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Although the runaway phenomenon is well known, an exact consistently used definition does not exist. Present paper is 
focused on the relation of reactor runaway and parametric sensitivity to stability. The relationship between criteria for 
reactor runaway and for thermal stability is also pointed out. Based on this critical review new methods based on 
parametric sensitivity and stability analysis for reactor runaway analysis are proposed in the paper. General runaway 
criteria based on the application of Ljapunov’s indirect method in the geometric and phase space have been developed. 
To illustrate the relation of the proposed reactor stability analysis to the commonly used runaway criteria a first order 
reaction was chosen. The application of the suggested method is also presented on a more complex problem, the 
Uckron-I test problem.  
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Introduction 

Today process control systems allow more and more 
extensive utilisation of the potential capacity of chemical 
processes. Optimal operating conditions are pushed to 
the constraints determined by the laws of physics and 
chemistry. The most critical safety limit is the runaway 
condition for reactors with exothermic chemical reactions.  

Since Semenov’s pioneer work [1] most of the 
research in reactor analysis is related directly or 
indirectly to reactor stability and/or reactor runaway. 
Initially the question was whether reactor runaway is 
related to reactor stability or it is something completely 
else. Bilous and Amundson were the first who treat the 
problem as parametric sensitivity and thermal runaway 
distinguishing it from classical reactor stability [2]. 
Schmitz (1975) explained in his review [3] that 
sensitivity is less precisely defined than stability and the 
two phenomena might be connected. The first runaway 
criterion based on the empirical analysis of the 
temperature profile was suggested by Barkelew [4]. 
Dente and Collina considered the appearance of an 
inflection point preceding the temperature maximum 
(ie. where the second derivative of the temperature with 
respect to the length of the tubular reactor becomes 
negative) as a runaway criterion [5]. The same criterion 
was applied to an industrial problem by Berty et al. four 
years later [6, 26]. Hlavacek et al. employed an 
analogous criterion (second time derivative) in the heat 
explosion theory. Adler and Enig suggested that instead 
of the length or time domain the analysis be conducted 
in phase space (temperature versus conversion) and the 
criterion be the point where the second derivative of the 

temperature with respect to the conversion becomes 
negative [7]. Van Welsenaere and Froment called this 
latter one as “the first criterion” and the previous one as 
“the second criterion” [8], and found that they are close 
to each other while the second criterion is a bit more 
conservative. Applying the method of isoclines 
Morbidelli and Varma gave the necessary and sufficient 
conditions [9].  

To “measure” the sensitivity Bilous and Amundson 
introduced the derivative of the maximum temperature 
along the length (or time) with respect to Semenov’s 
number [2]. This approach was applied first by Lacey 
[10] as well as by Boddington et al [11] to determine a 
runaway criterion. This sensitivity measure gives a 
maximum curve with respect to the parameter 
(Semenov’s number). If the parameter is less than the 
critical value belonging to the maximum then runaway 
does not occur. Runaway may take place if the parameter 
is higher. The idea was generalized by Morbidelli and 
Varma [12].  

Introducing the sensitivity  

Φ

*

Φ ∂
∂ Ts =  

and the relative sensitivity  

Φ

*

*Φ ∂
∂ T

T
S Φ

= , 

where T* stands for the maximum temperature and Φ for 
an arbitrary input parameter, they defined the runaway 
criterion based on the maxima of the sΦ – Φ and the SΦ – 
Φ functions respectively. Their numerical calculations 



 

 

20 

demonstrated that for systems “susceptible to runaway” 
these maxima practically coincide independently from the 
selection of Φ and correspond to the value calculated by 
Adler and Enig’s criterion. At the same time in case of 
systems less “susceptible to runaway” the maxima can 
be significantly different or even they can be present 
when runaway does not occur at all.  

This observation rises questions about the theoretical 
soundness of the application of the maxima as runaway 
criterion in spite of the fact that the authors consider the 
criteria based on the maxima of sensitivity as important 
intrinsic attributes of runaway (intrinsic criterion) [12]. 
Methods for the mainly approximate calculation of 
various criteria for different reactions and reactors are 
discussed in several papers, e. g. by Balakotaiah and 
Kodra [13] as well as Morbidelli and Varma [14]. 
Asymptotic expressions are often used for the 
approximation. Methods of catastrophe and singularity 
theories are more and more often used for studying 
complex reacting systems. Excellent reviews of these 
approaches were published by Razón and Schmitz [15], 
as well as by Doherty and Ottino [16].  

Two important sources of the researchers’ 
motivations are the following: 

● foundation of the solution of important industrial 
problems is expected (reactor design, operation and 
safety). E.g. in the paper of Luo et al [17] critical 
ignition, extinction, and transition temperatures 
and the stable criteria of temperature  

● a large variety of processes (with different 
reactions and different types of reactors) are 
studied (Zaldivar et al [18]) and they are 
inherently (very) nonlinear (methods of system 
analysis can be applied with limitations only).  

 
Avoiding runaway is requested from industrial 

considerations for the sake of “controllability” and for 
the protection of the catalyst (high amount of heat is 
released in a short section). The application of runaway 
criteria in reactor control for building a model-based 
control strategy is discussed by Szeifert et al [19].  

Although the runaway phenomenon is well known, an 
exact consistently used definition does not exist. Present 
paper is focused on the relation of reactor runaway and 
parametric sensitivity to stability. The relationship 
between criteria for reactor runaway and for thermal 
stability is also pointed out. In this study Ljapunov’s 
indirect method that is well known and widely used for 
dynamic system analysis is applied (Perlmutter, [20]); 
and it is shown that the commonly used runaway 
criterion can be justified based on this approach.  

To allow the comparison of different criteria and to 
illustrate the application of stability analysis a simple 
process, a model of a homogenous tubular reactor (or an 
analogous continuous stirred tank reactor) was chosen. 
The application of the suggested method is also 
presented on a more complex problem, known as 
UCKRON-I test problem (Bashir et al, [21]).  

Problem definition 

A commonly used reactor model can be given in the 
following form: 

r
d

cd
−=

τ
 (1) 

( ) [ ]1,0, ∈−−= ταβ
τ wTTr

d
Td ; (2) 

where the initial conditions are:  

τ = 0, c = c0, T = T0 (3) 

and τ stands for the independent variable which is 
expressed by the dimensionless length (ℓ · V/F) in case 
of a steady state tubular reactor or by the time itself in 
case of a batch reactor.  

The constitutive equation completing model (1-3) is 
the following for the rate of reaction: 

( ) ( )c
T

Tcr ϕδγ ⋅⎟
⎠
⎞

⎜
⎝
⎛ −= exp, .  (4) 

Instead of the reactant concentration c the conversion 
x(τ) = 1 – c(τ)/c(0) can be used too: 

( ) .00   0,=     

,0

=

=

x

r
d

xdc

τ
τ

 (5) 

The explanation of the model parameters is given in 
the notation list. The runaway phenomenon occurs only 
in case of exothermic reactions, that is defined by β > 0. 
Both model (1-4) and model (2-5) describe the 
concentration (or conversion) and temperature profiles 
versus the reactor length in case of tubular reactors or 
versus time in case of batch reactors.  

A part of the analysis is conducted in the so called 
phase space. The transformation into the phase space is 
accomplished by eliminating the independent variable τ 
(Eq. (2) is divided by Eq. (5)): 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −

−≡
−−

=
r
TT

r
TTr

xd
Td

c
ww αβαβ

0

1  (6) 

the initial condition is: x = 0, T(x) = T0.  
The runaway phenomenon is illustrated by Fig. 1. A 

first order chemical reaction, φ(c) = c was chosen as an 
example and the following parameters were used: 

α = 5 l/h, β = 180 m3 K/kmol,  
γ = 20, δ = 6000 K, 
c0 = 1 kmol/m3, T0 = 300 K. (7) 

(parameters were chosen on the basis of practical 
experience). 

Fig. 1 shows that the temperature profile in the 
steady state tubular reactor (or in a batch reactor) 
changes significantly for small changes in the operating 
conditions (eg. changing the value of Tw).  
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Figure 1: Parametric sensitivity of a tubular reactor 

 
It is well known that model (1-4) gives a unique 

solution for fixed parameters. That is why Bilous and 
Amundson distinguished the reactor runaway problem 
from the multiplicity and classical stability analysis of 
the continuous tank reactor and interpreted it as 
parameter sensitivity.  

For this reason it is practical to determine the 
parametric sensitivity form of the above model. One 
among the operating parameters of the model, the Tw 
external temperature is considered in the further studies. 
This step does not lessen the generality of the method 
since the procedure is the same in case of any other 
parameter. Accordingly the following sensitivities are 
defined: 

( ) ,
wT
cu

∂
∂τ =  (8) 

( )
wT

Tv
∂
∂τ = .  (9) 

Differentiating Eq. (1-2) with respect to Tw the following 
sensitivity model is obtained: 

( )vrur
d
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τ
 (10) 
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00
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 (11) 
where rc and rT are the partial derivatives of the reaction 
rate with respect to the concentration and the temperature 
respectively. Eqs (10-11) can be completed with the 
differential Eqs (1-2) and must be integrated together 
with those.  

A differential equation for the calculation of the  
w(x) = ∂T/∂Tw sensitivity measure in the phase space can 
be obtained by differentiating Eq. (6) with respect to Tw: 

( )
w

r

Td
xdrrTTr

rxd
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c

xTw

2
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1 ⎟⎟
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−= αα

 
τ = 0, w = 0, (12) 

where rx stands for the partial derivative of the reaction 

rate with respect to the conversion ( cx rr
c

−=
0

1 ). Eq. 12 

and Eq. 6 together form a closed system.  

Stability approach to runaway 

Let us consider the following system of nonlinear 
differential equations of the state variables, x(τ): 

( )xf
d

xd
=

τ
.  (13) 

Applying Ljapunov’s indirect method the stability 
analysis of Eq. (13) is reduced to an eigenvalue analysis 

of the Jacobian ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

x
f

J
∂
∂

 for function f(x): 

│J – λI │ = 0.  (14) 

If the λ1, λ2, … λn roots of Eq. (14) are negative (in case 
of real roots) or their real components are negative (in 
case of complex roots) then Eq. (13) is stable at x(τ) 
[16].  

Applying the method on the set of differential  
Eqs (1-2) the following Jacobian and eigenvalues are 
obtained respectively: 

( ) ( ) ,⎥⎦
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λ
−−+±−+−
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Then the conditions for stability can be expressed as: 

rc + α ≥ β rT (16) 

If condition (16) is not satisfied then differential Eqs 
(1-2) are unstable in Ljapunov’s sense. It means also 
that terms of eλτ, / Re(λ) > 0 appear in the solution of 
c(τ) and T(τ) instead of eλτ, / Re(λ) < 0 which is the case 
in the stable region.  

The Jacobian of the sensitivity model (10-11) is Eq. 
(15) as well. It means that if Eq. (16) is not satisfied then 
terms of eλτ, / Re(λ) > 0 are present in the approximate 
solution for the u and v sensitivities causing significant 
changes in the profile.  

Criterion (16) can be “explained” qualitatively too. 
As exothermic reactions progress, the rate of reaction is 
generally decreased by the cooling (α) and the 
“dependence” of the reaction rate on the concentration 
(these two together form the L. H. S. of Eq. (16)) while 
it is increased by the “dependence” on the temperature. 
If the L. H. S of Eq. (16) is the larger then positive 
feedback is not present; however if the R. H. S is the 
larger then a positive feedback is formed through the 
rate of reaction causing instability.  

Let us apply the stability analysis for model (6) 
expressed in the phase plane. The stability analysis 
becomes simpler since the number of state variables is 
only one.  
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 (17)
 

After the substitution and rearrangement the following 
criterion is obtained: 

( ) T
ww

c r
TT
r

TTr
rr

ββ
αβ
β

≥
−

+
−−

.  (18) 

Obviously this one is different from criterion (16) 
that is the spatial (length for a tubular reactor, time for a 
batch reactor) stability criterion and the one expressed 
in the phase space are not the same. The relation of the 
two different criteria can be easily determined. For 
increasing temperature (see balance (2)): 

βr > α(T – Tw) 
Considering the above the relationship between the 

two L. H. S terms of Eq. (16) and Eq. (18): 

( ) cc
w

rr
TTr

r
>

−−αβ
β  

αβ
>

− wTT
r  .  (19) 

Consequently Eq. (16) is always more conservative 
i. e. the stability in phase space always follows from the 
spatial stability while inversely does not! 

Comparing Eq. (12) and Eq. (17) it can be concluded 
that the relation between sensitivity and stability in the 
phase space is the same as it is in the spatial analysis.  

Comparison of runaway criteria 

The criterion suggested first by Adler and Enig 
(criterion 1 - van Welsenaere, Froment) can be obtained 
by differentiating Eq. (6) with respect to x: 

( )
01

2

2

0
=⎟

⎠
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TT
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d
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TTr

dx
d
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Td

c
ww α

αβ  (20) 

Since 0≠
dx
dT , Eq. (20) is the same as the result of 

the stability analysis in the phase space, Eq. (18). It also 
means that criterion 1, which mainly relies on intuitive 
bases according to Morbidelli and Varma [12], can be 
justified theoretically by Ljapunov’s stability analysis.  

The criterion suggested first by Dente and Collina 
(criterion 2 - van Welsenaere, Froment) can be obtained 
by differentiating Eq. (2) with respect to τ: 

02

2

=−⎟
⎠
⎞

⎜
⎝
⎛ +=

τ
α

ττ
β

τ d
dT

d
dTr

d
dcr

d
Td

Tc  . 

After the substitutions the criterion for avoiding 
runaway is: 

( ) T
w

c r
TTr

rr βα
αβ
β

≥+
−−

 .  (21) 

This criterion gives the same result as the “Slope 

Condition”, 
dT
qd

dT
qd genrem >  (Berty, 1982), which is 

related to the generated and transferred heat flows, does. 
Applying the slope condition on the system of Eqs (1-2) 
the following equivalencies are obtained: 

( ) ., ⎥
⎦

⎤
⎢
⎣

⎡
−−

−→→
w

cT
genrem

TTr
rrr

dT
qd

dT
qd

αβ
βα

 
showing that the slope condition differs from the above 
criterion only in a multiplication with a constant.  

Berty et al. [22] showed that the criterion, called 
“Dynamic Condition” by Gilles and Hoffmann [23], can 
be expressed in the following form, using the original 
notation: 

Tc

genrem

c
m

T
q

dT
qd

∂
∂

∂
∂

+〉 . 

Applying the appropriate notation for the system (1-2) 
the following substitutions are obtained: 

.,, c
T

T
c

genrem r
c
mr

T
q

dT
qd

−→→→
∂
∂β

∂
∂

α  

Eq. (16) differs from the above criterion only in a 
multiplication with the same constant value concerning 
every terms; that is the two criteria is the same! 
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The criterion used at the maximum temperature in 
the practical design is also included in the study for a 
more complete comparison: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡≤−

T
w r

rTTT
δ

2

. 

Bashir et al. [21] suggested that this criterion be 
evaluated at the inflection point instead of the maximum 

temperature. The above criteria are summarized in 
Table 1. Criteria 1 and 3 have been compared in the 
previous section.  

If the conditions are the same, criterion 2 obviously 
indicates the runaway always between criteria 1 and 3, i. 
e. it is more conservative than the first criterion and less 
conservative than the third one. Criterion 4 used in 
practical design is especially conservative if the second 
right hand term is the dominant in criterion 1.  
 
 

Table 1: Runaway criteria for model (1-2)  

Id Criterion Stability Mathematical form 

1 First criterion: inflection in phase 
space [7] 

Ljapunov in phase space,
Eq. (18) ( )w

c

w
T TTr

rr
TT

rr
−−

⋅
+

−
≤

αβ  

2 
Second criterion: inflection in 
geometric space [7], Eq. (21), 
“Slope Condition” [22] 

- ( )w

c
T TTr

rrr
−−

⋅
+≤

αββ
α

 

3 “Dynamic Condition” [23] Ljapunov in geometric 
space (or time), Eq. (16) ββ

α c
T

rr +≤
 

4 Practical design (at the hot spot 
temperature) [21] - 

w
T TT

rr
−

≤
 

 
The relation between the different criteria and the 

parametric sensitivity measures was also studied. Using 
the (1-3, 10-11) sensitivity model and assuming that a 
first order reaction takes place, the u(τ), v(τ) parametric 
sensitivities can be determined numerically along τ 
(length or time) and shown on Fig. 2. Naturally the 
character of the functions changes with the TW parameter. 
For the sake of obtaining a simpler relationship 
Morbidelli and Varma evaluated the above sensitivities 
at the maximum temperature (ST).  

This sensitivity is shown as a function of TW by the 
dotted line on Fig. 3. In the literature almost exclusively 
the hot spot temperature, T* is used for characterizing 
the reactor operation in relation with thermal runaway. 
The question is whether the T* value has a distinguished 
role indeed or some other value, which characterizes the 
complete reactor regarding runaway and can be measured 
or calculated easily, can be used too? 
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Figure 2: Sensitivity values versus τ.  
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Figure 3: Parametric sensitivities versus operational parameter 

 
Let us express the average rate of reaction in the 

reactor: 

( ) ( )( )∫=
1

0

, τττ dTcrY  (22) 

Based on Eq. (5) the relationship between Y and the 
conversion can be given as: 

( ) Y
c

x
0

11 =  .  (23) 

Then a characteristic sensitivity measure can be 
expressed in the following relative form: 

w

w

T
Y

Y
TS

∂
∂

⋅=  .  (24) 

Applying the (1, 8, 24) relationships S can be 
calculated from the u(τ) sensitivity: 

( ) ( )1
10

u
cc

TS w ⋅
−

−=  (25) 

The solid line on Fig. 3 is the S versus Tw  function. 
Comparing the two sensitivity measures the following 
conclusions can be drawn: 

● the tendency of the two sensitivity measures are 
similar i. e. the T* value does not have a 
distinguished role considering runaway; 

● the calculation of S value is simpler than that of 
ST (large numerical error in calculation of T*); 

● the maxima of the two functions are close to each 
other (the higher the inclination for runaway is the 
closer they are); the difference is theoretically 
important since it proves that the location of the 
maximum depends on the choice of the sensitivity 
measure.  

 

To show how the sensitivity measures change for the 
different criteria summarized in Table 1, the Tw values 
where the criteria give warning are marked on Fig. 3. 
The very conservative character of criteria 4 can be 
noticed here too. In fact the sensitivities start to increase 
significantly at criterion 3; their values are considerably 
high at criterion 2; and they reach their maximum 
values in the narrow neighborhood of criterion 1.  

The c – T relationships of criteria 1-3 are shown on 
Fig. 4 for a first order reaction. From Table 1 it is clear 
that Tw is a parameter for criteria 1 and 2; i. e. each 
criterion provides a set of curves. On Fig. 4 these curves 
are given at the critical values of Tw (the operating curves 
just intersect the criterion curve at the runaway point).  

Tw is not involved in criterion 3 therefore it gives 
only a single curve. The operating curve at Tw = 278.4 K 
does not intersect even the most strict criterion curve 3 
so it is considered as runaway less operation. At  
Tw = 281 K positive exponent components appear in the 
solution for the state variables along the length (or 
time), i. e. in Ljapunov’s terms the solution is unstable 
in space. At the operating point Tw = 282.4 K an 
inflection is present along the length (or time), however 
the system is still just stable in phase space. At 
operating points Tw > 282.4 K the system is in runaway 
state according to all of the criteria.  

Fig. 5 shows the same on the T – x plane. From the  
c – T functions it can be seen that if the c0 initial 
concentration is less than a critical value, ccr runaway 
does not occur at all. Fig. 4 and 5 reflect well the 
relationship between criterion 1-3 too. As it was shown 
criterion 3 is independent from the Tw value; at the same 
time as Tw  increases, criterion curve 2 approaches curve 
3 while curve 1 moves away from it.  

The very conservative character of criterion 4 has 
been criticized by several researchers. From criteria 1-3 
the third one can be suggested for practical design since 
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it is only slightly more conservative than criteria 1 and 2 
and at the same time its preventive character assures 
reasonable safety. Based on the above example the 
following conclusions can be drawn:  

● Explaining reactor runaway as parametric 
sensitivity leads to theoretical uncertainty. 
Although their practical useness is indisputable 
the criteria obtained this way depend on the 
selected variable therefore the runaway can not 
be exactly defined 

● The best way is to define the runaway as a 
stability problem (not in the sense of classical 
reactor stability). The sudden change in the state 

variables is then only a consequence of the 
stability problem. The reason is reaching the 
stability limits and the result is the change of the 
shape of functions of state variables with different 
time delays. (In the case study the stability 
criterion coincides with the inflection one. This 
occurs in the case of one independent variable 
only. In case of more independent variables the 
criteria do not coincide.)  

● The stability analysis must be conducted in the 
original geometric (or time) space. The indication 
of runaway may be delayed in transformed 
spaces.  
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Figure 4: Criteria in the c – T plane 
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Application for a complex system 

The primary limitation of different runaway criteria 
published in the literature is that they are generally 
derived only for simple or considerably simplified 
(reaction) systems. At the same time the stability analysis 
described in Section 2 requires only differentiation and 
calculation of the eigen values. The application of the 
method therefore does not raise mathematical difficulties. 
This fact is illustrated using a reactor modeling test 
problem known as Uckron-I in the literature (Berty 
[24]).  

The Uckron-I Test Problem was developed by Berty, 
Lee, and Szeifert at the Chemical Engineering 
Department of The University of Akron and by Cropley 
at the Research and Development of Union Carbide 
Corporation. Uckron-I is aimed at the computer 
simulation of a catalytic reaction system for a number of 
groups to gain experience in chemical reaction 
engineering. The applied model illustrates some of the 
complexities of a real system and yet the mathematics 
involved can be easily handled.  

The net chemical reaction taking place in the 
specified industrial methanol synthesis reactor is the 
following: 

2H2 + CO         CH3OH .  (26) 

The homogenous one-dimensional axial-mixing-free 
reactor model for the total mole mass, the components, 
the enthalpy and the momentum is the following (Berty 
et al [24]): 
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correlation, while ℓ ∈ [0,1].  
The rate equation (26) of the net reaction is 

determined by analysing of the constituent processes 
and fitting to the data relevant to those processes 
(Szeifert et al [25]): 
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The model equations (27-31) can be completed with 
a suitable state equation (For the sake of simplicity the 
ideal gas law is applied here). The initial conditions of 
the system of differential equations are specified at ℓ = 0 
in the problem statements (Berty et al [24]): 

ℓ = 0, F0, ci, 0, T0, p0 are given.  (32) 

Since the number of net reactions is only one the 
number of state variables F, cH, cC, cM, T, p can be 
reduced. Since H2 is in excess in the mixture entering 
the reactor the following form of conversion is 
introduced: 

0,0

0,0

C
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cF
cFcF

x
−

=  .  (33) 

Based on the (27-28) balance equations and the initial 
conditions the other state variables can be calculated as 
functions of the x, p, T state variables: 
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An alternative form of Eq. (34) can be expressed 
with partial pressures: 
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Differential Eqs (27-29) can be substituted by the 
following differential equations applying to x and T: 
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ℓ = 0, x(0) = 0, T(0) = T0 initial conditions, where 
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From Eqs (37-38) the differential equation in phase 
space can be derived: 
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Model (37-39) differs formally in the factor  
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from model (2-5) of the simple system. This factor 
expresses the distortion effect due to the change in 
number of moles in the chemical reaction.  

According to Ljapunov’s indirect stability criterion 
the derivative of R. H. S. of Eq. (39) with respect to T 
must be less than zero. After rearrangement the 
corresponding runaway criterion is the following: 
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Comparing the (40) relationship to the first criterion 
in Table 1 the distortion effect due to the change in 
number of moles can be described by the following 
inequalities: 
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Consequently one of the two positive terms of R. H. 
S of Eq. (40) decreases however the other term can 
increase therefore the relationship between the two 
terms determines whether the change in number of 
moles increases or decreases the risk of runaway.  

The rT and rx derivatives required for the calculation 
of the criteria can be obtained by differentiating the rate 
equation of the reaction: 

2TR
ErrT ⋅= , (42) 

where the “apparent” energy of activation is: 
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According to Eqs (42-43) the (40) criterial equation 
determines a set of curves with respect to parameter Tw. 
Any of the curves divides the plane into two regions; 
one of them is the region where runaway does not occur 
the other is the runaway region.  

Fig. 6 shows the criterial curves with respect to 
parameter Tw in the T – x plane.  

It can be seen that under a critical value of the 
conversion the runaway zone for a given conversion is 
an intermediate temperature region. Both the lower and 
higher temperatures are outside of the zone. The reason 
for this is that the reaction is an exothermic reversible 
one.  

The criterial curve at Tw = 485.95 K and several 
operating curves at different values of parameter Tw are 
given in the cC – T plane on Fig. 7.  

The criterial curve at Tw = 485.95 K and several 
operating curves at different values of parameter Tw are 
given in the cC – T plane on Fig. 7. It can be seen that 
the operating curve and the criterial curve intersect at  
Tw = 485.95 K. If Tw is less than this value then the 
reactor operates without runaway; if Tw is larger then – 
according to the first criterion – the reactor operates in 
the runaway region.  

In case of this system a change of a few tenths K in 
Tw results in a tremendous change in the reactor 
temperature (see Fig. 8). The inflection point of the 
temperature along the length is found at Tw = 485.3 K 
(criterion 2); positive exponent roots are obtained at  
Tw = 485.1 K (criterion 3). The specified system is “apt” 
to runaway that is indicated by the fact that the three 
criteria give signal in 1 K range.  

The criterial curves indicating runaways are very 
important in reactor design. As explained in the 
discussion of a simple reaction the application of the 
third criterion is suggested for design since it is only 
slightly more conservative and with the appearance of 
the positive exponent roots it practically predicts the 
imminent changes.  
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Figure 6: Criterial curves in the T – x plane 
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Figure 7: Runaway of the specified reactor in the cC – T plane 

 
Reaction (26) is a reversible exothermic one. In 

reactor design for this type of reactions the determination 
of the state variables corresponding to the maximum 
rate of reaction plays an important role too. The rate of 
reaction for a given composition is between zero 
(equilibrium) and its maximum value depending on the 
current value of the temperature.  

The two extrema can be determined the following way: 

r = 0 (equilibrium) (44) 

rT = 0  (max. reaction rate - necessary condition).  (45) 

Eqs (44) and (45) give the corresponding relationships 
in the T – x and ci – T planes according to Eqs (41) and 
(42) respectively.  

Each curve can be constructed by solving the 
corresponding nonlinear equation. Fig. 9 shows the 
runaway curve corresponding to the third criterion as 
well as the equilibrium and maximum curves of the rate 
of reaction in cC – T diagram. It designates the main 
limits for the design. In case of low conversion the 
temperature providing higher rate of reaction is 
restricted by the risk of runaway.  

Over a critical xcr conversion runaway does not 
occur therefore the temperature can be increased to 
approach the one corresponding to the maximum rate of 
reaction. The approximation of the “ideal operating 
curve” shown on Fig. 9 is a part of the design process 
and it is outside of the scope of present study.  
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Figure 8: Temperature gradients along the reactor length 
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Figure 9: Design diagram 

 
Conclusions 

The most important criteria for reactor runaway are 
summarized in the paper. It is proved that reactor 
runaway approached as parametric sensitivity can be 
interpreted as a consequence of stability problems. After 
the reactor gets into the unstable region of the geometric 
(length) space (criterion 3) – as a consequence – a convex 
temperature profile appears soon (criterion 2). “Going 
on” into the unstable region the phase space instability 
criterion (criterion 1) is reached shortly. The absolute 
values of the different parametric sensitivities reach 
their maximum values in this narrow range; however 
from the fact itself that the parametric sensitivity is at its 
maximum reactor runaway does not follow.  

The correspondence and relations of reactor runaway, 
stability and thermal stability criteria are illustrated on 
the example of a simple reactor. It is proved that the 
maximum temperature (hot spot) does not have a 
distinguished role in the analysis of runaway. This also 
comes from the fact that the component and enthalpy 
balances form a mutually linked system.  

The application of Ljapunov’s stability criteria for 
reactor runaway is demonstrated also on a more complex 
problem showing that complexity does not restrict the 
use of the method.  

To avoid runaway the application of the third 
criterion is suggested for reactor design or control since 
it is only slightly conservative (compared to the first and 
second criteria) and it is the first among criteria 1-3 to 
predict the appearance of dangerous operating conditions.  

NOTATION 

A heat transfer area, m2 
a cross section, m2 
c concentration, kmol/m3 
cp specific heat, kJ/m3K 

dp particle diameter, m 
E energy of activation, kJ/kmol 
F volumetric flow rate, m3/h 
fc friction factor 
(–ΔHr) heat of reaction, kJ/kmol 
J Jacobian matrix 
K kinetic parameters 
ℓ dimensionless length, (-) 
m mass balance function, kmol/m3h 
p pressure, bar 

genq  generated heat flow, kJ/h 

remq  transferred heat flow, kJ/h 
R gas constant, kJ/kmol K 
r rate of reaction, kmol/m3h 
rc, rT, rx derivative of reaction rate with respect to 

c, T and x respectively 
S, ST relative sensitivity 
s absolute sensitivity 
T temperature, K 
T* hot spot temperature, K 
Tw wall temperature, K 
u,v parametric sensitivities 
x conversion 
Y average rate of reaction, kmol/m3h 
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β Δ  parameter, m3K/kmol 

γ kinetic parameter, (-) 
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⎞

⎜
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R
Eδ  kinetic parameter, K 

ε void fraction, m3/m3 
ϕ(c) concentration function of the rate of 

reaction, kmol/m3h 
ν dynamic viscosity, kg/m s 
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νi stochiometric coefficient 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0,

0

cc
cκ  initial ratio of concentrations, (-) 

ρ density, kg/m3 

SUBSCRIPTS 

C CO 
H H2 
M CH3OH 
0 inlet 
cr critical 
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