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In this paper we analyse a low-cost commercial chest belt to be integrated into a lifestyle counselling system as a source 
of heart rate data. We compared data from a Schiller ECG Holter device, which serves as a reference to a CardioSport 
device. Due to missing data in the CardioSport device caused by loss of contact with the body, the creation of special 
algorithms was necessary for synchronization and data validation. The results show that when using our synchronization 
algorithms the average absolute percentage error between the two signals was 2% with correlation of more than 99%. 
Using a data validation algorithm, we were able to get on average more than 70% of the signal with an absolute 
percentage error of 3% and a high average correlation of 99%. The mean RR interval values and standard deviation of 
RR intervals are very close to those of the reference device using both the synchronization and data validation algorithms. 
When using the data validation algorithm, the reference measurements produced only slightly better results with regard to 
false detections of atrial defibrillation than the CardioSport device. In conclusion, we found that with a simple pre-
processing algorithm, CardioSport as a low-cost device can be safely integrated into a lifestyle support system as a 
telemedical solution. 
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Introduction 

Low-cost telemedical sensors are often used in modern 
ambient assisted living (AAL) telemonitoring and self-
management systems for providing inputs to medical 
intelligence algorithms [1]. Such systems extend the 
scope of traditional health care that is based purely on 
data measurement. However, the proper interpretation 
and reliability of the results depends on the reliability of 
the measured data and the sensor itself. Nevertheless, 
there are still surprisingly few reviews reported in the 
literature to date on the validation of the information 
content of such low-cost sensors compared to the 
clinically accepted reference device. An example of a 
device that was tested for validity is the SenseWear HR 
Armband [2]. In this study, they used the reference 
device simultaneously with the tested device as a way of 
validating data. However, most of the compared devices 
are expensive high-end devices, which present an 
obstacle for their wide use in telemedicine. 

In this proof-of-concept paper, we analyse a simple 
commercial chest belt chosen to be integrated into the 
Lavinia lifestyle mirror system [3] as a source of heart 
rate (HR) data. In the Lavinia system, the HR signal of 
the patient will be used to (i) estimate the calories burnt 
by physical activity, (ii) calculate the heart rate 
variability (HRV) in order to detect periods of mental or 
emotional stress, and (iii) analyse arrhythmia patterns 
(Poincare plots) for atrial fibrillation detection. Our 
approach involves the comparison of the HRV and 

Poincare plots computed from the filtered chest belt 
signal, with those parameters computed from a 
reference Holter device. 

Methods 

Measurements 

Two devices were used simultaneously by a healthy 
volunteer over a 24 hour period. A Schiller MT-
101/MT-200 Holter device was our reference device 
designed for clinical use. The chest belt was a 
CardioSport TP3 Heart Rate Transmitter device. Since 
this device does not have its own memory for storing 
data, we used a Nexus 7 tablet with Android version 
4.4.2 to connect the device via the Bluetooth 4.0 
protocol and store the measured data on the tablet.  

Although both devices were worn by volunteers for 
24 hours, only 12 hours of the overall signal were used 
for analysis due to frequent detachments of the device 
from the body during nighttime. The measurements of 
12 hours were repeated on 4 additional healthy male 
subjects. 

Signal Analysis 

The direct comparison of measured data was not 
possible due to the different designs of the reference and 
the telemedical devices. However, we wanted to 
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compare signals directly in terms of time and also to 
develop a data validation algorithm for removing the 
noisy parts of the CardioSport device measurements 
reliably without using the reference data. The problem 
was that the chest belt was not firmly attached to the 
body and sudden movements of the device caused signal 
loss. Therefore, we needed to create a software module 
for synchronization and data validation before any 
analysis. Data validation means removing obviously bad 
data (artefacts) and keeping only ‘good’ data segments 
of sufficient length, because, as a rule of thumb, both 
HRV and Poincare plot computations require data 
chunks of at least 5 minutes. Even though the data 
validation algorithm removed a considerable amount of 
data from the original signal, we still had enough useful 
data for analysis from the daytime. 

The Synchronization Algorithm 

Our simple algorithm for signal synchronization uses a 
sliding window that passes from the beginning of the 
chest belt signal to the end and calculates the absolute 
error between the two signals. When sliding finishes, 
the location of the sliding window with the minimum 
absolute error is considered as the point where the two 
signals should be synchronized. This applies only if the 
correlation of the data in the sliding window and the 
same amount of data from the reference device are  
higher than a minimum set by the user. If these 
conditions are met, the algorithm copies data from the 
sliding window into a newly generated third signal, 
which represents the chest belt signal fully synchronized 
with the reference signal. If conditions are not met, the 
third signal is filled with zeros. Finally, the algorithm 
extracts all the highly correlated segments from the third 
signal ignoring zero values. Also, a file with all the 
merged segments is generated for general analysis. The 
algorithm uses the following 5 main parameters that can 
be set up by the user: 
1. window size: amount of data copied from the signal 

into the sliding window (default: 200),  

2. window shift step: the number of samples by which 
we shift the sliding window in each iteration 
(default: 50),  

3. absolute error window: amount of data used for 
calculating the minimum absolute error (default: 
200),  

4. maximum error distance: the number of samples by 
which we shift the absolute error window in order to 
find the minimum absolute error (default: 1000),  

5. minimum correlation: minimum correlation, 
expressed as a percentage, required for the two 
signals to consider data in the chest belt signal as 
accurate (default: 97%). 
Each parameter’s default value was determined 

empirically. After running the synchronization process, 
we obtained segments of highly correlated data. Fig.1 
shows the distribution of the lengths of signal segments. 
We can see that most segments are 3 to 18 minutes long. 
The longest highly correlated segment with the 
reference data is 110 minutes long. The default 
parameter settings minimize the number of overly short 
(< 5 min) segments. Most of the bad segments (Fig.2) 
are shorter than one minute, and only one bad segment 
was 60 minutes long. 

Data Validation Algorithm 

Another type of algorithm was used in the real 
telemedical scenario for finding good parts of the signal 
without relying on reference data. This implies finding 
gaps and abnormal values and omitting them. First, we 
compared the timestamp of each data point with the 
timestamp of the previous one. If the difference between 
the timestamps was longer than 3 seconds, we marked 
this as a ‘gap’. The 3-second gap detection was enabled 
by the chest belt’s buffering system that can tolerate 
short detachments of the device from the body. In the 
second step we identified abnormal values in the signal 
that were treated as gaps. The abnormal values are 
identified by observing the mean value of 20 
neighbouring data points (10 before and 10 after a given 
point). If the mean value differs from the value of the 

 
Figure 1: The distribution of strongly correlated segment 

lengths for all subjects 

 
Figure 2: The distribution of weakly correlated segment 

lengths for all subjects 
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current sample by more than 300 units, we consider it 
invalid and mark it as a gap/error in the signal. Finally, 
we extract the good segments from the signal with a 
length of more than 5 minutes. 

We implemented the above algorithm in a simple 
software tool (Fig.3). On the left-hand side we can load 
the two signals and set the parameter values as well as 
the amount of data to be analysed. The graph shows two 
signals after the synchronization process was 
completed. The user can examine signals by clicking the 
Previous and Next buttons. General statistics are shown 
in the middle part of the screen, while in the lower part, 
we can see the histogram, and save the histogram and 
results as a file. Two tabs in the top left-hand corner 
allow the user to switch between synchronization and 
data validation algorithms. 

Statistical Analysis 

Time and frequency domain analyses, correlation 
comparisons, mean absolute percentage errors, and the 
slopes of scatter plot diagrams were compared between 
two measurements for HRV analysis. The specificities 
of a self-developed atrial fibrillation detector algorithm 
were compared for atrial fibrillation analysis. The latter 
algorithm is based on the k-means clustering of 
Poincaré plots (consisting of RR intervals) 

The time and frequency domain analyses for HRV 
were performed using Kubios HRV analysis software, 

while the rest of the analysis for HRV and atrial 
fibrillation was performed in Microsoft Excel. Atrial 
fibrillation detection was done using the MATLAB 
environment and the results were saved as Microsoft 
Excel workbooks.  

Results and Analysis 

Heart Rate Variability 

After the synchronization process, we got strongly 
correlated (greater than 97%) synchronized data 
segments of various durations. Table 1 summarizes the 
duration of signals analysed.    

Table 2 shows results in the time domain for Schiller 
and CardioSport devices after using the algorithm for 
the synchronization of signals. Time domain analysis 
shows similar values for mean RR values and standard 
deviation (STD RR in Eq.(1)). The average Mean RR 
values for the Schiller and CardioSport devices are 851 
and 871 respectively.  The average STD RR for the 
Schiller device is 108 and 110 for the CardioSport 
device. 

Figure 3: Synchronization and data validation software 

Table 1: Signal duration after the synchronization process 

Subject Duration (h:m:s) 
#1 10:53:28 
#2 8:45:40 
#3 10:30:17 
#4 7:46:56 
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 𝑆𝑇𝐷  𝑅𝑅 = !
!!!

(𝑅𝑅! − 𝑅𝑅)!!
!!!  (1) 

 The frequency domain analysis for the 
synchronization process is presented in Table 3.  The 
absolute power was compared for very low frequencies 
(VLF: 0-0.04 Hz), low frequencies (LF: 0.04-0.15 Hz), 
high frequencies (HF: 0.15-0.4 Hz) and ratios between 
low frequencies and high frequencies (LF/HF). Results 
show no significant difference between Schiller and 
CardioSport device values. The average mean absolute 
percentage error (MAPE) between two signals is 2% 
with a high average correlation of close to 100%.  

Using the data validation algorithm, we extracted 
data points from the collected signals. The duration of 
the resulting signal is shown in Table 4.  It is important 
to note that due to the noise on Schiller device 
recordings, we had to remove noisy parts from the 
original signal. Therefore, even though the signal was 
recorded continuously for 12 hours, overall duration is 

much less. Calculations show that in the worst scenario 
only 45% of the signal can be used for analysis using 
this data validation method, while in the best scenario 
this number reaches 95%. This leads to a conclusion 
that results are rather subject dependent. 

 The results of data analysis in the time domain after 
the removal of bad parts using the validation algorithm 
can be seen in Table 5. The mean RR intervals for 
Schiller and CardioSport devices are 851 and 871 and 
standard deviations are 104 and 106, respectively. The 

CardioSport device has slightly greater values, but these 
are practically identical. 

The frequency domain analysis for the data 
validation process is presented in Table 6. The absolute 
power was compared for very low frequencies (VLF: 0-
0.04 Hz), low frequencies (LF: 0.04-0.15 Hz), high 
frequencies (HF: 0.15-0.4 Hz), and ratios between low 
frequencies and high frequencies (LF/HF). As in the 
synchronization process, the results show no significant 
difference between the Schiller and CardioSport device 
values. 

 The minimum, maximum and average percentage 
errors on whole signals were calculated using 5 minute 
long sliding windows with one minute long shift steps 
(Table 7). Only one subject had a high maximum error 
value of 34%. By visual examination, it was determined 
that the cause of such a high error was the artefact of the 
Schiller device. In spite of that, the average error 
remained low (2%). 

Table 2: Time domain analysis after synchronization  

 Mean RR (ms) a STD RR (ms) b 
Subject Schiller CardioSport Schiller CardioSport 

#1 738 755 123  125  
#2 704 720 91 93  
#3 908 929 90  93  
#4 855 875 145  148  
#5 937 959 107  109  

Average 851 871 108  111  
a with 2% error, b with 1-3% error 

Table 3: Frequency domain analysis after synchronization  

 Schiller CardioSport Error 
Subject Absolute power (ms2) Absolute power (ms2) % % % % 

VLF LF HF LF/HF VLF LF HF LF/HF VLF LF HF LF/HF 
#1 7937.6 3086 1578 1.956 8444 3224 1330 2.4235 6 4 19 19 
#2 5431.5 626.6 245 2.557 5723 659.3 250.9 2.6281 5 5 2 3 
#3 4251.2 1927 494.4 3.898 4543 2055 538.8 3.8146 6 6 8 2 
#4 12682 1790 636.5 2.813 13514 1869 621.5 3.0077 6 4 2 6 
#5 6139.8 1212 476.7 2.542 6465 1274 481.4 2.6459 5 5 1 4 

 
Table 4: Signal duration after data validation  

Subject  Duration (h:m:s) 
#1 1:28:10 
#2 11:20:03 
#3 6:15:38 
#4 9:27:07 
#5 4:29:44 

 

Table 5: Time-domain analysis after data validation  

 Mean RR (ms) a STD RR (ms) b 
Subject Schiller CardioSport Schiller CardioSport 

#1 701 724 136 139 
#2 700 717 91 93 
#3 899 921 100 100 
#4 846 866 139 142 
#5 958 981 88 90 

Average 851 871 105 106 
a with 2% error, b with 0-2% error 

Table 6: Frequency domain analysis after data validation  

 Schiller CardioSport Error 
Subject Absolute power (ms2) Absolute power (ms2) % % % % 

VLF LF HF LF/HF VLF LF HF LF/HF VLF LF HF LF/HF 
#1 10414 2297 1171 1.96 10847 2442 1004 2.43 4 6 17 19 
#2 5446 631 245 2.57 5718 654 245 2.67 5 3 1 4 
#3 5163 1990 523 3.80 5424 2054 540 3.80 5 3 3 0 
#4 11683 1769 616 2.87 12149 1831 594 3.08 4 3 4 7 
#5 4356 1235 317 3.89 4522 1303 330 3.95 4 5 4 1 
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 Fig.4 represents a typical relationship between 
CardioSport and Schiller devices. All gradient values 
are close to 1. The lowest slope value is 0.98 while the 
highest value is 1.02. The average mean absolute 
percentage error (MAPE) between two signals was 3% 
with a strong average correlation of 99%.  

Atrial Fibrillation 

We carried out the detection of atrial fibrillation (AFib) 
by analysing POINCARÉ plots consisting of 30 RR 
intervals. We considered 30 RR intervals per iteration 
and in each iteration after constructing the POINCARÉ 
plot we calculated the dispersion around the diagonal 
line and used k-means based cluster analysis to 
determine the number of the clusters. If the dispersion 
was too high (greater than 0.06) and the number of 
clusters was 1, or the number of clusters was more than 
9; we assigned “AFib” to that series of RR intervals, 
otherwise to “Non-AFib”. The details of the algorithm 
can be seen in our previous study [16]. Since our data 

set did not contain real AFib cases, only specificity 
could be calculated with regard to the efficiency of 
detection. The evaluation of atrial fibrillation detection 
results for synchronized data validation can be seen in 
Tables 8 and 9.  

Conclusion 

Even though the CardioSport device may suffer from 
signal loss due to its design, we managed to determine 
that it can be safely used for telemedical purposes of 
measuring HRV and atrial fibrillation. We found only a 
few usable data segments that were less than 5 minutes 
long. With our algorithm that detects gaps and errors in 

Table 7: The minimum, maximum and average percentage 
errors 

Subject Minimum 
error 

Maximum 
error 

Average 
error 

#1 0.1% 3.5% 1.5% 
#2 0.0% 7.7% 2.1% 
#3 0.0% 33.9% 3.2% 
#4 0.1% 6.7% 1.9% 
#5 0.1% 5.1% 2.2% 

Average 0.1% 13.4% 2.4% 
 

 
Figure 4: Comparison of the CardioSport and Schiller 

devices after data validation 

 
Table 8: Results from the synchronized data related to atrial fibrillation detection 

Subject Number of 
iterations 

Schiller MT-101/MT-200 system CardioSport TP3 Heart Rate Transmitter 
AFib cases Non-Afib cases AFib cases Non-Afib cases 

#1 331 26 8% 305 92% 31 9% 300 91% 
#2 1796 9 1% 1787 99% 3 >1% 1793 ~100% 
#3 1120 7 1% 1113 99% 5 1% 1115 99% 
#4 1427 11 1% 1416 99% 16 1% 1411 99% 
#5 964 46 5% 918 95% 45 5 919 95% 

Min - - 1% - 92% - >1% - 91% 
Max - - 8% - 99% - 9% - ~100% 
Mean - - 3% - 97% - 3% - 97% 
STD - - 3% - 3% - 4% - 4% 

 

Table 9: Results from the data validation process related to atrial fibrillation detection 

Patient Number of 
iterations 

Schiller MT-101/MT-200 system CardioSport TP3 Heart Rate Transmitter 
AFib cases Non-Afib cases AFib cases Non-Afib cases 

#1 241 3 1% 238 99% 8 3% 233 97% 
#2 1879 29 2% 1850 98% 2 >1% 1877 ~100% 
#3 808 15 2% 793 98% 3 >1% 805 ~100% 
#4 1296 10 1% 1286 99% 20 2% 1276 98% 
#5 544 6 1% 538 99% 7 1% 537 99% 

Min - - 1% - 99% - >1% - 97% 
Max - - 2% - 99% - 3% - ~100% 
Mean - - 1% - 99% - 1% - 99% 
STD - - >1% - >1% - 1% - 11% 
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the signal and removes them with an average 
effectiveness of more than 70%, which translates into 
having enough data to calculate HRV and atrial 
fibrillation from daytime measurements. 

Regarding atrial fibrillation detection, we can 
conclude that by using the developed data validation 
algorithm the reference Schiller MT-101/MT-200 
measurements produced only slightly better results with 
regard to false detections than the CardioSport TP3 
Heart Rate Transmitter. In two cases the CardioSport 
measurements proved to be even better than Schiller 
records, which implies that some relatively simple heart 
rate recorders are equivalent to some Holter devices 
after signal processing using the data validation 
algorithm. We have to emphasize; however, that we 
have not performed any measurements on actual atrial 
fibrillating patients yet. Therefore, the investigation of 
the sensitivity of our atrial fibrillation detection 
algorithm under the presented circumstances could be 
the subject of further studies. In summary, the 
CardioSport as a low-cost device can easily be 
integrated into a lifestyle support system as a 
telemedical solution. 
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