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P. E. Bezier, a mechanical and electrical engineer, developed his idea of interpolating given data during his work at 
Renault. Instead of using ordinary polynomials he introduced Bernstein polynomials in his algorithm. With the help of 
the Bernstein operator and a piecewise forgoing he invented a method to interpolate given data with a smooth spline 
curve. 
I. J. Schoenberg is often entitled as the father of B-Splines, although Laplace probably worked with some kind of B­
Splines in 1820. They are introduced as basis for the spline functions, and this is the reason for their name. 
We present the basic properties of Bezier- and B-Splines including their shape preserving behaviour. In many examples 
we illustrate the main differences in their interpolating properties. 

Keywords: interpolation, algorithms of de Boor and de Casteljau, comonotone behaviour 

History 

(a) B-Splines 

1820 P.S. Laplace worked with some kind of B­
Splines 

1850 N.I. Lobatschewski gave a short explanation 
1946 I.J. Schoenberg started with the investigation of 

"basic spline curves" 
1967 I.J. Schoenberg introduced the name "B-splines" 
1972 M.Cox, C.de Boor, L.Mansfield invented the 

"recurrel}Ce relation" 

(b) Beziersplines 

1959 P. de Casteljau worked the first time with these 
splines 

1962 P. Bezier developed the same idea a second time 
1970 R. Forrest found the connection to Bernstein 

polynomials 

B·Splines: Alternative defmitions 

We start proposing four different kinds of definitions for 
B-Splines. 

(a) Recursive definition 

Given a knot sequence of real numbers in R.: 

T = (Xo' XI' Xz , ••• , xn, Xn+l , ••• , Xn+l+l) 

Then we define 

Z=O: {
1 if 

N0 .(x) = 
,I 0 

xi::;; x :s;;xi+l 
, i:::::O, ... ,n 

otherwise 

l >0: 
i=O, ... ,n 

(b) Definition by divided differences 

We use the well-known divided differences to define 

with 

{ 
{r- x)1 if t ~ x 

(t-x)~ := 0 lu: 
~ t<x 
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Fig.l In each figure we see two B-Splines of order 0,1,2 and 3. 

(c) Definition by the +-Functions 

Without the help of the divided differences we can use 
the +-functions alone to define the B-Splines: 

i+l+1 

NzJ (x) := (xi+l+l -xi) · L 
k;i 

(xt -x)~ 
i+l+l 

IT (xt -xz) 
r=i,r.=k 

, i =O, ... ,n 

(d) Definition by construction 

Let [a~b}t; R ~ A:= {Xot•••txn+t }, X; E R, 

a=x0 <x1 <· .. <xn <xn+1 =b. 

Then we define: 

S1(A):={se C1
-
1{a,b}:sltx,.x .• de IP1 ~t =O,.. .... n} 

For this vector space we have a basis built with the +­
functions: 

S1(A} =span< 1~.t,.x2 , ••• ,x1 ,(x-x1i +~ ••• ,(x-x11 )
1
+ > 

and we can prove the following theorem: 

Theorem: Let Q..,. :={.x ... }~z,.A;, <xv+t• For each 
i E Z there exists a unique ~pline function s E S1 (A} 

with 

... 
s(x)=O in(-«>jlx,)u(x1+1• 1,oo) and Js(:c}dx=l. 

It is not very surprising that we can prove it easily that 
the four definitions lead exactly to the same functions. 

Theorem: All definitions above are equivalent. 

Dermition: We will call the functions developed in the 
four definitions B-Splines. 

Basic properties 

We summarize some of the important properties of B­
splines in the following theorem: 

Theorem: 
1. We have N1/x) = 0 if x\l (xi'xi+l+l), 

2. We have Nz,;(X)E el-l if XE [xi'xi+l+d' 

3. Wehave Nl,i(x)>O if xE (xi.xi+l+1), 

4. We have the property of partition of unity: 
n-1 

L N1,;(x) = 1 if XE [xi,xi+l+d 
i=-l 

Remarks: 
l. This means that the B-splines have a small support. 

Only in an interval with l + 2 knots we have a 
chance to find values unlike zero. 

2. Here we are told, that the B-splines have a defect of 
1, therefore the B-splines of degree l are l-1-
times continuously differentiable. 

3. The B-splines are positive functions. 
4. We can conclude on the bound 1 for ali B~splines . 
SeeFig.J. 
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Fig.2 Support-Reduction of a B-Spline of order 3 from 4 
intervals to 2 intervals, if 1 is a knot of multiplicity 3. 

Multiple knots 

Given a knot sequence Xo' x1, Xz' .•. 'xn 'xn+l' ... , xn+l+l , 

we did not demand that ail points should be different. 
What happens if some neighbor points fall together? 

Theorem: If xi = xi+ I = · · · = xi+l+I, then we have 

N 1,i (x;) = 0, i = O, ... ,n 

From this we conclude immediately that N1,i = 0, 

which is not a very interesting result. So we ask for the 
case when less than l + 2 knots coincide. 

Theorem: If X; is a knot with multiplicity m ~ l , it 
follows 

The smoothness of a B-Spline decreases therefore with 
multiple knots. The decrease of the smoothness comes 
together with a decrease of the support of the B-spline: 

Theorem: If xi is a knot of multiplicity m ~ l , then the 

support of Nr.i(x) is reduced from l +!intervals to 

l + 1-(m- 1) intervals. 

We show this behaviour in Fig.2. 
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Fig.3 Example of a B-Spline curve with knot sequence 
T=(O,O,O,O, 1,2,3,4,5,6,6,6,6). 

B-spline curves of degree 1 

Now we come to curves built with B-splinet, At first the 
definition: 

Definition: Given l E IN and points 
- - - 2 3 d0 ,d1' ... ,d

11 
E IR or IR and a knot sequence 

then we call the following linear combination 

1l 

B1(x) = Ld;N1,;(x), 
i=O 

a B~spline curve of degree l for the knot sequence T. 

d0 ,d1p .. ,d
11 

are the de Boor puints, they build the de 

Boor polygon. 
One of the most important properties for such a B­

spline curve is its local behaviour. If one of the points 

Ji is changed, the curve will be changed in a small 

vicinity of Ji only. This is what designers whish. So the 

front of a car can be changed whereas the back remains 
unchanged. This is the content of the following 
theorem: 
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Theorem: Given a B-spline curve 

n 

B1(x) = Ld;N1,;(x), 
i=O 

with knot sequence T 

and x* E (xi,xi+l). The point on the curve belonging to 

x* is only influenced by the de Boor points di_1,. •• ,dr 

Hereby Ji acts in (xpxj+l+l) only. Figure 3 gives an 

example of a B-Spline curve. 

Bezier curves 

The main tool in constructing Bezier curves are the 
Berpstein polynomials. 

Defmition: B," (x)= (; }' (!-x)~1 , i = 0, ... , n, x E [0,1] 

We summarize some important properties of the 
Bernstein polynomials in the following theorem. 

Theorem: Bi11 (x) > 0 for xE (0,1) a ba 

{B;11 h=0, ... ,n is a basis for the vector space of 

all polynomials of degree ~ n . 
If 

LB~ (x)= 1 for xE (0,1) 
i=O 

Definition: A Bezier curve is defined as follows: 

If 

X 11 (x):= l:b.B~(x),XE (OJ) 
i=O 

The points b; are called the controlpoints of the Bezier 

cun·e. 
There are some relations between B-Splines and 

Beziersplines. The next theorem shows that each spline 
curve can be expressed in terms of B-Splines. 

Theorem: Lets be a spline function of degree l in [ atb ]. 
Tltefl we hal'e a unique representation 

It 
~- . - 3 s(x} = £..id;.Nu (x), d; E R ,xE [a,b] 
; .. _, 

In a very special case we have a direct coincidence 
between B-Splines and Beziersplines. 

Theorem: The B-Splines NIJ (x) of degree I are exactly 

the Bemsteitz polynomials B:(x). if the knot sequence T 
contains 2( I+ 1) elements where both 0 and / are of 
multiplicity l+ I: 

T=(O, ...• O. ...__,_.._ 
dt-tlli.IIM'l 

l, ... ,l ) 
............... 

tl+htws 

The algorithm of de Boor and de Casteljau 

The formula for a B-spline curve is not easy to handle. 
For polynomials we have the formula of Horner for a 
quick evaluation of single values. For B-spline curves 
this part is played by the algorithm of de Boor. 

Algorithm (de Boor) forB-Splines 

Given n+1 de Boor points d0 ,d1, ••• ,dn,n?:.l, and a 

knot sequence 

Find B(x*): 

1. Find r with xr ~ x* < Xr+l 

* 
2. Calculate a~ x -xi . 1 l 

1 
, z = r + - , ... ,r 

-z 1 - z-
di =(1-a t) d;_1 +atdt 

3. For j=2,3, ... ,l,i=r-l+j, ... ,r 

* a! x -xi 
l 

xi+t-u-n -xi 

J/ = (1-a!) Ji-li-1 +a! J/-t 
l I I l 

4. Then we have B(x*) = J; 
The following table gives an impression how this 

algorithm works. On the horizontal lines we multiply by 

a/ and on the diagonal lines by 1-a/. The sum of 

both values gives the new de Boor point on the right: 

dr-1+1 
-1 
d r-1+1 

dr-1+:!. 
-1 
d r-1+2 

-z 
d r-1+2 

dr-1+3 
-~ d r-1+3 

-z d r-1+3 

JI-I r-t 

ii, Jtr -z d r {jl-lr tPr =B(x*) 

The most important advantage of this algorithm is 
how fast it works. It is possible to evaluate thousands of 
points in less than a second. So this algorithm makes it 
possible to change a curve and in the same way a 
surface nearly in real time. 

A similar algorithm for the Bezier splines was 
developed by de Casteljau. It is based on the recurrence 
relation: 

b;(x) = (1-x)b;-1(x)+b
1
l!-l(x) 



Fig.4 13 given points which build a tunnel are interpolated 
with B-Splines. 

Algorithm (de Casteljau) for Beziersplines 

Given n + 1 Bezier points or control points E0 , ••• , En . 
Find X 11 (x*): 

1. 

2. 

3. 

4. 

· -o - -o ... -o .... 
Start wzth b0 := b0 ,b1 := bl' ... ,b

11 
:= bn 

.... 1 -1 -1 
Calculate b0 ,b1 , ... ,h11

_ 1 using the recurrence 

relation above. 

Continue calculating b~ , ... ,bLi, i = 2, ... , n 

Thenwehave X 11 (x*)=b;(x*). 

This calculation cav be filled in a table quite similar 
to the table for the de Boor algorithm above. We have 
only to replace the de Boor points a by the Bezier 
points b and then to multiply in the horizontal line with 
x*, in the diagonal line with 1- x*, and afterwards to 
sum up. 

Interpolation using B-Splines 

Now we will try to compare both methods in their 
behaviour regarding interpolation problems. Consider 

the points Po, .f1, ... , Pq-l in IR2 or IR3 
• We want to 

find an interpolating spline curve. 
For the use of B-splines we could try to take each 

point in the knot sequence (1+1)-times. Then the curve 
runs through each of the points, but it is really not a 
smoot!J curve. In each point there is perhaps a sharp 
cusp. This is therefore no answer to the problem. 

In order to combine the given points with the points 
in the knot sequence we should note, that in the interval 
[x0 , xz] less than l+ 1 B-splines are :1: 0 . So we try the 

following combination: 

This leads to the following linear system: 

It 

:LJi NI;(Xl+l,) = P.t, u =O,l, ... ,q-1 
io::O 
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This is a system of q linear equations for the 

n+1unknown d0 ,dp ... ,Jn.For q=n-1+2 thereare 

n + 1- (n -l + 2) equations missing. For cubic splines 

(l=3) we have to find 2 equations more. A typical 
choice is to consider spline functions which are linear 
outside the interval [x0, X11 ] • They are called natural and 

the following two equations are based on the fact that 
their second derivative is zero: 

dn_zN~:n-2 (xn+l) +dn-lN~:n- (xn+2) +dnN~:n (xn+3) = 0 

Altogether we come to the following pentadiagonal 
system for natural cubic splines: 

6 12 6 

jr ~o l 11 -11 11 0 

1 4 1 0 dl Po 
0 J2 ~ 

6 

~:T 0 

0 1 4 

h~ J 
pq-1 

6 12 0 
11 -11 

In Fig.4 we have interpolated 13 points, which could 
be understood to build a tunnel, using B-Splines. But 
the oscilating behaviour of the curve is not acceptable. 

Interpolation using Beziersplines- Comonotone 
Interpoation 

After the bad result with our tunnel example using 
B-Splines we are interested to develop a better method 
for interpolating given data. One reason for the 
misbehaved shape can be seen in Fig.4. From the left 
hand side up to the midpoint the datas are monotone 
increasing, whereas the spline curve oscilates through 
the first four points. 

At first let us define what we want to understand by 
a comonotone interpolating procedure: 

Deimition: Consider the given data 
(x0,y0),(xpy1), ... ,(xn,yn) with x0 < x1 < ··· < Xn. Let 

sE C1[x0 ,xn] be a function which interpolates these 

data. Then we will calls comonotone with the data, iff 

s'(x)·m1 >0 if m; ¢0,xE (xi_1,xi) 

s"'(x} =0 if mi =0 

This is easy to explain. The slope of the spline 
functions should always be the same sign as the slope 
of the straight line between two neighb< 'ur points. Then 
swill be monotone increasing or decrea~ing in the same 
intervals where the data are monotone mcreasing or 
decreasing. respectively. 
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Fig.5 The same 13 given points as in Fig A are now 
interpolated with the comonotone algorithm using Bezier­

Splines. 

The Bernstein operator and its shape preserving 
behaviour 

I 

The· main point in developing our new algorithm is to 
use the Bernstein operator. It works with the help of the 
Bernstein polynomials. 

Deimition: Let f be a vector valued continuous function 
on the interval [0,1]. Then the Bernstein operator is 
defined as 

In the following theorem we summarize some of the 
most important properties regarding the shape 
preserving of the Bernstein operator: 

Theorem: For the Bernstein operator we have: 
1. f bounded ==> Bnf is bounded (with the same 

bounds) 
2. f ;?:: 0 in [0,1] :::::? Bnf ~ 0 in [0,1] 

3. Bn/(0) = /(0), Bnf(!) = /(1) 

4. /monotone ==> Bnf monotone 

5. f convex ==> Blff convex 

Now we are able to explain the algorithm: 

Comonotone algorithm: 

1. Construct the subknots t 0 , t 1 , •••• t '1.N + 1 

x. -x. 1 witlt r. = ' ~- hv 
t 3 • 

2. Calculate the difference quotients: 

Y;- Yi-1 . 1 N nz; = , l = , ... , 
X; -xi-! 

3. Determine a piecewise linear comonotone function l by 

l( X; ) := y i , r( X; ) := d; with 

d0 :=2m1 -d1,dN :=2mN -dN-J andfor 

i=l, ... ,N-1 

0 if mi ·m;+I =0 

d ·-
m; 3mi+I -mi 

if O<lmtl~lm;+JI i .-
2 mi+I 

mi+l 3m; - mi+l 
if jm; I> lmi+ll 

m; 2 

4. Calculate l(t1), l(t2i ), l(t2;+1), l(t2N) 

5. Apply in each subinterval the Bernstein operator. 
This leads to the desired function: 

Remark: The formula in 3. is the heart of the algorithm. 
The derivative di at the knots xi is evaluated in a way 
that the resulting linear spline function is comonotone 
with the data. Because of the shape preserving 
behaviour of the Bernstein operator we get therefore the 
desired comonotone cubic spline function. 

In Fig.5 we show the tunnel data from above, but 
now comonotone interpolated. The result looks much 
better. 

Conclusion 

In this paper we compared B-Splines and Beziersplines. 
After a short introduction for both spline cancidates we 
explained some of the most important properties. The 
similar algorithms of de Boor and de Casteljau lead to 
very fast evaluation processes. Several figures show the 
different behaviour regarding the interpolation 
procedure. In contrast to the disadvantage of the 
monotony preserving of the B-Splines we propose a 
comonotone interpolation algorithm using Bezier 
splines. 

R 

SYMBOLS 

real numbers 
knots inR 

T = (x0 ~ .... xn+l+I) knot sequence 

N li B-Splines 

(t- x)~ +-function 

A =(X0 , ••• ,xn+l) given knots 

C1
-
1[a.b] (l-1)-times continuously 

differentiable functions 

IP
1 

vector space of polynomials of 
degree less or equall 



S1(A) 
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B1(x) 

do, ... ,dn 
Bt(x) 

xn(x) 

s(x) 

a/ 
Po, ... ,Pq 

l(x) 

vector space of spline functions 

infinite knot sequence 

B-Spline curve 

de Boor points 

Bernstein polynomials 

Bezier curve 

spline function 

coefficients in the de Boor algorithm 

interpolation points 

linear spline function 
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