiments and the length of experiments 
are limited in practice, the number of iterations was 
limited to 3 and the length of one experiment was 40 h. 
The sample time was 4 h. 

 
In this example, three methods were examined: 

Method 1: Manually selected input profiles. To 
compare and analyze the effectiveness of OED, 
firstly the parameters were estimated with two 
feeding profiles. The first profile was: u(t) = 0.077 
L/h, 0 h < t < 40 h, while the second profile was: 
u(t) = 0 L/h, t < 20 h and u(t) = 0.15 L/h, 20 h < t 
< 40 h. 

Method 2: Iterative OED with NLS in the parameter 
estimation step and SQP in the experiment design 
step. 

Method 3: Iterative OED with ES in both of the 
parameter estimation and experiment design steps. 

Because the result depends on the initial parameter 
estimation, two initial estimations were applied:  = 
0.05 1/h,  = 0.5 g/L and  = 0.1 1/h,  = 1 
g/L. 

init
maxµ

init
SK init

maxµ init
SK

Certainly, there is no ‘perfect’ solution for this 
problem. To analyze the results, the obtained monotonic 

µM(CS) functions were compared to the ‘true’ non-
monotonic µH(CS) function: 
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As Table 1 and Fig. 4 show, Method 3 proved to be 
the best, it found relatively good solutions. One can see 
that Method 2 was sensitive to the initial parameter 
estimation. If the initial parameter were  = 0.05 1/h, 

 = 0.5 g/L this method got stuck into a local 
minima and resulted in rather wrong parameter values. 
If  = 0.1 1/h,  = 1 g/L initial estimations were 
used, Method 2 resulted in better solution. In contrast, 
Method 3 always resulted in a relatively good solution 
independently the initial parameter values. Because ES 
is a stochastic optimization algorithm six independent 
runs were performed and we got very similar 
parameters in each case. 

init
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maxµ init
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Fig. 5 and 6 demonstrate that the obtained models 
output (by Method 2 and Method 3) and the system 
output for two input profiles. One can see that the 
obtained models have relatively good prediction 
capability. 

The results support the conclusion that if the model 
structure is not accurate, the OED with evolutionary 
strategy can result in more satisfactory parameter values 
than the classical OED with sequential quadratic 
programming and nonlinear least squares algorithms. 

 
Table 1 Estimated parameters and the cost values of the 

obtained kinetic functions 

 (µmax, KS ) Emse·106

(0.0893, 0) 98.0  Method 1*

(0.0893, 0) 98.0 
(0.0881, 0) 96.0  Method 2*

(0.0894, 1.02) 35.0 

 Method 3** (0.0895, 0.416) 15.6 
* These methods were initialized with two parameter 

vectors, see above. 
** The means of the EMSE values of six independent runs. 

Two initial parameter vectors were used for 3-3 runs. 
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Fig. 4 The obtained kinetic functions vs. the ‘true’ kinetic 

top: Method 1, middle: Method 2, bottom: Method 3 
solid line: ‘true’ kinetic, dashed line: obtained kinetic 
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Conclusions 

The estimation of model parameters largely depends 
on the information content of the experimental data 
presented to the parameter identification algorithm. 
Establishing optimal experiment design (OED) can 
maximise the confidence on the model parameter, 
hereby increasing the confidence on the model 
prediction. 

Both the parameter estimation and experiment 
design tasks represent a complex nonlinear optimization 
problem, hence the effectiveness of the applied 
optimization algorithms has great influence on the 
performance of the whole procedure. This paper 
proposes the application of evolutionary strategy (ES) 
for this purpose. ES is a stochastic optimization 
algorithm that uses the model of natural selection. 

In this paper, this ES based OED technique has been 
applied for fed-batch biochemical reactor. One of the 

factors affecting the modelling of biochemical systems 
is that accurate description of biochemical reaction is 
generally not available a priori.  

Hence, this paper addressed the application of OED 
for models that have inaccurate structure. We illustrated 
that although the model structure used for the design of 
the experiments is not perfectly known, OED can result 
in satisfactory parameter values. Our results support the 
conclusion that when the model structure is not 
accurate, the OED with evolutionary strategy can result 
in more satisfactory parameter values than the classical 
OED with sequential quadratic programming and 
nonlinear least squares algorithms. 
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