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A simple kinematic model of a differential steering mobile robot is investigated using a nonlinear technique based on
the quasi-polynomial representation of the dynamical model. Dynamical systems can be embedded in the generalized
Lotka-Volterrs (or quasi-polynomial) form under mild conditions. Quasi-polynomial systems are good candidates for a
general nonlinear system representation, since their global stability analysis is equivalent to the feasibility of a linear matrix
inequality. The stabilizing quasi-polynomial state feedback controller design problem is equivalent to the feasibility of a
bilinear matrix inequality. The classical stabilizing state feedback problem for quasi-polynomial systems was extended with
the ability of tracking time-dependent reference signals. It is shown that the stabilizing quasi-polynomial controller design
is equivalent to a bilinear matrix inequality. The results are applied to the model of the differential steering mobile robot.
The goal reaching quasi-polynomial controller is shown to be a special kind of proportional state feedback.

Keywords: quasi-polynomial, robotics, differential drive robot, control systems, kinematics, Lotka-Volterra system

Introduction

Trajectory and goal tracking of mobile robots is an inten-
sively studied field of modern robotics as well as mod-
ern control theory. Several papers deal with an adaptive
output feedback approach [1]. On the other hand some
groups try to apply neural network-based methods for
the task [2]. Another direction is to describe the prob-
lem as an optimal control problem and apply optimal
control results for it [3]. The class of quasi-polynomial
(QP) systems plays an important role in the theory of
nonlinear dynamical systems because nonlinear systems
with smooth nonlinearities can be transformed into quasi-
polynomial form Ref.[4]. This means, that any applicable
method for quasi-polynomial systems can be regarded as
a general technique for nonlinear systems [5]. The aim
of this work is to widen the applicability of the quasi-
polynomial representation-based methods to the class of
mechanical systems, more precisely to mobile robots.
The goal reaching problem of a differential steering mo-
bile robot is reformulated as a globally stabilizing feed-
back design problem in the quasi-polynomial framework.

Basic Notions

Differential Drive Mobile Robot Kinematics

The chosen mechanical system is the kinematic model of
a two wheeled differential drive mobile robot Eq.(1). The

model deals with the geometric relationships that govern
the system. It calculates the motion without considering
the affecting forces. The system’s states are the Cartesian
coordinates x, and y and the orientation θ of the mobile
robot. The basic kinematic model of the differential drive
robot is given by

θ̇ =
r

2a
(ωleft − ωright)

ẋ =
r

2
cos(θ)(ωleft + ωright)

ẏ =
r

2
sin(θ)(ωleft + ωright), (1)

where a is half the shaft’s diameter, r is the radius of the
wheels and ω is the angular velocity of the right or left
wheel. To order the robot to reach a specific goal, it is
acceptable to design a proportional controller to govern
the expected trajectory Eq.(2) [6] . In this case, the model
is modified to calculate the state errors between the or-
dered and the present value. The new error model with
proportional gain is

ẋ = Kv(edis cos(θ)− x(t))

ẏ = Kv(edis sin(θ)− y(t))

θ̇ = Kh(eang − θ(t))

edis =
√

(xg − x(t))2 + (yg − y(t))2

eang = arctan

(
2
yg − y(t)

xg − x(t)

)
, (2)

whereKv is the velocity control gain,Kh is the rotational
velocity control gain, edis is the distance error, eang is the
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angular error, and xg, yg are the Cartesian coordinates to
reach.

Quasi-Polynomial Representation of Nonlinear Systems

Some basic notions of quasi-polynomial and Lotka-
Volterra systems are summarised in this section.

Generalised Lotka-Volterra Form

Representing an ODE in generalised Lotka-Volterra
(GLV) form can increase the structural simplicity in ex-
change for increasing its dimension. The GLV or quasi-
polynomial (QP) form:

ẋi = xi

(
λi +

m∑
i=1

Aij ·
n∏
k=1

x
Bij
k

)
,

i = 1, . . . , n,
m ≥ n

(3)

where A and B are n × m, m × n real matrices, and
λ ∈ Rn is a vector. The set of non-linear ODEs can be
embedded into QP form if it meets two requirements: (i)
The non-linear ODEs should follow this form:

ẋs =
∑

is1...isn,js

ais1...isn,jsx
is1
1 . . . xisnn f(x̄)js ,

xs(t0) = x0s,
s = 1 . . . n

(4)
where ais1...isn,jsεR, s = 1 . . . n, and f(x̄) is some scalar
function which cannot be reduced to quasy-monomial
form. (ii) The partial derivatives of the system Eq.(4)
should fulfil:

∂f

∂xs
=

∑
es1...esn,es

bes1...esn,esx
es1
1 . . . xesnn f(x̄)es ,

(5)
where bes1...esn,esεR, s = 1 . . . n. By embedding, we in-
troduce the new auxiliary variable:

y = fq
n∏
s=1

xpss.

q 6= 0
(6)

Differentiating the new, substituted equations we get the
QP representation of the original equation Eq.(4):

ẋs = xs

 ∑
is1...isn,js

(
ais1...isnjsy

js/q

n∏
k=1

xisk−δsk−jspk/q

)]
,

s = 1 . . . n (7)

where δsk = 1 if s = k and 0 otherwise. A new additional

dimension appears as the ODE of the new variable y:

ẏ = y

[ ∑
is1...isn,js

(
psx
−1
s ẋs +

+
∑
isα,js
esα,es

aisα,jsbisα,jsqy
(es+js−1)/q ×

×
n∏
k=1

x
isk+esk+(1−es−js)pk
k

)]
.

α = 1 . . . n (8)

It is important to mention that the new ODE is not unique
because we can choose the parameters ps and q.

The quasi-monomial transformation is defined as:

xi =
n∏
k=1

xCikk ,

i = 1 . . . n
(9)

where C is an arbitrary invertible matrix. The matrices of
GLV can be modified as B̂ = B · C, Â = C−1 · A, and
λ̂ = C−1 ·λ, and the transformed set is also in GLV form.

Lotka-Volterra Models

The above family of models is split into classes of equiva-
lence according to the values of the products M = BA
and N = BL. The Lotka-Volterra form gives the rep-
resentative elements of these classes of equivalence. If
rank(B) = n, then the set of ODEs in Eq.(3) can be
embedded into the following m-dimensional set of equa-
tions, the so-called Lotka-Volterra model:

żj = zj

(
Nj +

m∑
i=1

Mjizi

)
, j = 1, . . . ,m (10)

where
M = BA, N = BL,

and each zj represents a so-called quasi-monomial:

zj =

n∏
k=1

y
Bjk
k , j = 1, . . . ,m. (11)

Input-Affine QP Model

The well known input-affine model of nonlinear sys-
tems is given in the following state space model:

ẋ = f(x) +
p∑
j=1

gj(x)uj

where f ∈ Rn → Rn, and gj ∈ Rn → Rn are QP
functions and the input variable u is p-dimensional. In
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Figure 1: Membership functions for angular error

this case we need a QP form with the matrices from the
GLV form ODE set:

ẋi = xi

λi +

m∑
j=1

A′ij

n∏
k=1

x
Bjk
k

+

+

p∑
l=1

xi

µli +

m∑
j=1

Clij

n∏
k=1

x
Bjk
k

ul.

i = 1 . . . n (12)

It can be proven that if u = H(x) state feedback is in QP
form, the closed-loop system remains in QP form as well,
but the quasi-monomials of the system will be greater,
than the system’s without the feedback.

Global Stability Analysis

Global equilibrium points can be obtained by finding
a Lyapunov function V (·). For LV systems there is a well
known Lyapunov function family:

V (z) =

m∑
i=1

ci

(
zi − z∗i − ln

zi
z∗i

)
,

ci ≥ 0, i = 1 . . .m (13)

and the time derivative:

V̇z =
∂V (z)

∂z
· ∂z
∂t

=

=
1

2
(z − z∗)(CM +MT C)(z − z∗),

(14)
where z∗ = (z∗1 . . . z

∗
m)T is the unique positive equilib-

rium point, C = diag(c1, . . . , cm) and M is the invari-
ant coefficient matrix of the LV form. If CMT +M C
is negative semi-definite then z∗ is stable and if nega-
tive definite then z∗ is asymptotically stable. The global
stability analysis is thus equivalent to the linear matrix
inequality

CMT +M C ≤ 0

C > 0. (15)

The presented Lyapunov function Eq.(13) can be ex-
tended to GLV systems by embedding the system using
the LV coefficient matrix M = BA. It is necessary to

solve the LMI system Eq.(15) for the stability analysis of
the QP and LV system:(

C 0

0 −CMT −M C

)
> 0 (16)

Controller Design in Quasi-Polynomial Representation

The globally stabilizing QP state feedback design prob-
lem for QP systems can be formulated as follows [7].
Consider arbitrary quasi-polynomial inputs in the form:

ul =

r∑
i=1

kilq̂i, l = 1 . . . , p (17)

where q̂i = q̂i(y1, . . . , yn), i = 1, . . . , r are arbitrary
quasi-monomial functions of the state variables of the
system and kil is the constant gain of the quasi-monomial
function q̂i in the l-th input ul. The closed-loop system
will also be a QP system furthermore, the closed-loop LV
coefficient matrix M̂ can also be expressed in the form

M̂ = B̂ Â = M0 +

p∑
l=1

r∑
i=1

kilMil. (18)

Then the global stability analysis of the closed-loop sys-
tem with unknown feedback gains kil leads to the follow-
ing bilinear matrix inequality

M̂
T
C +CM̂ = M0

TC +CM0+
p∑
l=1

r∑
i=1

kil

(
Mil

TC +CMil

)
≤ 0.

(19)

The variables of the BMI are the p × r kil feedback
gain parameters and the cj , j = 1, ..,m parameters of
the Lyapunov function. If the BMI above is feasible then
there exists a globally stabilizing feedback with the se-
lected structure.

Quasi-Polynomial Control of a Differential Drive
Mobile Robot

Quasi-Polynomial Representation of the Kinematic
Model

With the given differential drive robot model Eq.(1) and
the explained error model Eq.(2) the QP representation
can be built. The fist step as mentioned, is to find the new
auxiliary variables, that help to eliminate the non-QP ex-
pressions. The newly chosen auxiliary variables are:

α = cos(θ),

β = sin(θ),

γ = arctan

(
2
yg − y
xg − x

)
,

δ = (xg − x)2 + (yg − y)2, and

ε =
√
δ + (xg − x). (20)
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Figure 2: Comparison of different controllers

By substituting them into the original system Eq.(2)
and performing the differentiation of the new equations
Eq.(20):

ẋ = x

(
Kv

√
δα

x
−Kv

)

ẏ = y

(
Kv

√
δβ

y
−Kv

)

θ̇ = θ

(
Khγ

θ
−Kh

)
α̇ = α

(
−β
α

)
β̇ = β

(
α

β

)
(21)

γ̇ = γ·
(
− 2Kvβ

√
δ

γε +Kvy
γε −Kvxgβ

γε +Kvxβ
γε

+
Kvxgy

γε
√
δ

−Kvxy

γε
√
δ

+
Kvygα
γε −Kvyα

γε

−Kvygx

γε
√
δ

+Kvxy

γε
√
δ

)
(22)

δ̇ = δ
(
− 2Kvxgα√

δ
+

2Kvxgx
δ + 2Kvxα√

δ
− 2Kvx

2

δ

− 2Kvygβ√
δ

+
2Kvygy

δ + 2Kvyβ√
δ

− 2Kvy
2

δ

)
(23)

ε̇ = ε
(
−Kvxgα

ε +Kvxα
ε +

Kvxgx

ε
√
δ

−Kvx
2

ε
√
δ

−Kvygβ
ε +Kvyβ

ε +
Kvygy

ε
√
δ

−Kvy
2

ε
√
δ

+Kvα
ε −Kvx

ε
√
δ

)
(24)

Figure 3: Membership functions for distance error

The closed-loop QP system Eq.(21-24) has 29 quasi-
monomials.

x : α
√
δx−1

y : β
√
δy−1

θ : γθ−1

α : βα−1

β : αβ−1

γ : β
√
δγ−1ε−1, yγ−1ε−1, βγ−1ε−1,

xβγ−1ε−1, yγ−1δ−1/2ε−1, αγ−1ε−1,
yαγ−1ε−1, xγ−1δ−1/2ε−1

δ : αδ−1/2, xδ−1, xαδ−1/2,
x2δ−1, βδ−1/2, yδ−1,
yβδ−1/2, y2δ−1

ε : αε−1, xαε−1, xε−1δ−1/2,
x2ε−1δ−1/2, βε−1, yβε−1,
yε−1δ−1/2, y2ε−1δ−1/2,

(25)
The QP system Eq.(21-24) can obtain the GLV form in-
variants with the help of monomials.

These matrices are: A the coefficient matrix, B the
exponential matrix and λ the constant’s matrix. The in-
variant matrix product BA results in the LV coefficient
matrix M , which is necessary for the global stability
analysis.

Controller Design

As the original model Eq.(2) already contains the propor-
tional controller parameters Kh and Kv, they naturally
appear in the QP and Lotka-Volterra forms, respectively.

The closed-loop Lotka-Volterra coefficient matrixM
contains the proportional gains in a linear manner Eq.(26)
[7]

M = M0 +KhMh +KvMv, (26)

where M ∈ R29×29. This means, that the globally sta-
bilizing feedback design BMI can be formulated, and
checked for feasibility.

The controller design is practically solved as a
control-Lyapunov function-based state feedback. The
prescribed Lyapunov function parameters are c1,2,3 =
0.1, c4,5 = 1 and c6−29 = 0. The control gains are ob-
tained by solving an LMI version of the feedback design
BMI by substitutingC into Eq.(19). The obtained values
are Kh = 2.78 and Kv = 0.8.
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Table 1: Rules for the fuzzy controller

∧ ∧
eang edis ωleft ωright

ZERO ZERO

⇒

ZERO ZERO
POS ZERO POS NEG

ZERO NEG POS
ZERO POS POS POS
POS POS POS ZERO

POS ZERO POS

Comparison of Results for Different Controller Types

The first and most basic method was the proportional
controller approach. This was explained in the second
chapter. This is a more systematic approach, but with the
increasing non-linearities it is becoming a more difficult
method to solve. Fig.3 shows that the robot moves on a
significantly wider curve compared to the other two de-
signs.

Secondly a fuzzy controller was designed to com-
pare the original design to. This is a much more intuitive
approach, the physical nonlinearities were easily imple-
mentable with the cost of inaccuracy. This can be seen in
Fig.3, where the robot travels on a much smaller curve.
Table 1 shows the definition of the rules. The member-
ship functions follow simple triangular shapes according
to the acceptable rate of angular and velocity changes.
The QP controller performance can be seen in Fig.3.
where a classical PID controller and a fuzzy logic con-
troller are also shown. It is apparent, that the QP con-
troller performs well by means of the length of the trajec-
tory.

Conclusions

A quasi-polynomial representation-based nonlinear con-
trol design method has been applied to the kinematics of
a differential steering mobile robot in this work. It has
been shown, that the quasi-polynomial model of the mo-
bile robot’s kinematics extended with the tracking error
dynamics has 29 quasi-monomials, i.e. the sizes of matri-
ces appearing in the bilinear matrix inequality that should
be solved for a globally stabilizing feedback controller
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