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The specific energy consumption, and - by way
of this ~ the expenditure of the transportation of
solid, granular material with a gas stream is highly
dependent on the dimensions of the transport conduit
and on the working parameters. If the output of the
transport system is given, the diameter of the conduit
and the amount of transporting gas has to be chosen 8o
as to obtain minimum transportation costs.This problem
was solved by the introduction of intermediate variab-
les. A method of calculation is proposed for the de-
termination of the optimum values of the process para-
meters, such as gas flow rate and volume ratio of
solid. The application of the method is illustrated
with the example of vertical transportation of sodium
bicarbonate.

The way in which problems of transportation - encountered
during industrial production - are solved, often contribute in
quite a decisive manner to the costs of production. Accordingly,
determination of the optimum parameters of the transportation
processes applied is closely related to the economic efficiency
test of production processes.

Transportation of solid, granular material through pipelines
by a gas stream has become more and mor popular in almost every
branch of industry. The widespread application of this process is
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explained by its numerous advantages.The dosts of the installation
of the device are low,it can be easily automatized, whereby manual
labour can be dispensed with and labour expenses are accordingly
reduced. A minimum amount of maintenance is necessary, since there
are no moving mechanical parts subject to abrasion and the func-
tioning of the apparatus is highly reliable. The space requifement
of the transport conduits is moderate, the pattern of the arrange-
ment of the pipeline is practically unlimited and consequently it
can easily be installed even in plants that are already in opera-
tion. The conduit 1lines are hygienic and thus they can also be
used in food manufacture. In the chemical industry, the main ad-
vantage of the method is that it can be combined with other
processes, such as heat exchange, drying, and regeneration of a
catalyst, etc. A production process can be made more economical by

a combination of such operations.

There is in effect only one drawback to transportation with
a gas stream and this is its high energy requirement. The latter
may be, at an identical output, as high as five times, or even
twenty times as high as that of mechanical devices. The scattering
of the energy consumption within extremely wide limits provides a
clear indication of the major importance of the actual values of

the main dimensions and operating parameters.

THE OBJECTIVE FUNCTION AND CHARACTERISTICS TO BE OPTIMALIZED

The economical aim of optimalization is maximum profit or
minimum expenses. However, due to the complicated nature of econc-
mic and commercial parameters - which may influence profit in &
direct way, i.e. independently of the procedure - it seems more
simple to search for a minimum expenditure. The latter is influ-
enced by a number of parameters. However, changes in the para-
meters of a given process influence only the amortization and
energy expenses, and accordingly only these two will be consid-

ered as a functional aim [1, 2]:
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N = N + N (1)

When designing a transport device, the sort of material to
be transported, the output, and the starting- and end-points of
transportation are usually defined by the problem itself. On the
other hand, in the case of transportation with a gas stream it is
- within certain limits - up to the designer to decide the quan-
tity of the carrier gas and the diameter of the conduit. During
optimalization, the particular values of these two independent
variables are sought, at which the sum of the amortization and
energy expenses - as related to the unit amount of transported

material and the unit path lenght of transportation - are minimal.

In the calculation of the amortization cost, the weight of

the transport conduit is taken as the basis:

Ya"

N = Ca — (Di - D2) (2)
L v G
a's

or, expressed with the wall thickness of the conduit:

Y ® y wé

N =¢c 2 —5§2+c 22 (3)
a a 1 G a a 1 G
a s a s

The cost of energy can be calculated from the pressure drop in the

transporting gas:

Ap G
N, =C, — —£& (4)
L YgGs

Accordingly, the compléete objective function is:

[ A G
Ya' 2 Ya” a _i -8 (5)
N=2¢C e 8 + Ca G D + Ce T 6
a Ta s a a’s 2 g's
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OPTIMUM VALUES OF THE OPERATIONAL PARAMETERS

The flow characteristics.(such as pressure drop, and rate
values, etc.) are generally described by the gas flow rate and the
volume ratio of the solid. These operational parameters do not
appear in the expense function, but they influence the values of
the expense terms and at the same time they also depend on the
value of the independent variable in the objective function.
Accordingly, these parameters will MBe regarded as intermediate
variables.

The relation between the independent and the intermediate

variables is the following:

G8 = T tsysus (6)
_ D2y
Gs = N ygu (1)

Considering Equations (6) and (7), Equation (5) can be brought to
the following form:

Ay Apu
F = A; + + Ay — (8)
Ve _u 88
S s
where
Yy
2
AL = Cy T G 6o (9)
a s
v, 8 i
a’s x 10)
A =2 C, — TG (
s s
[+
Az = £ S (1)
vy L

The particle flow rate (us) and the pressure drop (Ap) are func-
tions of the gas flow rate and the concentration of the solid:
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u, = F (u, es) (12)

Ap/L = Fp (u, es) (13)

In order to find the optimum of the operational parameters, the
extreme .value of the objective function (8) according to interme-

diate variables € and u is found to be:

aus dAp aus
3N A, €8 de * g €5lg de - opleg de +ug)
== - 75 + Agu 5 =0 (1h4)
Bes 2 (esus) (:sus)

After rearrangement and reduction:

3Ap
€
A, s 8 aes
= J.i__ 3u - Ap (15)
2 Aj €. u
s's | e, 3Tt ug
or
3 1ln Ap
Aa Apu 3 1n ¢
= - -1 (16)
2 A, Je_u 3 ln u )
s°s 8
e !
3 1ln ¢
s
By application of simpler designations:
Ap u
= ¢ (17)
VEgUs
whence we have
Az 1 1
= 9 - E (18)
2 A, 9 1n €, 3 1n ug
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The partial derivative of the objective function according te (u)

is:
aus 9AD aus
oN Ay s (w — + Ap)ssus - bp uey —— .
_ ou 9 u du
P 372 * As 2 =0 (9
du 2 (e u) (e _u_)
s s s s

After rearrangement we have:

Ay Apu d 1n Ap d ln u
= + -1 (20)

2 Aj Jesus 8 1n u 9 1n u

S

Taking Equation (17) into consideration:

Ay 9 ln ¢

]
-

1
- = (21)
2 Ajg 9 1n u. 2

The optimum value of the two operational parameters can be deter-
mined from Equations (16) and (20) or (18) and (21). These Equa-
tions also provide information on the internal relation between

the optimum values of the concentration and gas flow rate:

9 1n Ap 9 1In u
s
—_—— 1l = - — (22)

3 1n u 9 1n €
s

Minimum expenditure can be determined for a given transpor-
tation assignment if the concrete form of functions (12) and (13)
is known, or there are experimental data on the particle flow rate
and gas pressure drop as a function of the gas flow rate and solid

concentration at the designer’s disposal.
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Pressure-drop and Rate Relations in Gas-Solid Two-Phase Flow

Due to the flow resistance, the solid granular material
brought into the gas stream is accelerated and carried away by the
gas stream in the conduit, if the gas flow rate is higher than the
terminal free falling velocity of the particles. A gas stream of
the flow rate (ug) carries the solid particles with a free falling
velocity of (us) this being lower than the former. The relative
rate v = u, - ug supplies the driving force necessary for trans-
portation. The relative retardation of the material stream alters
the composition of the gas-solid mixture in the conduit as compared
to the composition of the material fed into the system. As a
consequence of collisions and friction occurring during transpor-
tation, the solid is slowed down and has to be accelerated again
by the gas stream.This continuous rate energy withdrawal manifests

itself in a loss in pressure.

The value of the pressure drop is calculated - according to
the modern view point - from the equilibrium of forces acting
upon one unit volume of the two-phase stream [3-12]. The following
simplifications were introduced for the stream of a gas-solid

mixture travelling along a straight conduit:
- the flow is stationary and unidimensional,

- the flow rate of the gas and solid along the cross

section of the conduit is constant,

the solid particles are sphere-shaped and of the same
size,

the distribution of the solid material along the cross

section of the conduit is uniferm,
- the changes in the state cf the gas are isothermal.

The equilibrium of the forces acting upen one unit volume of

the two-phase stream can be expressed by

Adp =T +T_+5S_+K

i
1
{
i
i
i
i
i
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where the individual terms are:

the inertia force of the gas:

T = -9 4
e N € . ugdu8 ‘ (2%)

the inertia forces of the solid

D2y

Y
. N e, — u du_ (25)

the friction forces of the gas:

D2n aL vy
§ = 3) £ y2 (26)
g h D 2g &

the force impeding motion of the solid:

Dex

ysts(aug + b) 4L (27)

The latter term accounts for effects arising from the collision,

friction and 1lifting of the solid particles.

Accordingly, considering Equations (2%), (25), (26) and (27),
the equilibrium equation (23) will take the form

Y Y Ay
dptc—sudu +cs-—susdus+s——&u§ dL+esys(au§+b) dL
g g D 2g (28)

The first term in Equation (28) can be disregarded, if the expan-
sion of the gas stream may be neglected. In the section where the
transport is of constant rate, dus/dL = 0 and consequently the
second term of Equation (28) may also be neglected. Accordingly,
the value of pressure drop in a straight conduit of optional posi-

tion is
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Ay
ap =€ — B w2 1 4+ ¢ ys(au2 + b)) L (29)
D 2g g 8 s
It must be pointed out that the explanation given for factors a
and b in the Equations by various authors differs. According to
BARTH and his followers [3-9])

.

A

a = —L (30)
2 Dg
b = sin a + Bo cos a (31)

The value of the additional pipe friction coefficient AJ, as de-
termined by measurement, is generally given as a function of the
Froude-number, with the parameters of the transport characteris-
tics. The factor Bo accounts for the work necessary to lift the
particles in the case of horizontal transportation.

The motion-retarding force K, in Hungarian literature, based
on works by PATTANTYUS [10], PAPAI [11] and SZONYI [12], is consi-
dered to be - in addition to the lifting force required in verti-
cal transportation - the result partly of collisions and partly
of friction. Assuming the mean of the retaining force originating
from collisions in time to be a force that is acting continuously,

the following expression is obtained for factor a:

k
a =X (1+c; sin a) (32)
2g
whereas factor b accounts for the vertical 1ifting of the weight
and the friction of the solid material:

(33)

- b = sin a + kzis

Es is a constant characteristic of the quality of the solid and of

the conduit wall.
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In addition to the quality of the transported material and
the conduit, the values of factors a and b also depend on the
concentration of the solid. According to SZONYI [12], the L
collision coefficient included in factor a has - in the case of
low solid concentrations (es < 0.03) - a high and practically
constant value.The latter decreases with increasing concentration
in an exponential manner. The value of the proportionality factor
ky increases with increasing solid concentration. In a horizontal
conduit, the particles whole weight participates in creating a
friction force and the value of k, tends to 1. A smaller friction
force arises, according to experience, in vertical transportation
and consequently the value of k,; can be only a fraction of that
encountered in the previous case. In the case of transportation in
a dilute stream - especially if the solid parficles are elastic -

k, tends to zero.

The motion equation of the solid material - with the use of
the simplifications discussed earlier - can be derived from the
equilibrium of the forces acting upon the particles dispersed in
one unit volume of the conduit.The resistance of medium - brought
about by the relative velocity between the particles and the gas
stream - acts as a driving force and this must be in equilibrium
with the inertia force of the particles, and the retaining forces

originating from friction or/and collision and lifting work:

Y , D= u, dug

coA, B (u -u)? = e v,aL| = + au + b (34)
2g g L s g 4L

Assuming the specific gravity of the gas to be negligible, as com-

pared to that of the solid: Yot YR Vg the weight of the solid

g
present in a unit volume can be expressed with the aid of the ter-

minal free falling velocity:

D?x Y
e y dL = C.,A £ 2 (35)
s's h"'h s
L 2g

Accordingly, the equation of motion of the solid phase of a two-

-phase gas-solid system is:
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dus g (u_ - us)2
—_— i —— B s - &\12 - b (36)
aL u v2 s
s s

In the case of the transportation of a stationary rate dus/dL =0
and by introduction of the gas flow rate as calculated for the

empty conduit cross section:

1 u 2
v = ——— e v (1 - av2)p + a = (37)
s s 2

VARIATIONS IN THE EXPENDITURE OF TRANSPORTATION IN THE FUNCTION OF

OPERATIONAL PARAMETERS

The formation of expenditure and optimum determination is
illustred with the example of the vertical transportation of
sodium bicarbonate. The characteristics of the material to be
transported are as follows:

5

4a = 9 « 10" metres

2200 kilograms (weight)/cu.metre

v 0.45 metres/second

o

The transporting gas is air.

For the values of factors a and b of Equations (29) and (37)

the experimental values

= 8. 1073

v = 1

were found in tests carried out in a conduit of the diameter

D = 36 millimetres in dilute-stream (ss <.0.005) transportation.

The value of the friction coefficient, as referred to the

empty tube, is A = 0.03. By using data published by WEBER {91, the

connection between the concentration o- the solid and factor a can

be described by the following empirica” Zormula:

-0.0585 ¢
a=8-.103 e s (38)
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The particle
flow rate values, as
calculated by Equa-
tion {37), are il-
lustrated as a func-
tion of gas rate in
Fig.l. Measured data
pertaining to trans-
portation in a dilute
stream (es < 0.005)
are also included in
the Figure. The
pressure-drop rela-
tions, 1in accordance
with Equation (29)
far the case of
transportation of so-
dium  bicarbonate

are shown in Fig.2.

By substituting
the pressure drop
and particle flow
rate values, as ex-
pressed by Equations
(2%8) and (37), into
the objective func-
tion (8), the speci-
fic expenditure of

transportation as

the function of gas

flow rate and solid
concentration can be
determined. The re-
sults of these cal-

culations are illus-

B&tor Vol. 1.
1
- 16 2
2 1
w14 5
=
12 -
10
8-
6.—
4 ]
2._
T T T T T T T
2 6 8 10 12 14
uam/s
Fig.1l. 1 - €¢_ = 0.203 - €, = 0.15;
3 -€ = 0.10 - cs = 0.05;
5 - e = 0.01
e
~
o
-
< 1500
a
<
1000
1
2
4
5 il
] T T T
2 4 6 10 12
u.m/s
Fig.2. 1 - ¢_ = 0.46; 2 - €_ = 0.31;
3 -¢%=0.21; 4 -~ % = 0.113
5 - €% = 0.01
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=
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4 — 4
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2 3 4 5 6
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Fig.3. 1 - e = 0.11; 2 - .= 0.21; Fig.4. 1 - u = 2.0 m/sec;
3~ e, = 0.31; - .= 0 2 - u = 3.5 m/sec;

3 - =5.0 m/sec

trated in- Fig.3 and 4 for an output of 1000 kilograms(weight)/hour
if the wvalues of the constants contained in the aim function are

the following:

Ca = 30 Forints/kilogram (weight)
Yo = 7,900 kilograms (weight)}/cu.metre
§ = 0.01 metre
a
t = 72,000 hours
a
c = 3010-G Forint/metre kilogram (weight)

It is clearly apparent from the Figures that the specific

expenditure of transportation shows a monotonous decrease with in-

creasing solid concentration.
to choose the parameters of transportation so as to
in the transporting conduit as

From an economical point of view it

is preferable
have as high a solid concentration

possible.
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The transportation ex-
penditure, when examined as a
function of the gas flow rate,
exceeds a minimum. The flow
rate value corresponding
to this minimum  decreases
with increasing solid con-
centration. The optimum value
can be determined by means of
Equation (21). The value of
the right-hand side of the
Equation (NU in the following)
as a function of gas flow
rate and at various concen-
trations is shown in Fig.5.
The value of the ratio at the
left-hand side of Equation
(21) is

Az

= L8L
2 Aj

at the values of the economi-
cal coefficients given in the
foregoing and at an output of
1000 kilograms (weight)/hour.
The intersection point of
this straight 1line with the
curves of various €  parameter
values directly gives the op-
timum gas flow rate pertaining
to the actual solid concent-
ration. The relation between
the optimum rate and concent-
ration is illustred in
Fig.6.If the highest material

3000+ 1

2000

Fig.5. 1 - ¢_ = 0.46; 2 - €y = 0.31;
3 -l =P.215 b - €] = 0.113
5 - €, = 0.01

T T T T 1
0.1 0.2 0.3 0.4 0.5

€

Fig.6.
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concentration is substituted into the value of ¢, the gas flow
rate determined on the basis' of Equation (21) gives the lowest

possible expense of transportation.

If +the optimum, values of the operational parameters are
known, it is dlso possible to determine the optimum values of the
variables of the original objective function (5). The solid flow

rate pertaining to the U and the chosen € values can be

optimum
calculated from Equation (37), and the diameter of the transport
conduit from Equation (6). The amount of gas necessary for the

trfansportation may be determined by Equation (7).

The calculations carried out so far covered the whole range
of theoretically possible solid concentrations, from €y = 0 to
€, = 1-€. Decisions concerning the practical upper limit of in-
creasing the solid concentration - either by modification of the
transport conduit [7] or by application of an auxiliary procedure,
without modifying the aim function - require further investiga-

tion.

SYMBOLS USED

A - cross section of conduit (sq. metre)

A, - area of the projection of the particle accumulation in a di-
rection perpendicular to the direction of flow (sq. metre)

Cl - constant

¢, - cost of the material of the conduit [Forints/kilogram (weight)

Ce - cost of energy [Forints/metre kilogram (weight)] ' .

Ch - presistance coefficient of the particle accumulation

D - internal diameter of the conduit (metre)

o= external diameter of the conduit (metre)

., - diameter of the particle (metre)

G - weight flow rate of the transporting gas

(kilogram {weight)/second]
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G, - weight flow rate of the solid (kilogram (weight)/second)

ko collision coefficient measured in a horizontal conduit
(me‘t:r’e)_1

ko - propértionality factor

K - motion-inhibiting force [kilogram (weight)] .

L -~ length of conduit (metre)

N - specific cost of transportation [Forints/metre kilogram (weight)l

N, - amortization expense ratioc [Forints/metre kilogram (weight)]}

N, -~ energy expense ratio [Forints/metre kilogram (weight)]

P ~ pressure [kilogram (weight)/sq.metre ]

Ap - pressure drop [kilogram (weight)/sq.metre]

s8 - friction forces in the gas [kilogram (weight)]

Tg - inertia force of the gas [kilogram (weight)]

T, - inertia force of the solid [kilogram (weight)]

u - gas flow rate referred to the total conduit cross section

(metres/second)

ug - actual flow rate of the gas (metres/second)

u,o - flow rate of the solid particles {metres/second)

v - relative rate between gas and solid (metres/second)

vo‘ - terminal free-falling velocity of single particle
(metres/second)

v - terminal free-falling velocity of particle in a suspension
of porosity e, (metres/second)

a - slope of the conduit, as compared to the horizontal

Y - specific gravity of the conduit material
[(kilogram (weight)/cu.metrel

Y - specific gravity of the gas [kilogram (weight)/cu.metrel
Y - specific gravity of the solid [kilogram (weight)/cu.metrel

[ - wall thickness of the conduit (metre)
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- volume ratio of gas
- volume ratio of solid

- minimum gas volume ratio

m

A - conduit friction coefficient

XJ - additional conduit friction coefficient

Eg ~ friction coefficient

T, - amortization time (sec)
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PE3WME

YaensHan 3arpaTta SHEpPruM TPAHCMOPTHPOBKH TBEpALX 3ep-
HUCTHX MarepWanos Mpu NOMOWK FA30BOM0 NOTOKA, M TaHuM Ny-
TeM JeHeMHHe pacxoin TpaHcnopTa B8 3HaYuTensHol Mepe 3a-
BHCAT OT pacyYeTa TPaHCNOPTHOrO MPOBOAA W MOKalaTenew 3HC-
nnyatayru. fNpM NpoeKTUpoBHe TPaHCNOPTHOM CHUCTEMH - B8 CAy-
4ae OoNpeleneHHON MOWHOCTW TpaHcnopTa - AvameTp nMnposBoga w
HONM4YECTBO TPAHCNOPTHUPYHWErO0 rasa HeoBx04quMO BwOpaTtTe c Ta-
HMM pac4eToM, 47006 pacxofb TPAHCMOPTHPOBHH OHAM MHUHUMANL-
HBMH, 3ajadva pewsHa aBTOPaMH BBEREBHWEM BCNOMOraTBNbHHX Ne-
peMeHHux. [AnR onpegeneHWAR ONTUMANbLHBX BEAWYMH NOHasartened
npoyecca - CHOPOCTb rasa, OGbEMHAA QONA TBEPAOrO BeWecTBa
~ onycaH MeToq BoYMUCNEHWA. [lpuMeHeHWe meToda nMpPeiCTaBAeHO
Ha NpHMMepe BEPTHHKANBHOrO TPaAHCNOPTA HWCNOro Kap6oHaTa HaT-
pUf.
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