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The qualitative analysis of complex process systems is an important task at the design of control and process 
monitoring algorithms. Qualitative models require interpretable description of the operating regimes of the process. 
This work shows a novel approach to discover and isolate operating regimes of process systems based on process 
models, time series analysis, and decision tree induction technique. The novelty of this approach is the application 
of time series segmentation algorithms to detect the homogeneous periods of the operation. Advanced sequence 
alignment algorithm used in bioinformatics is applied for the calculation of the similarity of the process trends 
described by qualitative variables. Decision tree induction is applied for the transformation of this hidden knowledge into 
easily interpretable rule base to represent the operation regions of the process. The whole methodology is applied 
to detect operating regimes of an industrial fixed bed tube reactor. 
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Introduction 

The improvement of product quality, the need for the 
reduction of energy and materials waste, and the 
increased flexibility and complexity of the production 
systems, process operators require more and more 
insight into the behaviour of the process. Next to these 
requirements supporting expert systems should also be 
able to detect failures, discover the source of each 
failure, and forecast false operations (e.g. thermal 
runaway) to prevent from the development of production 
breakdowns. Data mining of historical process data 
along advanced process modelling and monitoring 
algorithms can offer effective solution for this problem.  

Quantitative data intensive methods are widely 
applied because of their statistical nature, but it always 
claims prior knowledge to analyze the results. Usually 
prior knowledge is available in the form of qualitative 
or tendency models of the process. Hence, qualitative 
analysis of complex process systems is an important 
task at the design of control and process monitoring 
algorithms. Qualitative models require the interpretable 
description not only the historical process data but also 
the operating regimes of the process.  

A common method for decreasing the size of a data 
set and to get qualitative instead of quantitative 
information is time series segmentation. Segmentation 
means finding time intervals where a trajectory of a state 
variable is homogeneous [1]. Segments can be linear, 
steady-state or transient, indicative for normal, transient 

or abnormal operation. Cheung and Stephanopoulos in 
[2] proposed a second order segmentation method for 
process trend analysis, the application of episodes with 
a geometrical representation of triangles. Triangular 
episodes use the first and second derivatives of a time 
series on a geometrical basis, hence seven primitive 
episodes can be achieved as characters. To extract useful 
feature from time series of the state variables one needs 
to lower the size and dimension of the data and define a 
distance measure from a theoretically optimal solution 
to help operators in their work (i.e. the process trends 
can be easily compared and evaluated with comparing 
each sequence of primitive episodes). For sequence 
comparement, in [3] it was shown as an example that 
dynamic time warping (DTW) is able to compare DNA 
sequences if mutation weights (as distances) exist. 
Going towards this dynamic alignment technique, we 
applied global pairwise sequence alignment, a well-
known technique in bioinformatics developed by [4], to 
handle not only mutation and substitution but injection 
and deletion operators in a sequence. 

Decision trees are widely used in pattern recognition, 
machine learning and data mining applications thanks to 
the interpretable representation of the detected information. 
This is attractive for a wide range of users who are 
interested in domain understanding, classification 
capabilities, or the symbolic rules that may be extracted 
from the tree and subsequently used in a rule-based 
decision system. To emphasize how decision trees can be 
applied to extract useful information from the sequences 
of process trends, and how they are able to represent the 
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operating regimes, an industrial heterocatalytic reactor 
was analyzed. The results show that the proposed hybrid 
quantitative - qualitative modelling approach can be 
effectively used to build a process monitoring and 
operation support system for industrial reactors. 

The paper is organized as follows: in Section 2 the 
method of qualitative analysis of process trends is 
briefly introduced, it is followed by the introduction of 
the developed algorithm for detection of operating 
regimes. Further sections show an application example 
and results of the analysis. 

A novel qualitative time series analysis algorithm for 
the detection of operating regimes 

Qualitative analysis of process trends 

As described in [2], to get from a quantitative to a 
qualitative representation of a real-valued x(t) function, 
it has to be reasonable function. It is clear that all the 
psychical variables in a plant operation are reasonable. It 
is considered, if we know the value and derivatives of a 
reasonable function, the state of that function is completely 
known. The continuous state (CS) over a closed time 
interval can be defined as a point value, which is a triplet 
(if x(t) is continuous in t) CS(x, t) ≡ point_value(x, t) =  
= <x(t), x’(t), x”(t)> Consequently, a continuous trend 
can be defined as continuous sequence of states. For 
discrete functions, as an approximation, an underlying 
continuous function has to be known since the derivatives 
of single points cannot be performed. These definitions 
lead to a qualitative description of a state (QS) and trend 
if x is continuous at t, otherwise it is undefined.  
QS(x, t) = <[x(t)], [x’(t)], [x”(t)]> where [x(t)], [x’(t)] 
and [x’’(t)] can be {–; 0; +}, depending if they have 
negative, zero or positive values. Obviously, a qualitative 
trend of a reasonable variable is given by the continuous 
sequence of qualitative states. QS(x; t) is called an 
episode if it is constant for a maximal time interval (the 
aggregation of time intervals with same QS), and the 
final definition of a trend of a reasonable function is a 
sequence of these maximal episodes. An ordered 
sequence of triangular episodes is the geometric language 
to describe trends. It is composed of seven primitive 
notes as {A, B, C, D, E, F, G} illustrated in Fig. 1. 

Sequence alignment to determine the similarities of the 
segmented process trends 

Sequence alignment is typical expression of 
bioinformatics, where amino acid or nucleotide sequences 
have to be compared, how far the evolved new sequences 
are from the elders, i.e. how old they are, and how many 
mutation steps were needed to result in the new 
sequence. The algorithm tries to find the least mutation 
steps between the elder and offspring sequence applies, 
that is called minimal evolution. In this paper the most 
advanced algorithm was used (incorporated in the 
MATLAB Bioinformatics Toolbox) to determine the 
minimal sum of transformation weights (which means the 
similarity of the sequences). For this project therefore 
we extended the toolbox so it is now not only able to 
handle amino acid sequences, but the sequences of 
episodes of time series. For this purpose the similarity 
of the episodes had to be defined, which becomes the 
elements of the new transformation matrix. 

Visualization and characterization of segments of 
process trends 

Based on these alignment scores (i.e. matching scores), 
one is able to compare and classify process trends to get 
a qualitative analysis. The Multidimensional Scaling 
algorithm (MDS) was applied to visualize the similarity 
of each process trend to other so the operator can easily 
check a new trend and in the possession of the necessary 
a prior knowledge the operator is able to improve the 
process performance. MDS is a statistical technique for 
taking the preferences and perceptions of respondents 
and representing them on a visual grid, called perceptual 
maps. MDS is a good tool to "rearrange" objects (in our 
case the process trends) in an efficient manner, so as to 
arrive at a configuration that best approximates the 
observed distances (in our case similarities of time 
series). It actually moves objects around in the space 
defined by the requested number of dimensions (in our 
case in three dimension), and checks how well the 
distances between objects can be reproduced by the new 
configuration. 
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Figure 1: Seven primitive episodes proposed by Cheung and Stephanopoulos 
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Figure 2: (a) The developed algorithm. (b) Simplified scheme of the studied reactor 

 

Qualitative analysis of operating regimes 

The obtained virtual space (shown in Fig. 2a) can be 
easily used to reveal how the process trends are 
clustered. Since the aim of the proposed methodology is 
the classification of these process trends and the 
characterization of the operating regimes of the process 
variables that affects the shape of these trends, the 
application of decision trees seems to be a 
straightforward solution. Binary decision trees consist 
of two types of nodes: (i) internal nodes having two 
children, and (ii) terminal nodes without children. Each 
internal node is associated with a decision function to 
indicate which node to visit next (e.g. if the temperature 
is smaller than 235° visit node 25, otherwise visit node 
26). Each terminal node represents the output of a given 

input that leads to this node, i.e. in classification 
problems each terminal node contains the label of the 
predicted class (e.g. the 25th terminal node represents 
reactor runaway). The algorithm has the following basic 
steps (as shown on Fig. 2a): 

● Randomly generating inlet conditions and 
calculating the temperature profiles; 

● Time series segmentation into a sequence of 
triangular episode primitives; 

● Alignment of two episode chains and determining 
the distance of sequences in a three dimensional 
virtual space; 

● Classifying the time series by a decision tree and 
based on inlet conditions and the corresponding 
class of sequence another decision tree is 
inducted. 
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Figure 3: (a) Calculated temperature profiles at some inlet conditions. (b) Example for a segmented process trend. 

The alphabetic codes of the episodes are also shown. 
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Figure 4: (a) Sequences mapped into a three dimensional “virtual” space based on their similarity.  
(b) The extracted decision tree that represents the operating regimes and able to estimate the class (1-4) of the 

temperature profiles (shown in Fig. 5). 
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Figure 5: Classified temperature profiles. Four classes of the temperature profiles were detected and the decision 

tree is able to assign the classes based on the inlet conditions of the reactor. 
 
 

Application to an industrial fixed bed tube reactor 

Process description 

To emphasize how decision trees can be applied to 
extract the relevant information from process trends and 
how the rules characterize the operating regimes a 
detailed case study has been worked out based on a 
sophisticated model of an industrial catalytic fixed bed 
tube reactor. The studied vertically build up reactor 

contains a great number of tubes with catalyst (as shown 
on Fig 2b). Highly exothermic reaction occurs as the 
reactants rising up the tube pass the fixed bed of catalyst 
particles and the heat generated by the reaction escapes 
through the tube walls into the cooling water. Due to the 
highly exothermic reaction which takes place in the 
catalyst bed makes the reactor very sensitive for the 
development of reactor runaway. Reactor runaway 
means a sudden and considerable change in the process 
variables. The development of runaway is in very close 
relationship with the stability of reactor/model. Runaway 
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has two main important aspects. In one hand runaway 
forecast has a safety aspect, since it is important for 
avoiding the damage the constructional material or in 
the worst case scenario the explosion of reactor; on the 
other hand it has a technology aspect, since the forecast 
of the runaway can be used for avoiding the development 
of hot spots in catalytic bed. The selection of operation 
conditions is important to avoid the development of 
reactor runaway and to increase the lifetime of catalyst 
at same time. The worked out mathematical model has 
been presented in the previous ESCAPE conference by 
the authors [5]. The model has been implemented in 
MATLAB and solved with a low order Runge-Kutta 
method. The obtained simulator was applied to calculate 
profiles in case of randomly generated inlet conditions. 

Results and discussion 

Example for learning samples are plotted on Fig. 3a 
where the vertical lines present where runaway occurs. 
Such process trends can be easily segmented as it is 
shown in Fig. 3b. It is interesting to note that the 
algorithm detected that in this case there was no runaway, 
since it has inserted an E type episode between the D 
and A episodes, otherwise D-A episodes would mean 
the change of the sign of the second derivative of the 
profile that would indicate runaway according to the 
classical inflection point based runaway detection method. 
100 process trends were analyzed. The similarities of 
the sequences of the episodes generated from these 
trends were determined by the previously presented 
sequence alignment. These similarities were used to map 
the sequences into a three dimensional space to evolve 
the hidden structure of the trends. A decision tree was 
inducted to characterize the trends. Four classes were 
detected. The tree generated based on these new class 
labels can be seen on Fig 4b. On this figure the branches 
of the tree leading from the root to the leaves should be 
followed from left to right. In a decision tree the leaves 
contain the label of the class of the typical temperature 
profiles. Runaway occurs in case of the first class as 
shown of Fig 5. Based on this tree the instability regime 
can be determined (pG,in > 1.69 bar and TW,in > 289 K). 

The secondary reduction is directed to the implicit part 
of the model, only. 

Conclusions 

This work demonstrated how advanced data mining 
techniques such as time series segmentation, sequence 
alignment, and decision tree induction can be used to 
determine the operating regimes in a heterocatalytic 
reactor. The results show that the proposed approach is 
able to distinguish between runaway and non-runaway 
situations based on a set of linguistic rules extracted from 
classified process trends obtained by the segmentation 
of time series generated by the model of the process. 
The analysis of the extracted rules showed the critical 
process variables determine the shape of the temperature 
profiles. 
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