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There are a number of methods for least squares and total least squares solution of linear equations. One such method
involves solving an appropriate algebraic matrix Riccati equation. This approach is investigated here using an algorithm
based on Newtor’s method with an infinite series solution of the resulting linear matrix equations. Some numerical
examples, from the recent literature, are used to illustrate the techniques.
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Introduction

‘When a system of linear equations
LX=M I

with L and M, m x n and m X p matrices respectively,
does not have a unigue solution X it is usual to seek a
solution that is “best” in some sense by imposing
appropriate congstraints. This paper is concerned with
computing the least squares (LS) solution, which
imposes the constraint that X should minimize the norm

"LX -M HZ, and the total least squares (TL.S) solution
which requires X to minimize “L—V“Z +HM ~W]]2E
subject to the constraint

VX=W. 3]

The main difference between LS and TLS is that the
former assumes the matrix L is exact whereas the latter
allows for errors in both L and M. Perhaps the most
important approach in solving these problems is
singular value decomposition {(SVD) the use of which is
fully discussed in [1] and [2] for LS and TLS
respectively.  Another possible approach is the
following. By using Lagrange multipliers, in the usnal
way, it can be shown [3], [4], that X satisfies the
algebraic matrix Riccati equation (AMRE)

IMTIX + P LX - XM M -L'M =0. (3)

When Newton’s method is applied to the general
AMRE

XPX+0OX +XF+G=0 @

a linear matrix equation, solutions X, of which

converge to X the solution of Eqn. {4) under appropriate
conditions, is obtained. There are many possible ways
of solving this linear matrix equation (see, e.g., [5]) and
one of these, which involves infinite series, is studied in
[6]. Methods for offsetting the difficulties involved if a
poor starting approximation is made to the solution and
for accelerating convergence are also investigated in [6].
The solution techniques are implemented by two
algorithms, Al and A2, depending on whether X is
unsymmetric or symmetric. A simplified form of Al is
given in the Appendix for convenience.

The aim of the present paper is to illustrate the use
of Al in solving LS and TLS problems by means of a
number of mumerical examples from the literature,

Numerical Results
Example 1

The first example is taken from [7] and is concerned
with modelling the biological activity of fifieen
different compounds with respect to a set of eight
variables which describe the various morphological and
physiochemical properties of the compounds. The data
used is given in Table | of [7]. Setting the initial
approximation X, =0 in Al gave the same least
squares solution as in [7] {when rounded),
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X;s = [0.636, 0.080, 0.095, -0.308,
0.169, 0.241, 0.278, 0.238]7
and, of course, the same value, 0.61, for the residual

sum of squares SS. X, also agrees with L'M where

L’ is the pseudo-inverse of L.

The smallest singular value of L is 0.337365 and of
[L;M } is 0.335713 so that conditions for a unique TLS
solation, [2], are (just) satisfied, If Al is now continued

from the solution X ;¢ given above it converges to

X =[0.716, 0.259, 0.124, -0.336,
0.186, 0.531,-0.435, 0.3371"

with e = 0.16 before accuracy begins to deteriorate.
(Using a line search shows a slight improvement in
accuracy before deterioration.) When this model is
applied to the whole of the data the resulting sum of
squares is 41.893 . .

The smallest singular value of [L;M ], for this
example, is as given above and the SVD formula

X =|L- 0335713, "M

gives
X =[-4.28,1.20,-2.21,-1.29,
—2.36,11.00,—14.60,2.10]"
which has a residual error e = 6(—4) and which is much

better than the previous result from Al. If now,
however, the above X is used as the starting
approximation in Al the result is refined to give a better
X with a residual error less than 10(-6).

Algorithm Al was also used to compute the sums of
squares, denoted by “PRESS” in [7], for both LS and
TLS; these measure the predictive properties of the
models used. The same groupings of the date were used
as in {7] and Tabie 1 shows the results obtained.

Table I Predictive Sums of Squares for Example 1

Groupl Group2 Group3 Total
LS 1.172 1.183 0.804  3.159
TLS  1.3i9 1.540  34.832 37.691

The total for LS agrees with that given in [7]. The
total for TLS is inflated by the very large value from
Group 3 and presumably accounts for the comment,
“when full rank is approached, it behaved differently,”
made regarding TLS in [7] and for the use of rank 3
TLS rather than full rank. (Before making the
calculations all the nine sets of data were scaled to have
zero mean and unit variance.)

Example 2

This example is taken from {1] and involves finding
a linear fit to data given in Table 26.1 in that reference.
In {1} five different “candidate” solutions are obtained
and one of them

X =[-2.486 ~0.529,-0.194,1.616,3.455)" (5)

is proposed as the best LS solution according to a
number of statistical criteria. Now if Al is used to find a
1S and then a TSL solution the result is

X =[-73.3,98.4,-78.0,90.7, - 78.2]" )

which is very different from the solution given in Eqn.
(5) despite the fact that their residual norms are quite
close. It is also interesting that the norm of (5) is only
about 4.6 compared with 188 for that of (6) and that the
smallness of norm is one of the criteria mentioned
above for preferring one solution to another. The TSL
solution would not have found much favour from this
particular viewpoint.

Example 3

This example, with

e

is of a type often used to show that the TSL problem
may not have a solution unless extra constraints are

imposed [2]. Applying Al, using X, =0, gives the
LS solution {I,O}T, continuing until convergence now

gives the TSL solution [1.61803,0]. Another much
used method for solving problems of the kind
considered in this paper involves some form of direct
minimization (see, e.g., [8]) as in the following
treatrent.

Let

x
Xy Xy Xg Xg
be estimates of L, X and M respectively; form
fi =(1—x1)2 —E—xzz +x32 -i-x,,2
+ (1_ XyXs — x2x6)2
+ (- xx — %)
or alternatively, with more variables involved,
LH=-xf +x 45" +x2+(1-x, Y +(-x)
2
+ (x-, — Xy Xs — xzxe)
+ (o — x5 — 2,3, f @®)
and minimize f; or f, with respect to all of the

variables involved in each case. So, for example, using
“Find Minimum” from “MATHEMATICA” on f; the
solution

X =[x, x| =[.618030] ©)
is obtained and using £, gives the solution

X =[x, x, I =[t.414210F (10)

Notice that the solution given in Eqn.(9) is the same
as that found by Al. The similar, but simpler example
with L= [a‘b]r and M = I!,ﬂr can be analysed
algebraically to quantize the difference between using



fiand fy. Thus, for example,
L= [1,-»0.95}2' gives solutions X =237165 and
X =0.0553169 wsing f and f; respeetively. (Again
using £ gives the same solution as Al and as the SVD
formula given in Example 1.)

taking

Example 4

This is similar to Example 3 but rather more
sophisticated; it is taken from [2] where it is analysed

using SVD,
& s 2

4

L={214 214}, M=o |
S22 o Y

Using X, =0 as the starting approximation in Al gives
the 1S solution
X, =[0.282633,0.282633]

and then proceeding to convergence gives the TLS
solution

X ps = 10.408248,0.408248F
NMotice that this is the same as the solmtion
{x},ﬁ;ﬁﬁ}r given in [2].

in the same manner, as for the previous example,

setting up the appropriate f; and using FindMinimum
gives

X =[0.408245,0.408425]
and with the appropriaie f, the solution

x ={0.34186,0.34186] .
is obtained.

Example 5

The final example is concerned with parameter fitting
and is 1aken from [8). Here

I 1 1
18 26 33
S T T T T
14 52 61 65 74

and

M=k59.5444.463537.2828.14.15F
In this example the first column of L is fixed and so one
method of proceeding is as follows. {2 [L.M] 1s
muluplied by a suitable Householder matnx 1o give the
new matnx

09

2.16228 12.0799 117004 |
0 468666 271748
0 -3.78666 171745
0 -2.98666 191745
0 228600 0817446
0 -1.18666 101745
0 0386656 0117446 |
0 0513344 0.117446
0 09133144  .0,282554
0 181334 118255 _

and algorithm Al is now applied (o the submatrix
obtained by deleting the first row and column of the
above matrix 1o give the second component x, of the
solution vector X, The first component 1, of X 1 then
obtained from
316228 x, = 117004 < 12079, .
in this way
X =[5.78403. - 0.545502]
is obtained.
Direct minimization can also be used as in the two
previous examples 1o give the two solutions
x =[5.78404, - 0.545561f
and
X =15.82535,~0551802f
using sums of squares similar w  f
respectively.

and !

Conclusion

It has been demonstrated that an a!gomhm for solving
the AMEE can be used 10 solve over-determined
systems of hnear equanon. A number of numencal
examples illustrate the techniques involved

SYMBOLS

FGLMPQEVW Cofficiensinalgebran
matrix Ricatts equation { AMRE Y

X Salution of AMRE.

X, tevates wn solution to AMRE

!A;Bl concatenated matrix formed from matnoes 4
and B

ABCRS.0.0.M.T.

A transpose of matrix A

A prcudainsetse of matfin A

matnces delined i Appendi,

Al A2 algonthms from (6]

SV wingular safue decompesihon

A, components of sgctir o matne X
s feast squases

TLS  usal lcast squares

t 1unnng mdes
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fi. f»  sums of squares defined in Eqns. (7) and (8) APPENDIX
|4, Eudidian norm of A
e Eudidian norm of residual error in solution of Algorithm Al
AMRE
m, n, p integers used to give order of matrices To solve the general AMRE

XPX+Q0X+XF+G=0

Let X, be an approximate solution. Let i =0
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