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The various governmental policies aimed at reducing the dependence on fossil fuels for space heating and the reduction 
in its associated emission of greenhouse gases such as CO2 demands innovative measures. District heating systems using 
residual industrial waste heats could provide such an efficient method for house and space heating. In such systems, heat 
is produced and/or thermally upgraded in a central plant and then distributed to the final consumers through a pipeline 
network.  

In this work two main objectives will be considered: the first is to create a dynamic model which can represent the 
main characteristics of a district heating network and the second one is to design a non-linear model predictive controller 
(NLMPC) to satisfy the heat demands of the consumers in the heat exchanger network. As the model predictive 
controller is based on minimizing an objective function, it is totally perfect to find the way to reduce the superfluous 
energy consumption and make the best of using the freely applicable industrial waste heats. Beside this environmental 
aspect, reducing the invested energy consumption can reduce the operational costs. 
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Introduction 

It has become natural for people today to have a 
network for the distribution of the electricity. However 
the picture is much different when it comes to heating. 
The majority of the buildings in western Europe are 
heated with individual boilers that are fed either with 
natural gas or with oil. Only in some cases, e.g. with 
waste incineration, a district heating network (DHN) is 
implemented to distribute the heat. District heating 
networks are for distributing heat generated in a 
centralized location for residential and commercial 
heating requirements. The heat can be obtained from 
cogeneration plants or waste incineration plants although 
to satisfy the periodically increased heat demand so-
called heat-only/peak load boiler stations are also used. 
These stations can be suppliers of residential and 
commercial consumers for space heating and for hot tap 
water and if necessary it can provide heat for industrial 
consumers for a certain level.  

However, because of the numerous advantages of 
district heating systems, it would be beneficial to 
implement them in other areas too, since the main 
advantages of district heating systems are [12]:  
1. Fewer sources of emission in densely populated areas.  
2. Fewer individual boilers, thus increased the usable 

space in the buildings. 
3. Professional and on-going operating and maintenance 

of the centralized heating technology. 

Since energy becomes a more and more competitive 
market nowadays, thus optimization of the energy 
production and distribution becomes an important task 
for energy companies. The district heating facility can 
provide higher economic and environmental efficiency 
compared to local boilers. This the reason why the 
importance of these networks are increasing, and the 
countries, which use local heat suppliers, such as the 
Nordic countries, are switching to district heating 
networks instead.  

District heating networks exist in several variations: 
in the district heating network reported in [1] includes 
several consumers are located in different areas, but 
there is no energy storage and just one production unit. 
In [13], a storage tank is added to the network. In [6], a 
storage tank is also considered, but there is no thermal 
energy supply network. So the variety of the district 
heating networks are numerous. 

The operation of a district heating network is subject 
to operational constraints, e.g. assure the minimum inlet 
temperature of consumers this way satisfying their heat 
demand. The aim of the control strategies therefore is to 
meet these restrictions and at the same time to minimize 
the operational costs of the heat supplier. Model 
predictive control methods an interesting alternative to 
conventional control structures since the formulation of 
the objective function and constraints takes both aspect 
into consideration.  

Operating a district heating network implies to assign 
values to integer variables (status of production units, 
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status of pumps…) and to continuous variables (amounts 
of energy to produce). As a result, the optimization of 
the production and energy supply planning appears to be 
a huge, mixed integer and non linear optimization issue. 
Consequently, most studies use a simplified model, 
leaving aside some of the district heating network 
aspects. Simplifying the model may allow the use of one 
of the classical optimization methods listed in [11], but 
the solution can be strongly suboptimal when applied to 
the whole district heating network. Our goal is to model 
a district heating network presented latter and at the 
same time we use the model in a model predictive 
controller to satisfy the heat demand of the consumers 
of the network. 

The work is organized as follows: in the modeling 
section the topology of the applied district heating 
network will be introduced and the applied model 
equations will be defined. In the control section first the 
general non-linear model predictive controllers will be 
described, then defining the purposes, introducing the 
applied MPCs and examining the control results. 

Modeling section 

The models of a district heating network found in the 
literature are either a physical description of the heat and 
mass transfer in the network [8] or they are based on a 
statistical description of the transfer function from the 
supply point to the critical point considered. A statistical 
modeling approach is presented [10] where an ensemble 
of ARMAX (Auto-Regressive Moving Average with 
Exogenous input) models with different fixed time delays 
is set up, and depending on some estimated current time 
the models are switched.  

In [5] the grey-box approach for modeling combines 
physical knowledge with data-based (statistical) modeling; 
physical knowledge provides the main structure and 
statistical modeling provides details on structure and the 
actual coefficients/ estimates.  

The model in this work is developed with using the 
method of [7] so applying the physical description of 
the heat and mass transfer in the network. Local models 
of the components of the network are established and 
then connected together. 

Topology 

The topology showing Fig. 1 was chosen to represent 
the main characteristics of a district heating network. 

The network contains two heat production units, 
three consumers, two pumps and a valve. The production 
unit, called Producer 1, is the base load boiler, which 
may be considered a waste incineration plant. The other 
production unit, called Producer 2, is the peak load 
boiler station, which has to satisfy the increased heat 
demand in the network, especially in case of the 
Consumer 3. HX1 and HX2 heat exchangers are for 
transfer the produced heat from the primary circles to 

the secondary circle that is practically for distributing 
the heat for the consumers. 
 

 
Figure 1: The topology of the examined district heating 

network 
 
During the modeling procedure the following 

simplifications and assumptions were made to avoid the 
excessive complexity of modeled network, while 
preserving important characteristics:  

● Since the system containes only pressurized water 
thermodynamical and material properties like 
heat capacities and densities are assumed constant. 
Average values for the respective temperature 
intervals are used. 

● Isothermal flow is assumed through the pumps 
and valve. This is done due to the low pressure 
differences in the system.  

● The pressure profile of the system changes much 
faster than the temperature profile, so it was 
modeled using steady-state equations, while the 
heat exchangers are modeled with dynamical 
assumption. 

 
The following model equations were applied to 

describe the network: 

Valves 

The valve is modeled using the following equation: 

2

2vpp inout
⋅

⋅−=
ρξ   (1) 

where: pout – outlet pressure of the valve  
 pin – outlet pressure of the valve  
 ρ – density of water 
 v – velocity of the fluid  
 ξ means the valve coefficient that is calculated 

by the expression below: 
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As it was mentioned previously, there is no difference in 
value of the inlet and outlet temperature. 

Pumps 

By neglecting any temperature rise in the water during 
travel through the pumps, they can be described using 
the Bernoulli equation. The elevation difference is set to 
zero, and the pipe diameter was assumed equal before 
and after the pump, thus the following expression 
characterizes the pump: 

m
Ppp inout
ηρ ⋅⋅

+=  (3) 

where P means the pump duty, η means the efficiency 
of the pump, m means the mass flow. 

Mixers 

The mixing unit is modeled using the following 
expressions, under the assumption of instant and 
homogeneous mixing:  
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In modeling the mixers’ pressure, we assume: 

Pin, i = Pout (6) 

where: T – temperature 
 P – inlet and outlet pressure. 

Pipes 

In modeling the district heating networks taking the 
effects of pipelines into consideration is an important 
factor. The heat loss in the pipes can not be neglected, 
and the dead time between the ends of the pipe has to be 
accounted for. Assuming one-dimensional flow, this 
leads to the partial equation:  
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where: cp – specific heat capacity of the fuid 
 R – the radius of the pipe 
 μ – heat transfer coefficient on the wall 
 T0 – the ambient temperature. 
 

This equation has the following solution: 
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the varying time delay t – t0(t) is defined by: 
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L is the length of the pipe (m). 
As the thermal losses on pipes are assumed very 

low. Thus the Eq. 8 is approximated by the following 
expression: 
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In Eq. 10 constant time delay is assumed regarded to the 
high computation demand of calculating varying time 
delay. This approach yields a simple non-linear dynamic 
system, which can be quickly solved. 

The mechanical losses in pipes are modeled by: 

D
Lvp

2

2⋅
⋅=
ρξΔ  (11) 

Δp – pressure drop of the pipe 
D – diameter of the pipe. 

Heat exchangers 

In order model the proper dynamic behavior of the heat 
exchangers an approach using a cell model with 
ordinary differential equations is chosen [4]. This means 
that the heat exchanger is divided into perfectly and 
instantly mixed tanks. Each cell featuring a hot side, a 
wall side, and a cold side element (Fig. 2). The idea is 
that this approach will approximate the logarithmic mean 
temperature difference of the heat exchanger as the 
number of cells increases, while showing a realistic time 
delay behavior. In our model five cells were used on the 
hot side and five cells on the cold side. 

It is assumed that all cells are identical, and that no 
back-mixing occurres. In addition we assume that the 
mixing is instantaneous. 

 

 
Figure 2: Cell model of the heat exchanger 
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The following equations are applied to a cell: 
Hot side:  
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Cold side:  
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To avoid excessive complexity of the model the 
resistance of the wall is included to the heat transfer 
coefficient (U).  

The pressure drop of a heat exchanger is usually 
made up of the following parts: 

● Pressure drop of the inlet nozzle. 
● Pressure drop caused by the friction in the shell 

and in the tubes. 
● Pressure drop of the outlet nozzle. 

 
To model these areas separately it would be necessary 

to use complex equations.  
To reduce the number of the expressions (and because 

we do not have a real DHS we can fit the model to) the 
pressure drop of a heat exchanger is approximated with 
the model equation of a valve. This way it was possible 
to model the pressure drop as the function of the flow 
rate and at the same time keep the model simple.  

Heat production units 

The approach for modeling the heat production units are 
similar to the model of the heat exchangers, however in 
this case just the cold side was divided into cells, 
following the scheme below: 
 

 
Figure 3: Cell model of the production unit 

 
The following equation is for representing the model 

of a cell on the cold side: 
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where: Q – invested heat 
 N – the number of the cells. 

 
This simplification is introduced because in the aspect 

of the heating network it is not important how the heat 
was produced, just the quantity of the invested heat is 
significant. 

The previously introduced network was implemented 
in Simulink. An other model of this network is 
implemented in Matlab with the simplification of 
neglecting the time delay of the pipelines (in Eq. 8). 
This was done to compare the performance of the two 
models in the MPC controller. 

Control section 

Model based control concepts 

The development of modern model based control 
concepts can be traced back to the early 1960s, to the 
linear quadratic regulator (LQR), which is designed to 
operate linear dynamic system. However, even though 
the concept of minimizing an objective function is very 
simple, the complexity of the controlled systems require 
advanced algorithms to solve the problem. At the early 
stage of model predictive controllers there were no 
sufficient computation facilities to realize complex 
optimization algorithms, so linear control algorithms 
were preferred [3, 9]. One example is Dynamic Matrix 
Controller (DMC), because of the analytical solution to 
the objective function. With growing computation power 
more complex methods could be applied to solve non-
linear complex optimization problems in short time, and 
this way the non-linear model predictive algorithms could 
be born. 

Model Predictive Controllers– theoretical basis 

MPC is a model based control algorithm where models 
are used to predict the behavior of dependent variables 
(i.e. outputs) of a dynamical system with respect to 
changes in the process independent variables (i.e. inputs). 
In chemical processes, independent variables are often 
setpoints of regulatory controllers that govern valve 
movement (e.g. valve positioners with or without flow, 
temperature or pressure controller cascades), while 
dependent variables might be constraints in the process 
(e.g. product purity, equipment safe operating limits), 
however it is not neccessary (e.g. in some cases 
temperature is measured but it is not a constraint). The 
MPC uses the models and current plant measurements 
to calculate future moves in the independent variables that 
will result in operation that minimizes the cost function 
and that satisfies all independent and dependent variable 
constraints. With the help of the Fig. 4 the essence of 
the model predictive control is easily understandable.  

We formulate the objective function: 

min
Δu(k+ j )

(w(k + j) − y(k + j))2 + λ Δu2 (k + j −1)
j=1

Hc

∑
j= H p1

H p 2

∑
 

(15)
 

where ∆u(k) denotes the change of the control signal, 
the Hp1 and Hp2 parameters are the minimum and 
maximum cost horizons and Hc is the control horizon, 
which does not necessarily have to coincide with the 
maximum horizon. λ is a weighting factor, it is a 
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sequence that considers future behaviors, usually constant 
values or exponential sequences are used. w is the set 
point signal following the notation of Fig. 4.  
 

 
Figure 4: The essence of model predictive control 

 
Generally predictive control uses the receding horizon 

principle. This means that after the computation of the 
optimal control sequence, only the first control action 
will be implemented, subsequently the horizon is shifted 
one sample and the optimization is restarted with new 
information about the measurements. 

In the presence of unmeasured disturbances and 
modeling errors the MPC controller can exhibit steady-
state offset. One way of avoiding this is to design a 
disturbance estimator which gives the controller implicit 
integral action. The simplest method for incorporating 
integral action is to shift the setpoints with the 
disturbance estimates as depicted in Fig. 5, where the 
corrected setpoints w′(k) = w(k) – d(k) are modified 
based on differences between the output of the system 
and its estimated value d(k) = y(k) – y′(k). 

 

 
Figure 5: The IMC (Internal Model Control) scheme 

 
The scheme shown in Fig. 5 is often referred as 

internal model control (IMC) strategy. This disturbance 
model assumes that plant/model mismatch is attributable 
to a step disturbance in the output and that the 
disturbance remains constant over the prediction 
horizon. While these assumptions rarely hold in 
practice, the disturbance model does eliminate offset for 
asymptotically constant setpoints under most conditions.  

In practice all processes are subject to constraints. 
The actuators have a limited field of action as well as 
determined slew rate, as in the case of valves. 
Constructive reasons, safety or environmental ones or 
even sensor slopes themselves, can cause limits in the 
process variables such as levels in tanks, flows in piping 
of maximum temperatures and pressures. All of this 

leads to the introduction of constraints in the MPC 
problem. Usually, input constraints like  
umin ≤ u(k + j) ≤ umax, j = 1, ..., Hc  (16) 

∆umin ≤ ∆u(k + j) ≤ ∆umax, j = 1, ..., Hc  (17) 

are hard constraints in the sense that they must be 
satisfied. Coversely, output constraints can be often 
viewed as soft constraints because their violation may 
be necessary to obtain a feasible optimization problem:  

ymin ≤ y(k + j) ≤ ymax, j = j1, ..., Hp  (18) 

where j1 represents the lower limit for output constraint 
enforcement. 

Because of the sequential solving method, some 
constraints can be implemented while solving the 
optimization problem. These constraints are for taking 
into consideration for example actual physical states of 
actuators or valves. These constraints can be defined as 
input constraints, represented by Eq. 16-17. 

In this study the input constraint were introduced in 
the following form: 

u(k+j–1) – ∆u ≤ u(k+j) ≤ u(k+j–1) + ∆u, j = 1, ..., Hc (19) 

using the fact that the value of ∆u is maximized. 

Non-linear model based predictive controller 

Non-linear model-based predictive control (NLMPC) 
algorithms should be applied in situations where the 
controlled process is inherently nonlinear, or where large 
changes in the operating conditions can be anticipated 
during routine operation, such as in batch processes, or 
during the start-up and shut-down of continuous processes. 

The advantages of non-linear predictive control 
include the following.  

● Manipulated and state variable constraints are 
explicitly handled.  

● Nonminimum-phase processes are easily handled. 
(if the prediction horizon is chosen adequately) 

● Knowledge of future setpoint changes is included 
that is useful for scheduled, coordinated operational 
changes.  

 
The main problem in NLMPC is that a non-linear 

often (non-convex) optimization problem must be 
solved at each sampling period in real-time. This hampers 
the application to fast processes where computationally 
expensive optimization techniques cannot be used, due 
to the short sampling time.  

Several methods can be used to solve such 
constrained non-linear optimization problems. The most 
widely studied algorithms are described on [2].  

Using the sequential quadratic programming (SQP) 
method it is possible to minimize the value of the 
objective function, in each sampling period, varying the 
parameterized control signal values (u=[u(i)…u(i+Hc)]) 
on the control horizon. Hence the solution of the 
optimization problem is a control signal trajectory. The 
first element of the control signal trajectory is realized 
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in the next time sequent and the other elements are 
neglected. This is called recending horizon strategy. 

 

 
Figure 6: The scheme of the non-linear 

model predictive controller 

Model predictive control of a district heating network 

Energy producer are compelled to reduce their rate of 
polluting emissions beside fulfilling consumers power 
demands with the lowest global costs. Thus, technical, 
economical and environmental constraints have to be 
simultaneously dealt with. 

The optimization problem stated from this multi-
field area can hardly be solved as it is a non-linear 
programming problem, consists of numerous variables. 
The optimal control of district heating networks, for 
which propagation delays can not be neglected and 
mechanical and thermal losses have non-linear 
expressions, picks up all these harsh difficulties. 
Managing a district heating network implies to assign 
values to integer variables (status of production units, 
status of pumps…) and to continuous variables (amounts 
of energy to produce). As a result, the optimization of 
the production and energy supply planning appears to be 
a huge, mixed and non linear optimization issue. 

However solving a non-linear mixed-integer 
optimization problem might have the ability to provide a 
control signal that may provide better performance than 
solving a non-linear optimization problem. In this work 
a non-linear SQP method with soft constraints will be 
introduced to avoid the complexity of mixed-integer 
non-linear programming. To take the different weights 
of the control variables into consideration the objective 
function is augmented with the absolute value of the 
control variables: 
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It can also be important to define weights (β) for the 
error, the set points and manipulated variables, because 
the main task – keeping the manipulated variable equal 
to the set point – can be easily assured. This version of 
the objective function will be applied in this study. 

Differences between the models  
with and without time delay  

In the case of the depicted (Fig. 1) district heating 
network the possible control variables are: 

● invested heat in Production unit 1  
● invested heat in Production unit 2 
● pump duty of P1 
● pump duty of P2 
● valve opening. 

 
Since the pump P1 is chosen to compensate the 

pressure drop of the heat exchangers and pipelines, the 
P1 pump does not take part in satisfying the heat demand 
of consumers, so it is controlled by a local regulator.  

The split ratio between Consumer 2 and Consumer 3 
can be adjusted using two control variables: valve 
opening and the pump duty of the P2 pump (as the 
pressure increase on the pump is the function of the 
pump duty (Eq 3)). These control variables determine 
the flow in the two directions and thus the transferred 
heat to the consumers.  

Comparing the model with and without time delay a 
main difference can be seen in the dynamics of the 
models. It is caused by the absent time delay. Fig. 7 
shows the difference between the two models (full line 
means the model without time delay, dot line means the 
model with time delay). 

Naturally both simulations were run with the same 
inputs. In the initial moment there is no temperature 
profile in the network so the first 15 minutes show the 
temperature startup of the district heating network. After 
15 minutes there is a step in the heat from Producer 1. 
After the network is in steady state, there is a new step 
in the heat from the Producer 2. In the 50th minute there 
is a step in the pump duty of Pump 2 The last change in 
the inputs is changing the value of the valve opening in 
63rd minute. These changes can be seen on the Fig. 8. 
 

 
Figure 7: Transferred heat in model ‘A’ and ‘B’ model 

to the same input 
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Figure 8: The input parameters of the district heating 

network related to Fig. 7 
 

From the Fig. 7 it can be stated that the model 
without time delay can provide almost the same steady 
state than the model with time delay. The main difference 
is in the dynamical behavior.  

Simulation scenarios 

The main goal is to satisfy the heat demand of the 
consumers. In this study the heat demand of the 
consumers is assumed to be known. It us to be tracked 
as the set points of the district heating network. To test 
the performance of the DHN the following set point 
trajectories were chosen: 

The set point changes are at the same time: at around 
33rd minute and 60th minute. In order:  
● Consumer 1 (lower line) has 25000 kW – 60000 kW 

– 30000 kW heat demand  
● Consumer 2 (middle line) has 21000 kW – 55000 kW 

– 27000 kW heat demand 
● Consumer 3 (upper line) has 28000 kW – 55000 kW 

– 32000 kW.  
 
The main goal is to minimize the transition time as 

possible and at the same time fulfill the heat requirements 
of the consumers (follow the previously presented set 
point trajectory) considering to minimize of the use of 
the Production unit 2 and the pump duty of P2 pump. 
This goal can be reached with minimizing the objective 
function presented in Eq. 20.  

Optimization 

Model A contains time delays in the pipes: so the model 
and the process are identical. In this case it is not 
necessary to use the IMC scheme, because there is no 
mismatch, and because there are no unmeasured 
disturbances. 

Model B has no, so the plant-model mismatch seen 
in Fig. 7 is expected to deteriorate control performance.  

Because of this model mismatch simulation 
experiments will be carried out to test the performance 
of the MPC with IMC scheme and without IMC scheme. 
Since the steady states of the two models should be 
equal the MPC was expected to reach the set point 
trajectories in both cases, but the dynamical behavior 
can not be predictable without simulations. 

Simulation results 

Control performance of MPC with A and B model 

The ISE (Integral Square of Error) criteria was chosen to 
compare the control performance of the two controllers 
(A and B model).Additionally plots are used to compare 
quality of control. The set points are the same in all cases. 

The tuning parameters of model predicitve controllers 
are the lenght of the prediction and control horizon and 
the value of α, β and λ parameters (Eq 20). To be able to 
compare the scenarios in both cases the same tuning 
parameters were chosen (prediction horizon: 4, control 
horizon: 1, sample time: 45 sec). The computation 
demand of the NLMPC controller is very high, since the 
SQP algorithm obtains gradient information via finite 
differences and the differential-algebraic model equations 
have to be solved for each perturbation. This solving 
method is very time-consuming and this is the reason 
why the tuning parameters of the NLMPC controller 
have not been optimized.  

Control results using the ‘A’ model 

‘A’ model means that the applied model during the 
optimization is the same as the model used as the 
operation process. Thus there is no model mismatch is 
expected so there is no need to apply the IMC scheme.  

The constraints are formulated like Eq 19. The 
applied constraint can have serious effects on the 
computed control signal as seen the Fig. 9 and Fig. 10. 

Analyzing the first transition: to assure a lower flow 
rate in direction of Consumer 3 it was necessary to set 
the higher pressure drop of that section. To reach this 
goal infinite variations of valve opening-pump duty value 
pairs exist. By applying proper weight in objective 
function the biggest valve opening – the lowest pump 
duty pair can be applied. In the steady state of the 
system this condition is obviously determined. In the 
unconstrained case pump duty is decreased quickly to 
increase the pressure drop in the direction of flow, but at 
the same time the valve opening is set as high as 
possible – 100%. In the constrained case the controller 
handles the changes of these manipulated variables 
differently since it is not permitted to change them 
arbitrary. The increasing of that direction is handled by 
closing the valve and at the same time reduce the pump 
duty. Closing the valve is a necessary action since the 
change of the pump duty is constrained. 
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Figure 9: Comparing the control performance of the 

unconstrained (dashdot line) and  
constrained (dot line) MPC 

 

 
Figure 10: The manipulated variables regarding to the 

previous figure full line – constrained,  
dashed line – unconstrained MPC 

 
The quick and accurate control actions are not 

surprising since the most precise model was applied 
during the optimization, but at the same time this 
accuracy has enormous computational demand: simulation 
needs almost 8–10 hours to be finished. 

In the further cases only constrained MPCs will be 
described using the assumption that in unconstrained 
cases they would provide similar control action as it was 
recently shown. 

Control results using the ‘B’ model 

Using the ‘B’ model implies that the applied model in 
the optimization is not the same as the model used in as 
an operation process.  

For this scenario 3 different cases will be introduced: 
● Case 1: MPC without IMC scheme 
● Case 2: MPC with IMC scheme 
● Case 3: MPC, combination of the previous cases.  

Case 1 – MPC without IMC scheme 

Here the control algorithm does not have any information 
about the model mismatch. The control performance 
mainly depends on the difference of the time delay. In 
the previous case this did not cause a problem since the 
model was identical, but in this case this requirement is 
not fulfilled. 

The control performance can be illustrated by Fig. 11. 
As the Fig. 11 shows, the existing model mismatch 

causes steady state offset, mainly detectable after the 
first transient. However this MPC has the advantage of 
avoiding any overshoot. The steady state offset – if it is 
converted to temperature difference – means 2–3 °C 
difference.  

Since the same objective function was used in the 
optimization section in all cases – the same penalty 
weights were applied for the change of inputs – the 
control variable trajectories kept all the characteristics 
that were introduced in the case of using constrained 
MPC using ‘A’ model. 

The computational time was reduced to the half of 
the previous simulation, the simulation needs almost 3–4 
hours to be accomplished.  

 

 
Figure 11: The control performance of the model 

predictive controller in Case 1,  
‘B’ model without IMC scheme 
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Figure 12: The computed control signal corresponding 

to Fig. 11 
 

 
Figure 13: The control performance of the model 

predictive controller in Case 2 
 

 
Figure 14: The computed control signal regarded to the 

control scenario depicted on Fig. 13 
 

 
Figure 15: The modified set point signal  

(by IMC scheme) (full line) and  
the output of the network (dashed line) 

Case 2 – MPC with IMC scheme 

In order to eliminate steady state offset IMC scheme is 
applied. 

After running a simulation using IMC scheme, the 
following control result can be observed: 

In contrast to Case 1 and simulation using ‘A’ model 
in this case some overshoot and oscillation occurres. A 
reason for this could be that the set point signal is 
modified with the error of the model and the plant 

Fig. 15 shows the modified set point signal, which is 
the input of the optimization section and used in 
computing the minimum of the objective function. The 
oscillations are mainly caused by the absent time delay 
in the model and it is the most obvious during transitions. 
After the oscillations have died away at steady state there 
is no offset. 

Case 3 – combination on Case 1 and Case 2 

In this case an attempt will be made to combine the 
advantages of Case 1 and Case 2, avoiding overshoot 
and eliminating the steady state offset. To reach this 
goal the following strategy is applied: since the IMC 
structure modifies the set point signals significantly 
during transitions, it is not advantageous to apply this 
scheme during the transitions. At the same time it is 
very useful to apply the IMC scheme to eliminate the 
steady state offset. So in this case a trigger is 
implemented in the controller to switch on the IMC 
scheme. The trigger is formulated with the following 
expression: 
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K
N

iMEiME
≤

−− 2))1()((  (21) 

where: ME – the model error vector in ith and (i-1)th 
sample time 

 N – length of the model error vector 
 K – constant. 
 

So if the change of the model error is smaller than a 
previously determined constant, it means that the 
manipulated variable is relatively close to the steady 
state. If this condition is fulfilled the IMC scheme is 
switched on and eliminate the steady state offset. 

By applying this method the following control result 
can be yielded: 

As the figures shows, this method can extract the 
advantage of IMC – no steady state offset - and at the 
same time exclude the disadvantage of IMC – oscillations 
in the set point signal. 
 

 
Figure 16: The control performance of the model 

predictive controller in Case 3 
 

 
Figure 17: The computed control signal regarded to the 

control scenario depicted on Fig. 16 

Performance evaluation of the different MPC 
systems  

In this section we compare the different MPC using a 
the Integral of Square Error (ISE), and graphical plots. 
Additionally the control performance is examined in the 
point of view of settling time and the existence of 
overshoot during the control scenarios. Furthermore we 
will explain the occurring differences. 

General comparison 

In this short section the controllers will be compared in 
some general aspects: 

● Performance index 
● Settling time and overshoot. 

Performance index 

The integral square error (ISE) is a measure of the 
control performance. It is obtained by integrating the 
square difference of set point signal and controlled 
variable over the time interval of the simulation. As the 
values of the controlled variables only known at sample 
times, the ISE can be approximated with the following 
expression: 

∑
=

−=
N

i
ii ywISE

1

2)(   (22) 

Where wi means the value of the set point in ith moment, 
yi is the output of the system, N is the number of time 
steps. 

The constrained ‘A’ model provides the best 
performance in terms of ISE. This is not surprising, 
since the controller uses the most accurate model to 
predict the reaction of the plant to a certain input. In 
cases that use ‘B’ model the controllers have worse 
performance because of plant – model mismatch. Case 1 
and Case 3 has equal ISE value, despite the combination 
of IMC/noIMC scheme. It is found that introducing 
switching strategy benefits only for Consumer 2. 

Settling time and overshoot 

Next we consider the settling time and overshoot. In 
tables 2 and 3 the performance of the control scenarios 
is summarized. Table 1 contains the ISE value of the 
previously presented simulations. 
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Table 1: Comparing the performance of the applied MPCs by ISE value 

 ISE (*109) 
 Consumer 1 Consumer 2 Consumer 3 Mean % 

Case 'A' model 1.7 1.45 1.6 1.58 100% 
Case 1 2.54 2.31 2.72 2.52 159% 
Case 2 2.52 2.12 3.14 2.59 164% 
Case 3 2.56 2.27 2.74 2.52 159% 

 
Table 2: Comparing the applied MPCs by the existing 
of overshoot 

 Overshoot 
 Startup Transient 1 Transient 2 

Case 'A' model no yes no 
Case 1 no no no 
Case 2 yes yes yes 
Case 3 no no no 

 
Table 3: Comparing the applied MPCs by settling time 

 Settling time (min) 
 Startup Transient 1 Transient 2 

Case 'A' model 7 7 9 
Case 1 11 12 13 
Case 2 25 28 24 
Case 3 15 15 13 

 

Analysis of the performance of the ‘B’ model 

The main advantage of applying this model – reduced 
computational time. Next we highlight some important 
characteristics. 

Because of the plant – model mismatch and the lack 
of IMC scheme the MPC in Case 1 can not reach the set 
point signal as it can be seen on Fig. 12. To eliminate 
this phenomenon the IMC scheme was applied. Fig. 18 
shows the result (for Transient 1). 

As mentioned before, the overshoot of IMC-MPC 
has been caused by the significant model error in the 
transients. 

Taking model error into consideration is not a 
negligible fact since the performance of the model 
predictive control is a function of the model parameters, 
and model parameters can be the function of the time 
(eg. fouling in the heat exchangers can change the heat 
transfer coefficient). 

Comparing the Case A model and Case 3 

Fig. 19 shows the difference of these two controllers. 
 

 
Figure 18: Graphical comparison of control 
performance of Case 1 and Case 2 controller 

 

 
Figure 19: Graphical comparison of control 

performance of Case ‘A’ model and Case 2 controller 
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Figure 20: Control variables of Case ‘A’ model and 

Case 3 
 
The main difference is the settling time. The Case 3 

controller reaches the set point slower than the controller 
which uses the ‘A’ model. This happens because  
‘A’ model and ‘B’ model have different dynamics  
(‘B’ model has no time delay). Thus the ‘B’ model can 
reach the set point signals faster by the effect of the 
same input signal than ‘A’ model. That is why the  
‘B’ model considers the transient finished sooner than it 
is realized by the operating process (‘A’ model). 

In steady state both models responsed with almost 
the same output (for the same input). To reach the set 
point signal without steady state offset the IMC scheme 
switches on and eliminates the offset. 

Summary 

In the previous sections detailed and general comparisons 
of the applied controllers was given. The Case ‘A’ model 
was able to provide the highest accuracy that was 
confirmed by the lowest ISE value and settling time. 
The most significant disadvantage of Case ‘A’ model 
was the enormous computational demand that was 
reduced by using the ‘B’ model in the optimization. 

In Case 1 it was observed, that a less accurate model 
was also useful for control purposes, however the 
performance was not as good as in Case A, since there 
was a steady state offset and the settling time was higher 
than in Case A. The Case 1 controller had the drawback 
of the lack of the feedback of the difference of the 
model and plant.  

This feedback was realized in Case 2 by introducing 
IMC scheme. It had the advantage of eliminating the 
steady state offset of Case 1, but unfortunately it 
accentuated the model mismatch in the dynamics.  

In Case 3 the beneficial characteristics – eliminating 
the steady state offset caused by the model mismatch 
and avoiding the overshoot – of Case 1 and Case 2 were 
combined. This kind of solution could provide the most 
attractive performance. It can be difficult to predict the 

behavior the controller and the controlled system, 
compared to the Case ‘A’ model.  

Finally it can be stated that it is beneficial to use a 
model which is as accurate as possible but at the same 
time it is important to consider the fact that the 
computation demand is increasing with the increasing 
model accuracy. In case of plant – model mismatch the 
use of IMC scheme can be useful since it can handle the 
mismatch and the effect of unmeasured disturbances at 
the same time. 

Outlook and future work 

While designing the non-linear MPC framework it was 
very important to keep it modular, so changes are easy 
to implement. In this field the two most important 
characteristics of the control algorithms are: 

● to have the opportunity to implement the control 
algorithm in the control system in a short time 

● the ability of the control algorithm to provide a 
feasible control signal in a shorter time interval 
than the sampling time. 

 
For applying a non-linear model predictive algorithm 

it is very important to require that the optimization 
algorithm can find the (global) minimum of the objective 
function or at least a feasible solution in an certain time 
interval. Considering that numerical optimization in 
each sequence can be very time consuming it is 
necessary to implement the methods which can reduce 
the computational demand of the optimization process. 
Some possible approaches for this are: 

● Model reduction, which yield less states in the 
model 

● Applying the gradient of the objective function 
during the optimization. 

 
When it can be realized, these kind of control 

algorithms can be used widespread in the industrial 
practice as a real time optimization algorithm, regarding 
that the MPC algorithms can be applied in the advanced 
control level. 
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