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A mathematical model for the operation of an intermediate storage under stochastic operational conditions is presented. 
The material input of the storage occurs at randomly, both in terms of time and amount of material, while the output is of 
constant volumetric rate. The main practical question is the required initial amount of material in the storage allowing no 
emptying of storage. In order to determine that we define a two variable function. We develop an equation satisfied by 
this function and present solution for the case of Erlang(n) distributed inter-arrival time. We provide numerical examples 
and apply this function for solving the original problem. 
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Introduction 

Intermediate storage is frequently used in processing 
systems. In chemical engineering, the material produced 
by batch operational units is often collected in a storage 
system from which it is withdrawn for further processing 
in the subsequent plant units. The reasons of applying 
storage may be the different operational characteristics 
of the input and output subsystems, or necessity of 
sparing the processed material in case of failures during 
the operation. It seems to be an important question to 
determine the necessary size of the storage in order to 
avoid the overflow and the necessary initial amount of 
material not to run out the material stored. This is to 
ensure the work without failure of the continuously 
operated subsystem supplied by material from the storage 
system. 

Investigating the operation of intermediate storage, 
researchers realised that the operation is rather stochastic 
than deterministic [2]. General stochastic model was set 
up for batch-batch systems [3], and a method was given 
for determining the size and the initial amount of 
material required for operation of the system without 
failures at a given reliability level. 

In this paper we investigate such a model in which 
the input of the storage system is formed by a pro-
cessing system of a large set of batch operational units 
while the output of the storage occurs continuously, i.e. 
the material from the storage is withdrawn at a constant 
rate. In previous work [4], we investigated this problem 
assuming Poisson input process. We have set up the 
equations modelling the behaviour of the system which 
were solved analytically in some special cases, and we 
have given a method for solving the sizing and initial 

amount problem based on these solutions or computer 
simulation. 

In this paper we deal with the problem of initial 
amount of material under more general conditions. We 
determine the probability of running out of material in 
the storage as a function of the initial amount of material. 
On the other hand it is interesting to also know the 
expected time of this event. In order to handle these 
problems together, we introduce a general function 
which at the value zero provides the probability of 
running out of material, and its derivative provides the 
expected time of emptying as well. Applying the tools 
of probability theory we set up an integro-differential 
equation satisfied by this function. We show some 
qualitative properties of the solution and in some cases 
we determine analytical solutions for it. Furthermore, 
we present numerical examples of solutions which are 
applied for solving the practical problem. 

The model: basic assumptions and notations 

Consider a processing system consisting of a batch 
and a continuous subsystem that are connected by means 
of an intermediate storage system, shown schematically 
in Fig. 1. The material to be processed is filled into 
the storage by the input sub-systems. The filling 
happens randomly, both in terms of time and amount 
of material. The investigation starts at t0 = 0 and the 
time intervals between the consecutive filling points 
are described by random variables ...3,2,1,kt  

Therefore, the ith filling is at time ∑
=
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Figure 1: Intermediate storage connecting the batch and continuous subsystems 

 
 
Let the random variables ti be assumed to be 

nonnegative, independent, identically distributed random 
variables, hence the input process is a renewal process.  
If the random variables are exponentially distributed, 
then the input process is a Poisson process. In a general 
case let their common distribution function be denoted by 
F(t), while the density function be denoted by f(t). Let 
μf be their finite expectation.  

Let N(t) denote the (random) number of fillings in 
the time interval [0, t]. In the ith filling event, the 
amount of material filled into the storage is random 
as well, and it is described by the nonnegative 
random variable Yi, i = 1, 2, …. These are supposed 
to be independent of each other. Their distribution 
function is denoted by G(y), the density function is 
g(y), while the finite expectation is μg. Furthermore, 
we assume that the input process N(t) and Yi are 
independent as well.  

The output process is a deterministic process with 
constant output rate c. The main goal is to determine 
the initial amount of material necessary at a given 
reliability level, which means that there occurs no 
running out of the material with a given probability. 
For this purpose it is worth investigating the change 
of material in storage as a function of time. 

The change of material is the difference of the 
filled and the withdrawn material. If we denote the 
initial amount of material by x, which is the amount 
of material at t = 0, and we sum up the change to the 
initial amount of material x, we get the function 
describing the amount of material in the storage in 
terms of time. This is a random function, which means 
that considering it in terms of time provides a stochastic 
process. In order not to run out of material it is necessary 
to satisfy the following inequality 
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for any value of t ≥ 0 where V(t) denotes the amount 
of the material in the storage at time t. As V(t) is a 
stochastic process, the inequality (1) holds for some 
realization and does not hold for other ones, i.e. it 
holds only with a given probability (reliability).  

Let us introduce a function describing reliability, 
i.e. the probability of not emptying as a function of 
the initial amount of material.

 If x is the initial amount of material then we define 
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The probability of running out of the material is 
given by 

ψ(x) = 1 – R(x), 

and the time of emptying is expressed as 
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Furthermore let the function φ(x,δ) be defined as 
follows. For 0 ≤ x and 0 ≤ δ we have 
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This function is, in essence, the Laplace transform of 
the probability density function of the finite time of 
running out of the material. It can be easily shown that  

φ(x,δ) = ψ(x), 

and  
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hence the function φ(x,δ) is a suitable tool for 
determining the reliability and the expectation as well. 
Consequently, we will deal with the function φ(x,δ). 

We mention that similar function was introduced in 
insurance mathematics to investigate the ruin probability 
in [1] called Gerber-Shiu discounted penalty function. 

Equations for the function φ(x,δ)  

First we note that the function φ(x,δ) is monotonic 
decreasing in both variables. It is continuous and the 
inequality 0 ≤ φ(x,δ) ≤ 1 holds. Furthermore it can be 
proved that: 
 
Theorem 1: For any x ≥ 0 and δ ≥ 0 function φ(x,δ) 
satisfies the following integro-differential equation:  
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Theorem 2: Equation (2) has a unique solution for δ > 0 
in the set of bounded functions. This solution tends to 
zero in exponential order. Namely φ(x,δ) ≤ Ke–rx for 
suitable constants 0 < K and 0 < r, depending on δ. 

In the case of δ = 0 the bounded solution of Equation 
(2) is not unique, as the Heaviside function, i.e. constant 
of value one for all x ≥ 0 is a solution to Equation (2) 

and, if c
f

g >
μ
μ

 and ∫
∞

−≤
x

rxeKdttf 2)( , r > 0, then there 

exists such a solution as well for which φ(x,0) ≤ K1e–rx 
with a suitable constant K1 > 0.  

Remark: Condition c
f

g >
μ
μ

 means that during a unit 

time interval the expectation of the amount of filled 
material is more than the amount of withdrawn material. 
In the opposite case it can be proven that the solution of 
the processing problem is  

φ(x,0) ≡ 1,     x ≥ 0. 

Theorem 2 ensures that in the case c
f

g >
μ
μ

 for any 

0 < α < 1 there exists such an initial amount of material 
x for which the material in the intermediate storage will 
not run out with probability 1 – α hence the processing 
problem can be solved theoretically. The solution will 
be provided by taking the inverse function of  
φ(x,0) = ψ(x) at point y = α. Consequently we want to 
determine the solution of Equation (2). 
 
Theorem 3: Let the random variables be the sum of n 
independent, exponentially distributed random variables 
with parameter λ, that is Erlang(n) distributed. Now, one 
can prove that Equation (2) can be transformed into the 
following form:  
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with initial conditions 
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If δ > 0, then the function 
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is the unique solution of Equation (3) where ki(δ) is the 
root of the equation 
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which is the characteristic equation of Equation (3). The 

multiplicity of ki(δ) is ni, and ∑
=
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m

i
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values cij(δ) can be uniquely determined from (4) by 
solving a system of linear equations. If the limit  
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Corollary: If the assumptions of Theorem 3 are valid and 
the roots of characteristic equation are of multiplicity 1, 
then  
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Especially, if n = 1, that is the inter-arrival times are 
exponentially distributed, then  
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If Yk is exponentially distributed, that is 
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In the case when g(y) is a Dirac-delta function at y = 1, 
that is Yk ≡ 1, then an equation corresponding to 
Equation(2) can be set up by similar argumentation 
and its solution expressed as 
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where k1(δ) is the unique root with positive real part of 
the characteristic equation  
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for δ ≥ 0.  
We note that as ψ(x) is exponential function in both 

cases, consequently its inverse function can be 
analytically determined easily. 

Numerical results 

We discuss some examples of functions presented in the 
previous sections. Fig. 2 shows the function φ(x,δ) 
determined by expression (13) in the case of exponentially 
distributed time interval tk with expected value μf = 0.5 
(λ = 2), constant amount of filled material Yk = 1 and 
constant withdrawing rate c = 1. Here, x is the initial 
amount of material and δ is a parameter. The exponent 
k1(δ) was computed numerically from formula (16).  

 

 
Figure 2: The form of function φ(x,δ) depending on the 

initial amount of material x and parameter δ 
 

Fig. 3 demonstrates φ(x,0) = ψ(x) using the previously 
given parameters. The exponent in expression (14) is 
actually 1.5936. 
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Figure 3: Diagram of function ψ(x) describing the 

probability of running out of the material  
depending on the initial amount of material 

 
 
The inverse function of ψ(x), i.e. ψ–1(α), provides the 

necessary initial amount of material in the function of 
variable α, where α provides the probability of running 
out of material in storage. Function ψ–1(α) is shown in 
Fig. 4 depending on the parameter α. 
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Figure 4: The initial amount of material as a function of 

the probability of emptying the storage 
 
 
The expectation of the time of emptying given by 

formula (15) as a function of the initial amount of 
material can be seen in Fig. 5. 

The function φ(x,δ) given by expression (10) is 
shown in Fig. 6 in the case of exponentially distributed 
consecutive filling times with parameter μf = 0.5 and 
exponentially distributed filled amount of material with 
parameter μg = 1.  
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Figure 5: The expectation of the time of emptying the 

storage depending on the initial amount of material 
 

 
Figure 6: Function φ(x,δ) in the case of Poisson filling 

process and exponentially distributed filled  
material into storage  

 
The functions expressing the probability of emptying 
can be seen in Fig. 7 using different values for the 
expectation of the filled material.  
 

 
Figure 7: The probability of emptying storage ψ(x) as a 

function of initial amount of material  
 

In Fig. 8 we represent the function φ(x,δ) in case of 
Erlang(2) distributed consecutive input times with 

λ = 0.3, that is 
3.0

2)( =itE , and lognormal distri-bution 

of the filled amount of material. Parameter m equals 2, 
the standard deviation of the normal distribution is σ = 1, 
hence the expectation of the lognormal distribution is 

18.12)( 2/2
== +σm

i eYE . The solution of the integro-
differential equation (3) is given by expression (5). The 
exponents were determined numerically from the 
equation (6). The integral for the case of lognormal 
distribution of the filled amount of material, i.e. the 
Laplace transform of the lognormal density function can 
not be computed analytically. It was determined 
numerically by using Gauss-Laguerre quadrature 
formulas based on polynomial of degree 20. For this 
case, the bivariate function φ(x,δ) is presented in Fig. 8. 

 

 
Figure 8: Function φ(x,δ) in case of Erlang (2) 

distributed inter-arrival times and  
lognormal distribution of filled amount of material  
 
Finally, let us see an example in details how to 

determine the initial amount of material according to the 
reliability level 1 – α = 0.95, i.e. we would like to 
determine how much initial amount of material is needed 
if we want to assure the operation of the system without 
running out of material with probability 0.95. It means 
that the initial amount of material in the storage x is to 
be determined corresponding to R(x) = 1 – α = 0.95. 

Let us suppose that the distribution of the consecutive 
filling times is Erlang(2) distribution with parameters  
λ = 2.1, c = 1 and Yi ≡ 1.  

First we determine the roots of the equation ψ(x) = α. 
As ψ(x) = φ(x,0), we deal with the function φ(x,δ), which 
is of the form (5). Now g(y) is a Dirac-delta function at 
y = 1, hence Equation (6) takes the form 
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This equation has two positive roots, one lies in the 
interval (0, λ + δ), and the another one is in the interval 
(λ + δ, ∞) with multiplicities equal 1. These roots were 
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determined numerically by the Newton method. The 
solution is of form  

)(
2

)(
1 21 )()(),( δδ δδδφ kk ececx −− +=   

where the constants c1(δ) and c2(δ) are expressed from 
the initial conditions for i = 0 and i = 1, that is from the 
system of linear equations c1(δ) + c2(δ) = 1 and 

c
ckck δδδδδ −=−− )()()()( 2211 . The function φ(x,δ) 

is shown in Fig. 9. 
 

 
Figure 9: Function φ(x,δ) in the case of Erlang (2) 

distributed inter-arrival times and constant amount of 
filled material  

 
The numerical computations provided the values  
k1(0) = 0.1968, k2(0) = 2.6564, while the constants are 
c1(0) = 1.0800, c2(0) = –0.0800, hence finally 

xx eex 6564.21968.0 0800.00800.1)( −− −=ψ . 

The function ψ(x) = 1 – R(x) = φ(x,0) can be seen in  
Fig. 10. This function is shown together with the 
function ψ(x) equals 0.05 for x = 15. We numerically 
determined the roots of equation ψ(x) = 0.05, which is  
x = 15.61 and ψ(x) = 0.01 which holds for x = 23.7945. 
Therefore, if we want to ensure operation of the 
continuous processing system without emptying of the 

intermediate storage with probability 0.95 we have to 
start to operate the system with initial amount of 
material equal to 15.6154 units.  
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Figure 10: Function ψ(x) in case of Erlang (2) distributed 

inter-arrival times and constant amount of material 
 
However, in spite of having this amount of material the 
storage may still become empty with probability 0.05. 
The expected time of this event is 5398.12)1( =

∞<VTVTE  
units. 
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