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New continuous and discrete mathematical models are elaborated for describing some types of closed-circuit grinding 
mill-classifier systems. Based on the discrete model computer simulation is also developed for investigation of grinding 
processes.  

The starting point in developing the model is the continuous grinding equation for the open-circuit grinding which is 
a partial integro-differential equation describing axial mixing and breakage of particles in the grinding mill. The 
convective flow in the mill is modeled as particle size-dependent process. The boundary conditions at the inlet and outlet 
of the mill, the initial conditions, and the equations describing the operation of the classifier and its mass balance are the 
additional equations of the model. 

The properties and capabilities of the new computer model are demonstrated and analyzed by simulation developed 
in Matlab environment. The effects of all parameters of the grinding process, among others of parameters of the 
classifier, are studied via simulation. The main statistical characteristics of the steady states, the hold-up of the grinding 
device and the operation of the classifier are also studied.  

The models presented appear to be very flexible and useful tools for analysis and design of closed-circuit grinding 
processes, and are suitable for the deeper understanding of the aimed processes.  

Keywords: Closed-circuit grinding, computer simulation, grinding-classifying system, mathematical modeling, mill-
classifier system. 

Introduction  

Grinding is a widely used operation in the industrial 
processes. Due to the fact that there are numerous types 
of grindings many kinds of grinding devices have been 
developed based on various operation principles. At the 
same time, grinding is an energy consuming operation 
therefore the cost-efficiency of the operation can be 
improved by the decreasing the grinding energy. One of 
the main urgings of the mathematical description and 
modeling of grinding is exactly the improvement of the 
cost-efficiency.  

Numerous excellent papers have been devoted to the 
description of the batch grindings [1, 2, 3]. Mihálykó, 
Blickle and Lakatos [4] developed deterministic 
continuous and discrete models for the open circuit 
grinding describing processes in long ball mills. Further 
development and generalization of these models 
provided mathematical description also for closed-circuit 
grinding systems with classifying devices [5, 6]. In the 
literature, grinding with internal classification of the 
product has also been modeled [7, 8]. 

The aim of this paper is to present continuous and 
discrete mathematical models for describing some further 
types of closed-circuit grinding mill-classifier systems. 
The model is formed by a continuous grinding equation 

for the open-circuit grinding process, being a partial 
integro-differential equation describing axial mixing 
and breakage of particles in the mill. The convective 
flow of ground material in the mill is modeled as size-
dependent process. The boundary conditions at the inlet 
and outlet of the mill, the initial conditions, and the 
equations describing the operation of the classifier and 
its mass balance are the additional equations of the 
model. 

Using the discrete model computer simulation is 
carried out investigating the effects of parameters and 
operational conditions of the grinding system.  

Continuous and discrete mathematical models 

The closed-circuit grinding models of the authors which 
have been previously published describe such a grinding-
classifying system which returns the large particles from 
the classifier to the inlet of the mill [5, 6, 9]. 

This paper presents mathematical models referring 
to another group of the closed-circuit grindings. The 
considered process is as follows: the fresh particles to 
be ground are entered into the mill through the inlet of 
the mill; the particles are grinding while they are flowing 
along the mill; the particles are classified; only the fine 
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particles are allowed to leave the mill through the outlet; 
due to the classification the large particles are retained 
in the mill.  

Let symbol x stands for the particle size, let symbol 
xmax denote the largest particle size. The convective flow 
of the particles along the device is characterized via the 
convective flow velocity and denoted by u(x), while 
symbol D stands for the axial dispersion of the particles. 
The operation of the classifier is characterized by the 
classification function ψ(x). Let the mass density function 
m(x, y, t) characterize the size distribution of the particles 
where m(x, y, t)dx expresses the mass of the particles at 
the axial coordinate y of the mill at time t within the 
particle size interval (x, x+dx) in a unit mass of the 
particles. At the model-construction let us suppose that 
1) the transport of the particles in the mill is described 
by the axial dispersion model; 2) the grinding kinetics is 
described by the first order law of breakage. 

The continuous mathematical model is given by the 
following equations (1) – (6). The operation of the 
grinding mill is described via equation (1) which is a 
partial integral-differential equation:  
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Equations (2) and (3) – (4) express the initial and the 
boundary conditions, respectively: 
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In equation (1) function S(L) represents the rate of 
breakage of particles of size L , usually termed selection 
function, while function b(x, L) is the breakage density 
function. In equation (3) function ff(x, t) denotes the 
mass flow rate of the feed to the mill. Equation (3) 
expresses the assumption that there is no back-mixing 
from the mill into the transfer pipe. Symbol Y stands for 
the length of the mill, therefore y = 0 expresses the inlet 
of the mill in equation (3) and y = Y means the outlet of 
the mill in equation (4).  

Equations (5) and (6) describe the operation of the 
classifier. The mass flow of the large particles is given 
by equation (5):  

 fr(x, t) = ψ(x) · f(x, t) = ψ(x) · u(x) · m(x, Y, t). (5) 

In equation (5) f(x, t) is the mass flow density function 
at the outlet of the mill. We suppose that the large 
particles – which are not allowed to leave the mill due 
to the operation of the classifier – remain in the grinding 
device. This assumption is expressed by equation (6):  

 f(x, t) = fl(x, t) + ψ(x) · f(x, t), (6) 

where function fl(x, t) is the mass flow density function 
of that particles which flowed in the grinding device to 
the outlet of the mill.  

Using the continuous model – equations (1) – (6) – a 
discrete mathematical model has been derived similar 
way involved in the paper [6].  

Let Δt denote the length of the time step, let tn stand 
for tn = nΔt. Let us subdivide the mill into J equal 
sections and denote hy the length of a section of the mill, 
thus hy = Y/J. Let us sort the particles into size fractions. 
Let xmin denote the smallest particle size. If I denotes the 
total number of size fractions of particles and we 
introduce the notation hx = (xmax – xmin)/I, then xi = xmin + ihx 
stands for the ith particle size fraction. Let symbol ix  
denote the mean size of the ith size fraction, i.e.  

ix = (xi-1 + xi)/2 and let )( ixt stand for the mean residence 
time of particles belonging to the ith size interval, i.e. 

)(/)( ii xuYxt = . Let µ(xi, yj, tn) denote the mass of the 
particles belonging to the ith size fraction and the jth 
section at the moment of time tn. 

Let us introduce symbols )( iF xV and )( iB xV   
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where )(/)()( iii xDYxuxPe =  is the Peclet number for 
the ith size fraction of particles. In the above formulae 

)( ixu  and )( ixD  denote the convective flow velocity 
and the axial mixing coefficient of that size fraction, 
respectively, while )(/)( ii xttx Δ=τ . 

The breakage distribution function – let it denote 
symbol B(X, x) – describes of the rubbles when the 
particle of size X breaks. The connection between the 
breakage distribution function and the density function 
is as follows: 
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After introducing the notation  

)],(),()[( 1, −−= ikikkik xxBxxBxtSp Δ  
then the equations of the discrete model can be 
described by equations (7) – (9). The development of 
the discrete model can be manipulated similarly to those 
published in the paper [6].  

The left-hand sides of equations (7), (8), (9) contain 
the mass of the particles belonging to the ith size fraction 
at the moment of time tn+1. The first group of equations 
describes the size composition of particles in the first 
section; the second group reflects to the inner sections 
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of the mill; finally, equation (9) expresses the size 
composition in the last section of the mill.  
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The first term on the right-hand side of equation (7) 
expresses the mass of particles belonging to the ith size 
interval at the moment of time tn which neither moved 
forward nor broke; the second term represents that 
particles of the same size interval that moved backwards 
from the second section; the third term gives the mass of 
particles that remained in the first section and broke 
from some greater or equal size than xi to this very size 
interval; the last term denotes the mass of the feed 
particles belonging to the ith size interval. 
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The first term on the right-hand side of equation (8) 
gives the mass of particles of the ith size fraction that did 
not changed at all during a unit of time; the second term 
represents the fraction of particles belonging to the ith 
size interval that moved forward from the previous 
section; the third term expresses that part of particles 
which moved backward from the next section; while the 
last term means the mass of those particles that 
remained in the section and broke from some size 
greater or equal than xi to the interval in question. 

Finally, equation (9) describes the size composition 
of the particles as 
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where the first term on the right-hand side describes the 
mass of those particles which did not changed at all; the 
second term represents the particles which moved 
forward from the last but one section; the third term 
represents the mass of particles that remained in the last 
section and broke to the interval in question; the last 
expression, i.e. ),,())()()(( nJiiBiFi tyxxVxVx μψ −  
gives the mass of that particles of that size were retained 
in the mill due to the classification.  

The set of recursive equations (7), (8), and (9) 
provide, in principle, the discrete mathematical model 
of the closed-circuit grinding system. In the model the 
constitutive relations D(x), u(x), and ψ(x) are of arbitrary 
form, and can be formulated arranging the simulation in 
accordance with the equipment and operational conditions.  

Numerical experiments and results 

Based on the discrete mathematical model computer 
simulation has been elaborated in Matlab environment 
for examination the capabilities and properties of the 
model. The particle size distribution of the material to 
be ground was chosen from the literature [10] as well as 
the parameters in the model which are the kinetic and 
process parameters. The parameters of the selection 
function and breakage distribution function form the 
kinetic parameters, while the convective flow velocity, 
the axial dispersion, and the parameters of the 
classification function constitute the process parameters.  

The forms of the selection function and breakage 
distribution function are as follows:  

S(x) = Ks⋅xα,  

where Ks and α are the parameters of the function;  
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where β, γ, Φ are the parameters [11]. 
The size dependency of the convective flow velocity 

of particles was characterized via the formulae 

u(xi) = ki · u(x1), (i=1, 2, …, I)  

where  
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where u(x1) stands for the velocity of flow of the finest 
particles. In the formula for ki symbol x50 denotes that 
particle size for which the convective flow velocity is 
0.5u(x1), and λ is an appropriate constant [12]. 

The classifier was modeled using the Molerus curve 
approach so the operation of the classifier was cha-
racterized by the following efficiency curve [13]: 
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In the formula for ψ(x) symbol x denotes the particle 
size. Function ψ(x) has two parameters; c and xcut.  

Parameter c characterizes the classifier, while xcut 
means the cut size. It is very likely that the classifier 
retains a particle in the mill if the size of a particle is 
greater than the cut size. Parameter c expresses the 
sharpness of the cut.  

With the aid of the computer simulation the operation 
of the grinding-classifying system was investigated via 
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numerical experiments. The effects of both the kinetic 
and process parameters were examined. The statistical 
characterization of the ground material at the steady 
state was also performed. 

Let us see an example, i.e. an experiment which 
demonstrates the effect of the classification to the steady 
state characteristics of the material at the outlet from the 
mill. The aim of the numerical experiment is to show 
the influence of the cut size of the classifier to the mean 
particle size and dispersion of the particle size 
distribution of the ground material which leaves the mill 
at the outlet. The calculation results are involved in the 
Table 1 and Table 2. In the numerical experiments the 
value of the parameter c was 5 and 10, respectively. The 
grade efficiency curves of the classifier is illustrated by 
Fig. 1, while Fig. 2 shows the distribution of the feed 
material and the distribution of the ground material at 
the outlet from the mill at the steady state.  

The values of the remaining parameters were: 
Y = 5.4 m, α = 1.2, β = 2.6, γ = 0.8, Φ = 0.4, Ks = 0.028 s-1, 
xmin = 0 µm, xmax = 1540 µm, u(x1) = 0.090 m/s, 
D = 0.002 m2/s, λ = 3.5, x50 = 650 µm. 
 
Table 1: The steady state characteristics of the material 
at the outlet from the mill depending on the cut size of 
the grade efficiency curve, where c = 5 

The steady characteristics of the 
material at the outlet from the mill  Cut size 

(μm) 
(c = 5) 

Mean particle size  
(µm) 

Dispersion of the 
particle size 
distribution 

(μm) 
200 136 103 
300 171 138 
400 191 162 
 

Table 2: The steady state characteristics of the material 
at the outlet from the mill depending on the cut size of 
the grade efficiency curve, where c = 10 

The steady characteristics of the 
material at the outlet from the mill Cut size  

(μm) 
(c = 10) 

Mean particle size  
(μm) 

Dispersion of the 
particle size 
distribution 

(μm) 
200 117 83 
300 155 119 
400 180 147 

 
Table 1 and Table 2 illustrate well how the average 

particle size and dispersion at the outlet from the mill 
keep growing with increasing the cut size of the classifier. 
At the same time, the tables show the effect of the 
sharpness of the classification. The greater is the value 
of parameter c the sharper is the classification function, 
i.e. the better is the classification. In the case of a good 
classification the large particles have a very little chance 
to leave the mill. Therefore the greater value of the 
parameter c yields smaller mean particle size and 
dispersion of the particle size distribution. This fact is 

also demonstrated by the data involved in the Table 1 
and Table 2. 

 

 
Figure 1: Grade efficiency curves of the classifier, 

c = 5 and c = 10 
 

 
Figure 2: The size distribution of the feed material and 
the size distribution of the ground material at the outlet 

from the mill where xcut = 200, and c = 10 
 

The hold-up of the grinding device can also be 
investigated via numerical experiment. Let us see how 
the operation of the classifier and one of the kinetic 
parameters – Ks – influence the hold-up of the mill at 
the steady state. The effects of the cut size, sharpness of 
the cut, and parameter Ks were studied. It was supposed 
that the amount of the particles in the mill was a unit at 
the start of the grinding process. The results of the 
calculations are seen in the Table 3 and Table 4 where 
Ks = 0.005 s-1 and Ks = 0.050 s-1, respectively. Fig. 3 
and Fig. 4 also illustrate the hold-up of the mill at the 
steady state. 

The values of the remaining parameters were:  
Y = 5.4 m, α = 1.2, β = 2.6, γ = 0.8, Φ = 0.4, xmin = 0 µm, 
xmax = 2000 µm, u(x1) = 0.090 m/s, D = 0.002 m2/s, 
λ = 3.5, x50 = 650 µm. 

Comparing Table 3 and Table 4, the results indicate 
that the increase of the value of parameter Ks causes the 
decrease of the hold-up of mill.  
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Table 3: The hold-up of the grinding device at the steady 
state depending on the cut size and sharpness of the cut, 
where Ks = 0.005 s-1 

The hold-up of the mill  
at the steady state Cut 

size 
(μm) 

Sharpness  
of the cut 

c = 3 

Sharpness  
of the cut 

c = 5 

Sharpness 
of the cut 

c = 10 
220 2.8 3.8 3.8 
240 2.4 3.7 3.8 
260 2.1 3.1 3.8 
280 1.8 2.7 3.8 
300 1.7 2.4 3.8 
320 1.5 2.1 3.4 

 
Table 4: The hold-up of the grinding device at the steady 
state depending on the cut size and sharpness of the cut, 
where Ks = 0.050 s-1 

The hold-up of the mill  
at the steady state Cut 

size 
(μm) 

Sharpness  
of the cut 

c = 3 

Sharpness  
of the cut 

c = 5 

Sharpness 
of the cut 

c = 10 
220 2.1 2.9 3.7 
240 1.8 2.5 3.7 
260 1.6 2.2 3.2 
280 1.5 2.0 2.8 
300 1.4 1.8 2.5 
320 1.3 1.6 2.3 
 
Table 3 and Table 4 show well that the increase of 

the cut size induces the decrease of the hold-up for a 
fixed value of the sharpness of the cut generally; as well 
as the increase of the sharpness of the cut gives the 
increase of the hold-up for a fixed cut size mostly.  

 

 
Figure 3: The hold-up of the grinding device at the 

steady state depending on the cut size and sharpness of 
the cut, where Ks = 0.005 s-1 

 
Figure 4: The hold-up of the grinding device at the 

steady state depending on the cut size and sharpness of 
the cut, where Ks = 0.050s-1 

 
We can find some equal values of the hold-ups in 

Table 3 and Table 4 for just the same value of parameter 
c, for example, c = 3 and the hold-up is 2.1. Table 5 
contains the statistical characteristics at the outlet from 
the mill in both cases, i.e. Ks = 0.005 s-1 and 
Ks = 0.050 s-1. In order to produce equal hold-ups the 
higher value of the parameter Ks connects to smaller cut 
size. As a consequence the values of the mean particle 
size and the dispersion of the particle size distribution 
are also smaller as it is seen in Table 5.  
 
Table 5: The values of the mean particle sizes and the 
dispersions of the particle size distribution where c = 3 
and the hold-up is 2.1 

Parameter
Ks  

Cut size Mean 
particle size 

Dispersion 

0.005 260 222 180 
0.050 220 193 153 

Summary 

Numerous papers have been devoted to the mathematical 
description of the batch grindings. At the same time the 
mathematical description and modeling of continuous 
grinding processes, in particular the closed-circuit 
grindings still offer a lot of work for the process 
engineers and experts who investigate this area. The 
newly elaborated continuous and discrete mathematical 
models proved to be suitable to the description and 
analysis of some types of closed-circuit mill-classifier 
systems.  

In particular, the newly developed mathematical 
models presented in the paper involve the description of 
both the batch grinding and the open-circuit grinding 
systems. Notice that the discrete mathematical model of 
the closed-circuit grinding system, i.e. the set of recur-
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sive equations (7), (8), and (9), can also be written in 
matrix form. The matrix form of the model is suitable 
for some further, among others stability investigations.  
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