

HUNGARIAN JOURNAL
OF INDUSTRIAL CHEMISTRY

VESZPRÉM
Vol. 39(2) pp. 215-218 (2011)

USING GRAPHICAL PROCESSING UNITS IN SCHEDULING PROBLEMS

K. MIHÁLY , O. HORNYÁK

University of Miskolc, Department of Information Engineering, 3535 Miskolc - Egyetemváros, HUNGARY
E-mail: krisztian.mihaly@sap.com

Scheduling problems exist everywhere in the so-called “real world”. They are there in manufacturing, transportation and
logistics as well. The main object of these problems is to find an optimal sequence of tasks to be able to fulfil predefined
objectives. There are efficient methods to solve complex scheduling problems in science and industry, which methods
can be divided into several classes, like heuristic algorithms, genetic algorithms, etc. Even if these methods allow reducing
significantly the computational time of the solution search space exploration, this latter cost remains exorbitant when
very large problem instances are to be solved. Some of these methods are not designed for parallel computing; they are
using a CPU as an arithmetical unit. From this point of view the bottleneck is the number of processed commands.
Meanwhile the capabilities of specialized Graphical Processing Units (GPUs) have been extremely increased and they
can provide an efficient platform for developing graphical algorithms. Nowadays there are new programming languages
and platforms, where these GPUs can be used for more generic problems, using its hardwired parallel processing resources.
Our goal is to use this specialized graphical platform for solving scheduling problems. This paper is an initial research of
the existing platforms and solutions in general and describes the existing solutions in fact of scheduling problems.

Keywords: GPU; CUDA; Scheduling

Introduction

This paper goes to give a short overview about the
history of the age of parallel processing on graphical
processing units and the available hardware and
development platforms. This paper investigates the
platform of main architecture and the feasibility of
algorithms in general for parallel processing and special
in area of scheduling problems. Finally the future
researching areas will be outlined and some conclusions
of the justification of this new approach will be given.

Short history of Graphical Processing Units (GPU)

Before the review of GPUperformance and computing
capacity we have to point out the improvement problems
with the currently used Central Processing Units (CPU).
Over the last decades the main interest for improving
the performance of a personal computer device was to
increase the speed at the processor’s clock operated.
The best example is that the early 1980s, the consumer
CPU ran with internal clock operating near 1 MHz. In
2010 most desktop processors have clock speeds between
1 GHz and 4 GHz. It means ~1000 times better solution
in the same chip. So what is the problem?! This method
hits the power and heat restrictions as a rapidly
approaching physical limit of the transistor size. It is no
longer feasible to rely on upward-spiralling processor
clock speeds. The hardware manufactures changed their

approach of creation of new CPUs and in the year 2005
they started to ship multicore central processors. This
process is sometimes referred as multicore revolution.

“In the meantime the state of graphics processing
underwent a dramatic revolution. In the late 1980s and
1990s, the growth in popularity of graphically driven
operating systems such as Microsoft Windows helped
create a market for a new type of processors. In the early
1990s, users began purchasing 2D display accelerators
for their personal computer. These display accelerators
offered hardware-assisted bitmap operations to assist
in the display and usability of graphical operating
systems” [1]. Around the same time another approach
was developed for three-dimensional graphics. In 1992,
the Silicon Graphics opened the programming interface
to its hardware by releasing the OpenGL library. It
was a standardized, platform-independent method for
developing 3D applications. In this time the computing
of rendering was running in the CPU. Because the success
of first-person shooting games, as Doom, Duke Nukem
3D and Quake the market has created hardware support
to create better, more-realistic applications with 3D
display. The main companies were the NVIDIA, ATI
Technologies and 3dfx Interactive.

First the graphical hardware took care of transform
and lighting computations, so these operations could run
in the hard-wired graphical processors and the CPU could
use for other tasks. The next breakthrough in parallel-
computing point of view was the first graphic card,
which supported the Microsoft’s DirectX 8.0 standard.
This standard introduced the programmable vertex

216

and pixel shaders. This was the first point, when the
developers were able to influence the control of GPUs
program.

Figure 1: The difference between the CPU and GPU

in measurement of GFLOP/s [2]

Early GPU programming; pain-points

The DirectX APIs was designed to use GPU to execute
special graphical tasks. They were designed to get some
data from “input colors” with some additional “color” or
“texture” information. The programmer could use this
information during the computation. The “color” can
mean any number. A clever, but simple trick was to use
these containers to put data into the GPU, do some
calculations and get back the data.

It is quite simple to see, the pain points of this
approach. The APIs were designed to support graphical
APIs and the programmers needed very deep knowledge
from the graphical platform. There were resource
constraints; data could be loaded as picture and texture
and retrieved data was another picture. So if the
algorithm required accessing a memory area to write, it
cannot run on GPU. It was nearly impossible to predict
how your particular GPU can deal with floating-point
data. They didn’t exist any good method to debug
implementations in GPU.

New GPU programming approach;OpenCL;
CUDA and Stream as platforms

Graphical hardware manufacturer companies came out a
new generation of GPUs, where the partitioned resources
as vertex and pixel shaders where changed and a unified
shader pipeline has been introduced. This new generation
allows each and every arithmetic logical units (ALU) to
be controlled by program intending to perform general-
purpose computations. Usually, like in case of NVIDIA’s
solution, these ALUs were built to comply with IEEE
requirements. Near IEEE these ALUs are able to read
and write memory as well in software-managed ways.
Unlike, each main supplier introduced their own
architecture or standard. The NVIDIA has the “Computing

Unified Device Architecture” (CUDA), the ATI has
the Stream. Near the industry standards there are open
standards as well, the main one is the OpenCL standard
[3].

CUDA architecture

The CUDA architecture has two main parts, one is the
hardware which supports the CUDA programming and it
can be called as device and the programming language
to be able create programs using the device capacity.
The programming language is based on industry standard
C and adds relatively small number of keywords in
order to harness some of the special features of CUDA
architecture. There is a public compiler for this language,
the CUDA C. We are going to give a short overview
about the architecture, but further information you can
refer the CUDA Programming Guide by NVidia [4].

As mentioned before CUDA is an extension of
C language and hides GPU relevant APIs and interfaces.
There are 3 main tasks, which is the task of the developers,
as thread hierarchy, memory access and synchronisation
[5].

Thread hierarchy

To perform computation with CUDA, programmers
have to define a special C function, the so-called kernel.
This is function can be run in a thread using a specified
number of lightweight threads in GPU. The kernel is
loaded to the device from the host, where the “normal”
code is running. Threads are grouped into blocks, and
blocks forms a so-called grid. Threads can communicate
through the memory area assigned to the block. The
blocks are running independently and their behaviour
cannot be affected by the programmer.

Figure 2: CUDA Thread hiearchy [6]

217

Memory hierarchy

There are a lot of types of memory areas, as Global
memory, Shared memory, Constant memory, Registers
and Local memory. The differences between the memory
types are the size, the accessing time, the caching property.
You can read more details in [4] or in [5].

Figure 3: Basic Organization of the GeForce 8800 [7]

Synchronisation

It could be needed to force a central point in the kernel,
where the threads within the same block are waiting for
each other. For example when the shared memory is
used by the threads, it could be necessary to have a
consistent state in case after writing of a thread. The
CUDA language provides mechanism, a __synctrheads()
method, which defines a waiting point in the kernel
code. Each thread executes his code and stops the
processing, while other treads are executed this statement
as well.

Show-cases of CUDA Applications

CUDA has many areas, where it could be used, from the
astrophysics or physical modelling of fluids, through
medical imaging or representing mathematical sets. It
cannot be our goal to describe each one; you can read
more in [8]. As an example one show-case is described
here, from the medical imaging [1].

There are a lot of people, who have been affected by
breast cancer in the past 20 years. Ultimately, every
case of breast cancer should be caught early to prevent
the ravaging side effects of chemotherapy and radiation.
To achieve this, an effective, fast and minimally invasive
way has to be developed. There is the mammogram for
early detection, but it has limitations. During the process
two or more image need to be taken and the images
have to be analysed by skilled doctors. There is another
technique, the ultrasound imaging, which is safer, then
X-ray image made by mammogram, but it is not used in

practice because of the computation limitations. With
the GPU capacity this limitations are eliminated. In
practice 35 GB of data can be generated by a scan. With
Tesla C1060 a doctor can manipulate a highly detailed,
three-dimensional image of the woman’s breast within
20 minutes.

Scheduling algorithms in general

Generally, the purpose of scheduling is to find an optimal
processing order of tasks (also called activities, operations
or jobs) on a set of processors (machines) subject to
several constraints imposed on the tasks, machines and
their mutual relationships. In the literature there are a lot
of types of scheduling models, like shop scheduling
model, real-time scheduling, monoprocessor/dedicated
processor/parallel process models, cyclic scheduling, etc.
[9, 10, 11]

Show-cases of CUDA Applications and a scheduling
algorithm

Parallel computing is considered as it is capable providing
solutions for various complex optimization problems.
[12] solves the traveling sales man problem by means of
GPU. They also used generic operators, and tabu list. In
a hybrid CPU-GPU environment the memory handling
is also important.

[13] applied a two level metaheuristic to solve the
flexible job shop problem. The machine selection layer
and the operation scheduling module are executed
parallel. They implemented a code in C language (CUDA)
for GPU. Also a tabu list was used. [14] suggested the
scheduling problem to solve in aheterogeneousCPU-
GPU environment. The CPU and GPU behave differently
but both can execute the same task. So they implemented
an appropriate load balancing algorithm between CPU
and GPU. They achieved 30–40% speedup.

[14] investigates a flowshop problem to solve by
GPU computing. They focused on an efficient memory
mapping model in order to implement a multiobjective
local searchtask on GPU. They described their speedup
as promising.

[15] describes two approaches to parallel flowshop
evaluation on CUDA platform. According to their
measure the GPU based algorithmis faster up to 5%.

Conclusion

As the result of our first project task we get overview
about the existing solutions and the main power of
parallel computing on the GPU device. The show-cases
have a very wide focus, from the medical to the abstract
mathematic world. In this huge area the scheduling in
manufacturing systems is a little stone. After the literature
research we are going to implement the existing solutions
in our new hardware, when it will be purchased and
installed. We are going to do speed up implementations

218

in direction of floor-shop and job-shop models when the
purchasing process of the new hardware will be finished.

ACKNOWLEDGEMENTS

This research was carried out as part of the TAMOP-
4.2.1.B-10/2/KONV-2010-0001 project with support by
the European Union, co-financed by the European Social
Fund.

REFERENCES

1. J. SANDERS, E. KANDROT: CUDA by example,
Addison-Wesley,(2010), p. 3

2. J. MASOOD: Nvidia Cuda
http://www.hardwareinsight.com/nvidia-cuda/
(2011. 08. 25)

3. OpenCL standard, KronosGroup:
http://www.khronos.org/registry/cl/specs/opencl-
1.0.29.pdf (2011. 08. 25)

4. NVidia Programming Guide 4.0, NVidia Developer
Zone:
http://developer.download.nvidia.com/compute/cuda/
4_0_rc2/toolkit/docs/CUDA_C_Programming_Gui
de.pdf (2011. 08. 25)

5. M. CZAPISNKY, S. BARNES: Tabu Search with two
approaches to parallel flowshop evaluation on
CUDA platform, J. Parallel Distrib. Comput. 71(6),
(2011), 802–811

6. http://mohamedfahmed.wordpress.com/2010/05/03/
cuda-computer-unified-device-architecture/
(2011. 08. 25)

7. S. RYOO, C. I. RODRIGES, S. S. BAGHSORKHI, S. S.
STONE: Optimization Princiles and Application
Performance Evaulation of Multithread GPU Using
CUDA

8. CUDA Showcases, NVidia webpage:
http://www.nvidia.com/object/cuda_showcase_stage.
html

9. J. BLAZEVICZ, K. H. ECKER, E. PESCH, G. SCHMIDT,
J. WEGLARZ: Scheduling Computer and
Manufacturing Processes, Springer, (2001), ISBN
3-540-41931-4

10. P. BRUCKNER, S. KNUST: Complex Scheduling,
Springer, (2006), ISBN 978-3-540-29545-7

11. B. CHEN, C. N. POTTS, G. J. WOEGINER: A review of
machine scheduling: Complexity, algorithms and
approximability, Handbook of Combinatorial
Optimization (Volume 3), (1998), 21–169.

12. J. ZHAO. Q. LIU, W. WANG, Z. WEI, P. SHI: A
parallel immune algorithm for traveling salesman
problem and its application on cold rolling
scheduling. Information Scienced 181, (2011),
1212–1223

13. W. BOZEJKO, M. UCHRONSKI, M. WODECKI: Parallel
hybrid metaheuristics for the flexible job shop
problem. Computers and Industrial Engineering 59,
(2010), 323–333

14. T. V LUONG, N. MELAB, E. G. TALBI: GPU-Based
Approaches for Multiobjective Local Search
Algorithms. A Case Study: The Flowshop Scheduling
Problem. EvoCop 2011, 155–166

15. M. CZAPINSKI, S BARNES: Tabu Search with two
approaches to parallel flowshop evaluation on
CUDA platform. Journal of Parallel and Distributed
Computing Archive, 71(6, June), 2011, 802–811

16. C. J. JIMENEZ, K. VILANOVA, I. GELADO, M. GIL:
Predictive runtime code scheduling for heterogeneous
architectures. HiPEAC 2009, 19–33

