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The widespread use of the PID algorithms in the classical feedback scheme is due to the following to basic reasons: the 
role of PID-controllers in the traditional process control profession, and the good control performance achieved at the 
local control level.  

Present paper proposes a well structured control solution for the local control level allowing the integration of 
different types of engineering information into the control algorithm. Based on a comparative study of the structures of 
PID and IMC controllers a novel control structure with two degrees of freedom (or three if the possibility of adaptation is 
considered too) is defined. The application of the new control structure is illustrated by the example of the temperature 
control in a laboratory water heater system. 
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Introduction 

More open control solutions which, at the same time, 
allow taking into account the inherent steady-state and 
unsteady-state (dynamic) characteristics of the process 
are recently introduced for chemical processes, too. In 
spite of the fact that the IFAC Technical Committee on 
“Chemical Process Control” has already outlined the 
necessity of the integration of process design and control 
design at its World Congress in 1994, the broader 
application of control solutions mapping all the aspects 
of process characteristics directly requires much more 
time. This integration can assure that the a priori chemical 
engineering knowledge used in the process design could 
be employed in the development of the control algorithms 
in an explicit way. The introduction of this methodology 
is slowed down by several factors: 

● It is well known that in the most part of chemical 
process control PID controllers, that map the 
model of the traditional instrumental controllers, 
are used. The digital technology allowed the 
implementation of several PID-modifications 
softening the difficulties of the application of 
common PID-algorithms in many cases. The 
consequence is that configuring a real control 
loop on the control system involves determining 
numerous structural and calculation parameters 
beside the three original control parameters. This 
way the simple algorithm loses its transparency 
and makes it almost impossible for the personnel 
operating the process application carefully the 
tuning methods of the control theory enforcing 
the application of empirical tuning techniques. 
According to an estimation, the ratio of PID 
controllers is 98 % in an average chemical process 

and only 5-10 % can be considered as more 
advanced solution. Among these, 80 % of 
industrial PID-controllers are poorly tuned, 30 % 
of them are operated in manual mode and 30 % of 
them use the parameters set at commissioning [1]. 
Limited competitors of PID-controllers are the 
MPC techniques which are mainly applied at the 
hierarchy level above the PID-controllers. 

● Control theory has a wide range of linear 
techniques, however thorough investigation the 
prerequisites of the practical applications has 
started only recently. Measurement noises got a 
large attention from the beginning; while the 
dead-time, steady-state characteristics (e.g. 
nonlinearity of valves), the constraints of control 
outputs, the model error and the effect of the 
non-measured disturbances are getting into the 
researchers’ interest only recently. 

● The chemical engineering knowledge regarding 
the process is principally given in form of 
balances for the phase masses, the component 
masses, the enthalpy (heat) and maybe the 
momentum which is a complex set of partial 
differential equations supplemented with the 
constitutive algebraic equations. In process design 
generally the simplified steady-state form of the 
equation set is used. The chemical engineering 
approach can be mainly tied to the steady-state 
models. The unsteady-state model is usually too 
complex to be employed directly in the control. 
On the other hand the black box models applied 
in control theory do not include any information 
regarding the structure of the controlled process. 
Recently published approaches use models 
reflecting the structure of the controlled process 
to some extent while maintaining a simplified 
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form of the model (tendency models [2], grey 
box model, etc). 

 
Present paper proposes a well structured form of the 

local control level which allows the integration of 
different types of engineering information in the control 
algorithm. 

Comparison of control structures 

The widespread use of the PID algorithms in the classical 
feedback scheme is due to the following to basic reasons: 

1. The role of PID-controllers in the traditional 
process control profession. 

2. The good control performance achieved at the 
local control level. 

 
The second one is accounted for in a bit more details. 

The algorithm is transformed as follows: 
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i.e. the PID-controller can be interpreted as a serial 
system of an integrator and the inverse of a second order 
system (see Fig. 1). If the dynamics of the process is 
second order then the transfer function of the part in 
dotted frame could be set to unity by appropriately 
tuning the PID parameters. This way the transfer function 
of the closed loop is a first-order filter and its time 
constant can be set arbitrarily. Since many of the 
chemical processes can be well approximated by first- 
or second-order dynamics, in such cases the excellent 
performance of PID controllers is not surprising. It 
should be emphasized, that the same results are obtained 
with model-based design techniques (direct synthesis, 
IMC, etc.), in case of nonlinear systems the results are 
not equivalent rather they are only similar. 

 

  
Figure 1: Classical feedback scheme 

 
Fig. 1 illustrates well the functions of the two parts 

of the controller used in the feedback loop. The inverse 
part compensates for the dynamics of the process, while 
the integrator eliminates the control error (and ultimately 
the final control error completely). The feed-back part 
can compensate for the influence of both the changes of 
the setpoint and disturbances (causes) by feeding back 
the output (time-delayed effect). Measuring the dominant 
disturbances, the dynamics of the compensation can be 
significantly improved by applying a feed-forward part. 
The feed-back and feed-forward parts can be synthesized 
in the IMC structure (see Fig. 2). The applied filter has 
two functions; on the one hand it filters the noises, and 

on the other hand assures the operability of the scheme 
(without a filter a short circuit can be obtained). 

Applying a first-order filter, the scheme can be 
transformed according to Fig. 3. Taking into account 
that the product of the transfer functions of the model 
and the inverse is unity, the transfer function of the part 
in dotted frame is the following: 
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Figure 2: The IMC structure 

 

Filter Inverse Process 

Model 

+

-

+
-

Inverse
of the second 
order system 

Process 
+ 

- 1=SG  

sTC

1



 

 

49

 
Figure 3: The transformed IMC 

 
 
This gives the same result shown on Fig. 1, except 

that there was not any assumption made for the model. 
Therefore the part in dotted frame fulfils both the 
inverting and the error elimination functions. 

The above analyses are valid for linear system 
models. 

The IMC structure allows taking into account the 
effect of the measured disturbances in the model 
construction as well as in the model-based inverse 
formation. The model error and the effect of the 
unmeasured disturbances are measured together by the 
model error. Therefore the accuracy of the model is 
known by very instant by calculating the model error. In 
the original IMC structure the model error is 
compensated by feeding back the model error to the 
input of the feed-forward inverse model. This way the 
model approximates the real system. In the structure 
shown on Fig. 2 the input of process and the model are 
the same, consequently it can be used for the control of 
stable systems only. 

New control structure 

In the construction of the new structure related to the 
above ones the following starting assumptions are made: 

1. The system model includes all important properties 
regarding the process dynamics and it maps the 
manipulated variables, the measured disturbances 
and the parameters of the model to the controlled 
variables. 

2. Based on the model a constrained inverse model 
is constructed. The constrained inverse maps the 
setpoints, the measured disturbances and the 
parameters of the inverse model to realizable 
(constrained) manipulated variables. Sound 
knowledge of the process is utilised in feed-
forward form. 

3. The difference between the dynamics of the 
process and model is to be eliminated by 
applying a model-error compensator. As it was 

shown earlier, the model error comes from the 
direct error of the applied model and from the 
unmeasured disturbances. Missing knowledge 
about the process is compensated for by feeding 
back the model error obtained from the 
measurements and the calculations. 

 
Based on the above assumptions a control structure 

shown on Fig. 4 can be constructed. The manipulated 
variable which is the feed-forward part of the real 
(physical) manipulated (uFF) variable is calculated from 
the setpoint and the measured disturbances by forming 
the constrained inverse. From this signal the controlled 
variable which serves as reference signal for the process 
output can be calculated using the model. The 
difference (control error which is not equivalent with 
control deviation calculated directly from the setpoint) 
is due to the different dynamics of the model and the 
process. In the IMC scheme this error can be 
compensated for by correcting the setpoint (see Fig. 2, 
the correction is on the input of the inverse model, i.e. 
this correction approaches the model to the process). 
Another option is to apply the correction on the input of 
the process (i.e. the output of the inverse model) using a 
compensator (this approaches the process dynamics to 
the model by correcting on its physical input). This 
correction is the feed-back part of the physical 
manipulated variable (uFB). The compensator is required 
to eliminate the difference (control error) between the 
controlled variable and the reference signal, i.e. it has an 
integrating character. The IMC scheme synthesises the 
feed-back and feed-forward parts and makes the 
correction on the input of the inverse model. In the 
above structure, defining distinct functionalities, the 
feed-forward and feed-back terms are firmly separated, 
hence the degrees of freedom of the controller increases. 
The feed-forward part treats the servo problem while the 
feed-back part provides the “noise” compensation. The 
design of the above two parts of the controller can be 
separated. 
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Figure 4: The control scheme 

 
Using feed the control error relative to the reference 

signal arising from the different dynamics of the model 
and the process can be set to zero. The actual model 
error is generated in a parallel scheme of the process 
and the model. Based on the model error the model 
parameters can be refined too (adaptive systems). This 
involves a secondary feed back with a much larger time 
constant than that of the primary feed back. The 
different adaptation possibilities are not discussed in 
this paper. 

Construction of the constrained inverse 

The function of the inverse term is to generate the input 
for the specified output. This is interpreted on Fig. 5. 

The model of the process to be controlled maps the 
manipulated variable(s), the measured disturbance(s) 
(inputs) and the parameter(s) to the controlled variable(s) 
(outputs). This is a cause-effect relationship inferring 
that a physically feasible output can always be generated 
for every physically realizable input. The inverse model 
maps the physically possible disturbances, the references 
given independently from process and the parameters to 

the process inputs. This is a goal-cause relationship, i.e. 
the suitable system inputs must be find for the given 
system outputs. It is not always guaranteed that the 
specifications can be satisfied. This is the basic problem 
of composing the inverse. The impractical specifications 
can be corrected by applying constrained inverses. The 
details of this method are discussed in the following. 

Let us define the model of the process to be 
controlled in the following state-space form (the 
principle of the method is not affected when, for the 
sake of simplicity, only one manipulated and one 
controlled variable considered in the calculations in the 
continuous time domain): 

),,( zuxf
dt
dx

= , state-transition function (3) 

y = g(x, u, z), output function  (4) 

where u input signal, 
 z measure disturbance(s), 
 y controlled variable, 
 x state variables 
 t time. 
 

 

 
Figure 5: Interpretation of the constrained inverse 
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The relative order of (3-4) system has an important 
role in the invertation [3]. The relative order basically 
means the smallest order differential of the output signal 
which is affected by the manipulated variable directly. 
Therefore if the relative order of the system is r, then the 
following applies: 

),,( xzu
dt

yd
r

r

ϕ= , (5) 

while the (r-1)-differential is not a direct function of u. 
Function φ(u, z, x) can be obtained by differentiating 
equation (4) r-times and taking into account the state-
transition function too.  

The ideal form of inverting was, if the output 
followed the reference signal without any time delay  
(y = w). Apart from the zero-order systems without any 
time delay, this is impossible in case of finite 
manipulated variables. Consequently an r-order filter 
can be applied as inverting rule: 
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where a0, a1, ..., ar–1, altogether r pieces of parameters of 
the inverse formation. The r-order filter can be given as 
cascading r first-order filter. In this case the inverting 
has only one parameter. 

Substituting relationship (5) into specification (6) and 
ordering the equation, φ(u, z, x) can be expressed as: 
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The manipulating variable can be expressed by 
inverting φ(u, z, x) with respect to u: 

u = φ-1(u, z, x) (8) 

The smaller is the time constant of the inverse, the 
more aggressive is the control action, at the same time 
the higher is the risk that the manipulated variable gets 
outside the physical constraints. Conversely, at higher 

time constants, the physical constraints of the manipulated 
variable are more rarely attained. 

The physical realization of the manipulated variable 
calculated according to equation (8) cannot be guaranteed, 
hence usually the constraints are considered: 

u = {umin, if u < umin; umax, if u > umax; u otherwise} (9) 

where the allowable range of u: u ∈ [umin, umax]. 
The constrained manipulated variable calculated 

according to equation (9) can always be realized; 
however during the cutbacks the invertation rule (6) 
cannot be applied. 

Model error compensation 

The design of the model error compensator is based on 
Fig. 4 and the scheme of the constrained inverse based 
feed-back controlled process given on Fig. 6. 

The input of the constrained inverse is the setpoint 
and the measured disturbance and its output is the feed-
forward manipulation variable (uFF) and the reference 
signal calculated from the model. The model error is 
compensated by correcting the physical input of the 
process (u), while the control error (y) is calculated 
from difference of the reference signal and the measured 
output. The model for calculating the model error (Merr) 
describes the relationship. The error model can be 
derived from the process model (3-4); however an 
autonomous black-box model can also be identified. 
E.g. if the error model is a maximum second-order 
input-output model, then a constrained PID controller 
(C-PID, [3], see Fig. 7) can be well applied. 

The model error can also be compensated in IMC 
structure, assuming that the constrained inverse which 
makes unnecessary the application of a separate filter 
and discussed in the previous part, is used. Eliminating 
the model error, the setpoint is implicitly zero; therefore 
the scheme becomes simpler as shown on Fig. 8. It is 
well known, that the model is required to be self-
adjusting in the IMC structure. 

 

  
Figure 6: Classical feedback scheme 
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Figure 7: Model error compensation with C-PID controller 

 

 
Figure 8: Model error compensation with C-PID controller 

 
Application of the method 

The application of the new control structure is illustrated 
by the example of the temperature control in a laboratory 
water heater system. The scheme of the system is shown 
on Fig. 9. The feed flow rate can be controlled; the 
discharge temperature of the water can be controlled by 
the performance of the electric heater [4] 

 
Figure 9: Scheme of the laboratory water heater system 
 

The objective is to control the discharge temperature 
of the water while the feed flow rate and the feed 
temperature can fluctuate. Accordingly, the controlled 
variable (y) is the discharge temperature, the manipulated 
variable (u) is the performance of the electric heater, the 
measured disturbances are the feed temperature (z1) and 
the feed flow rate (z2). The model of the process is the 
following heat balance of the tubular equipment: 
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where x ∈ [0, 1] dimensionless length coordinate, 
 T(t, x) temperature function, 
 th pure time delay, 

 B volumetric flow rate, 
 disturbance signal (z2), 
 V total volume, 
 ρcP heat capacity of the liquid, 
 Ku(t – th) source density of electric heating, 

manipulated variable. 
 
The necessary initial and boundary conditions: 

T(0, x) given, 
T(t, 0) = z1 temperature of liquid feed (disturbance 

signal), 
y = T(t, 1) controlled variable. 
 
The heat balance (10) is a partial differential equation 

(distributed-parameter model) which is practical to be 
spatially discretized. The so called cascade model, 
obtained this way, can be transformed into the following 
state-space model: 
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y = xn, 

where n the number of cascade elements (the order of 
the state-space model), 

n
Kp

n
Vp == 21 ,  parameters. 

The state-space model (11) has four parameters  
(p1, p2, th, n) which can be determined from a priory 
knowledge or by parameter estimation from experimental 
data. Based on the experimental and simulation studies 
it was concluded that the model adequately reflects the 
experimental data; therefore it is suitable for the 
controller design. 

MV 

water
T in F 

T 

< 

Heating 

PC

< Open 
Close 

ADAM-5000

LAN

U 

Process 
for 

feed back 

Constrained 
inverse 

error model 

Control 
error 

C-PID 
Process 

for 
feed back 



 

 

53

The first step of controller design is the development 
of the constrained inverse model. Since y does not 
directly depend on u, the output signal is differentiated 
according to equation (5): 
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The differential of the output is a direct function of 
u; therefore the relative order of the system is one. 
According to equation (6) the rule for inverting is the 
following: 

wy
dt
dy

C =+τ , (13) 

where w setpoint, 
 τC time constant. 
 

Substituting relationship (12) regarding the differential 
into equation (13), the manipulated variable can be 
calculated based on equations (7-8): 
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Since the system is time-delayed, the variables on 
the right hand side of equation (14) can be considered as 
the values predicted for time t + th. The constraints 
corresponding to equation (9) are the following: 

If u < 0, then u = 0; if u > 10, then u = 10. (15) 

This way the constrained inverse model is completely 
defined. 

The scheme given on Fig. 8 is applied for 
compensating the model error. Since the state-space 
model (11) can be considered as a linear system with 
changing parameters for variables u, x, y, a model 

which is isomorphic to model (11) can be used as error 
model too. The difference is that in this case the input is 
the correction feed back while the output is negative 
control error (with respect to the reference signal). Zero 
initial values are used as initial conditions involving that 
there is not any the control error initially. Due to the 
isomorphism of the two models, the constrained inverse 
error model is isomorphic to the constrained inverse 
model. The input, output and state variables as well as 
the constraints are different, while the disturbances and 
the parameters are the same. The scheme of the 
controller constructed according to the above reasoning 
is shown on Fig. 10. 

The control algorithm based on the scheme on Fig. 10 
was implemented in MATLAB/Simulink programming 
environment. 

The algorithm was tested in several simulation and 
physical experiments. The results of a representative 
simulation study are presented on Fig. 11. While the 
temperature of the feed is constant, a simulated 
disturbance is generated by applying a step function on 
the setpoint of the ideal flow controller. The controlled 
system is excited by step-wise changes of the 
temperature setpoint and the disturbance signal. The 
controller parameters can be directly estimated on the 
basis of the parameters of the a priori model. The 
control performance is significantly better than that of a 
PID controller; the tuning is much simpler; however the 
construction of the model is much more time consuming. 

After acquiring simulation experiences physical 
experiments were conducted (see Fig. 12). In this case 
the flow control of the system was not ideal either due 
to other (unpredictable) disturbances affecting the 
system disturbances. In spite of the poor performance of 
the flow controller the experience collected in the 
simulation studies regarding the temperature control are 
still valid. 
 

 
Figure 10: Temperature control of the water heater system 
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Figure 11: Results of the simulation study 
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Figure 12: Results of the experimental study 
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Conclusions 

Based on a comparative study of the structures of PID 
and IMC controllers a novel control structure with two 
degrees of freedom (or three if the possibility of 
adaptation is considered too) is defined. At the given 
setpoint and measured disturbances, the firm knowledge 
regarding the controlled process is fed forward through 
a constrained inverse model (i.e. the feed-forward 
solution of the servo problem). The difference between 
the reference signal and the measured controlled 
variable is a control error coming from the model error 
and the effect of the unmeasured disturbances which is 
not accounted for. This error represents the lack of 
knowledge regarding the process to be controlled that 
can only be compensated for in feed-back scheme (i.e. 
the feed-back solution of the noise compensation). This 
can be designed on the basis of model error in several 
ways. The application of IMC structure is advantageous 
in case of stable systems. Simulation and physical 
experiments conducted on a water heater system, which 
can be described by a distributed parameter model, 
justified the feasibility and good performance of the 
proposed scheme. 
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