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In polymer technologies, various particle shapes and size distributions can be found. One of these are heterodisperse
polymer beads. The capabilities of polymer swelling can be used in industries, e.g in the production of ion-exchange
resins, to intensify specific technological steps such as sulphonation in the manufacturing process of ion-exchange resins.
According to the literature different approaches can be used to create models for describing the behavior of disperse
systems, of which the simplest models are the particle size distribution models for a given state of the solid phase. The
aim of our examination was to compare and evaluate these simple models in terms of modeling polymer swelling. Hence,
most of these models examine how each of the investigated models can be applied to approximately describe growth in
a heterodisperse polymer system and how the identified model parameters in each time step could be interpreted. All
the models were fitted to generate particle size distributions based on a swelling rate constant. The swelling of a styrene
divinylbenzene-based copolymer was chosen as the basis of our examination. A model is proposed that is capable of
describing the changes in the size of beads over time in this system.
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1. Introduction

Polymer beads are used as raw materials in a wide range
of technologies, e.g. in the production of ion-exchange
resins. Before the chemical modification of polymer
beads, they are often swollen with different types of
swelling agents such as dichloroethane, dichloromethane,
toluene, etc.

Monodisperse and heterodisperse types of beads are
known in polymer technologies. The process of the
swelling of monodisperse beads is easily measurable and
easily predictable. The production of monodisperse poly-
mers is a more expensive process than the production of
heterodisperse beads, which makes heterodisperse poly-
mer beads a more popular form.

Heterodisperse polymer beads exhibit a closely nor-
mal distribution in terms of particle size. The prediction
of the swelling of these particle systems is more difficult
because the different beads can swell at significantly dif-
ferent rates due to the change in the specific area of each
bead.

The swelling of the polymer network system has al-
ready been a subject of interest. Painter and Shenoy[1]
considered the chemical properties of polymers. Schott
[2] described the kinetics of polymer swelling. First or-
der and second order kinetics were founded by him. A
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swelling model was formulated by Sweijen et al. [3] ac-
cording to the diffusion properties of components in the
polymer matrix. These models are capable of describing
the swelling of polymer networks, but because of its com-
plexity they are hard to apply in any kind of optimiza-
tion process. Hence, the simplest particle size distribution
(PSD) model, which can describe the swelling of poly-
mers over time using the least number of parameters, can
be of interest from a process intensification point of view.

Bayat et al. collected PSD models from the last sev-
enty years [4, 5]. Thirty-five models were listed. These
models describe the cumulative mass fraction of poly-
mers as a function of the diameter of polymer beads. The
models contain one, two, three or four unknown parame-
ters, which can be identified with a specific polymer frac-
tion. A hyperbolic tangent distribution [6, 7] PSD model
composed of four parameters was added to this list by us.

This study is the first step in the process of devel-
oping this model which focuses on the investigation of
the swelling phenomena of the styrene divinylbenzene
copolymer system. Therefore, our focus is on identifying
a simple PSD model which is capable of describing the
swelling of heterodisperse polymer beads. Hence, all the
previously mentioned PSD models are investigated and
compared. Our aim was not only to identify a PSD model
which is capable of describing the distribution of the in-
vestigated polymer system but to find a PSD model which
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exhibits a correlation between changes made to parame-
ters and particle size.

2. Experimental

For the modelling of heterodisperse polymer systems
physical experiments with regard to swelling should be
performed to obtain the data necessary to validate the
model. In our case, with the lack of experiments, the data
were generated from a model implemented and solved in
MATLAB. A code was made in MATLAB for the gen-
eration of these distributions. In the developed model,
the swelling of polymer beads with a given theoretical
rate of growth was calculated. The volume of each bead
increased at the same rate. Hence, the diameter of the
beads does not influence the rate of growth and the ten-
sion caused by the swelling process of the polymer beads
is neglected in this investigation. The following simplifi-
cations were implemented in the model:

1. The shape of the polymer beads is a perfect sphere.

2. The particles swell until they reach a steady state.

3. The swelling rate of particles is constant until a
steady state is achieved.

4. The number of particles is constant.

5. The initial PSD of the beads is close to normal.

To generate the distributions after different durations
of swelling an initial unswollen distribution is required.
The initial distribution was calculated by MATLAB from
a picture of heterodispersed particles. The Varion KS pre-
form styrene divinylbenzene copolymer was used for the
zero-time distribution. The polymer beads were identified
by a circle detection algorithm and the size distribution
of the detected particles was calculated using a reference
particle.

From the initial state, the size of the polymer particles
starts to increase by applying a swelling agent to the sys-
tem. The size of the particles increases until a steady state
is achieved. The steady state in this case means that the
size of the particles grows until a state when the amount
of infiltration of the swelling agent is equal to the out-
come amount. The size of the particles can increase until
a maximum is reached because of the internal tension of
the polymer. The data are generated using the parameters
of the steady state. These parameters are the swelling rate
(p [-]) and time required (t [sec]).

PSDs were generated at different times during the
swelling process. The next step was to examine the PSD
models to determine if they were able to describe the dis-
tribution in every instant.

2.1 PSD models

In this study only PSD models that are capable of de-
scribing cumulative mass fraction distribution were in-
vestigated. Altogether five models with one parameter,

twelve with two, two with three and four with four were
examined. They are collected in Table 1.

The cumulative mass fraction of particles is denoted
by P (d), the maxima and minima of the particle size
range are represented by dmax and dmin, respectively, and
the particle diameter [mm] is denoted by d. The mod-
els were fitted to all the distributions collected over time
using extreme value problem solver algorithms in MAT-
LAB.

2.2 Theoretical methodologies

Two types of extreme value problem-solving methods
were applied to fit the PSD models. One is a local ex-
treme value problem solver known as the Nelder-Mead
simplex algorithm and its function “fminsearch” to im-
plement it in MATLAB. The other one is a global ex-
treme value problem solver called “NOMAD” [8]. They
are both components of the MATLAB toolkit.

MATLAB 2011b was applied in all modelling steps.
The minimum difference was sought between the gener-
ated distribution data and calculated distributions based
on each model. The parameters of PSD models were the
results of this search. In every case, the goodness of fit
was measured. For each model, every sample time was
considered and the difference examined using the mean
absolute difference. The average of the mean absolute
difference of the percentage difference was calculated
for every function. The extreme value problem solver at-
tempted to find the minimum of the following equation

Et =

∣∣P (d)
′
t − P (d)t

∣∣
nd

(1)

where the mean absolute difference between the gener-
ated and calculated distribution is Et at instant t. The
calculated distribution is denoted by P (d)

′
t and the gen-

erated distribution by P (d)t at instant t. The number of
items of data is represented by nd.

2.3 Model selection

A selection could be made according to the average per-
centage differences. The selection was carried out with
a criterion. This criterion was an average percentage
difference of five percent because under this value the
difference is not considerable but over it an unaccept-
able fit is shown. Three different models, namely the
Rosin-Rammler, the Exponential-power_Pasikatan and
the Logarithm-Zhuang models fitted to the generated data
are shown in Fig. 1. The goodness of fit for these three
models is 1 %, 5 % and 11 %, respectively. As can be
seen the differences of 1 % and 5 % are negligible, and are
only noticeable at diameters in excess of 0.7 mm. How-
ever, a considerable difference can be observed between
the models with fits of 5 % and 11 %. It can be seen that
a goodness of fit of under 5 % is appropriate.
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Table 1: The investigated PSD models

Name Model

1 parameter (k1)

1 Gaudy-Meloy P (d) = 1− (1− d/dmax)
k1

2 Nesbitt-Breytenbach P (d) = 10[(1/(k1 + 1)](d/2)k1+1

+[0.1− 1/(k1 + 1)](d/2)1/[1/(k1+1)−0.1]

3 Rosin-Rammler P (d) = 1− exp(−k1d)

4 Jaky P (d) = exp
{
−
(
1/k21

)
[ln(d/dmax)]

2
}

5 Schumann P (d) = (d/dmax)
k1

2 parameters (k1, k2)

6 Power low- Paskikatan P (d) = [k1/(1− k2)]d1−k2

7 van Genuchten P (d) =
[
1 + (k1/d)

k2
]1/k2−1

8 Rosin-Rammler P (d) = 1− exp
(
−k1dk2

)
9 Fractal P (d) = exp {ln(k2))+[(

3k21 − 13k1 + 14
)
/
(
k21 − 5k1 + 4

)
+ 1
]
log(d)

}
10 Power low - Gimenez P (d) = k1d

k2

11 BEST P (d) =
[
1 + (k1/d)

k2
]2/k2−1

12 Bennet P (d) = k1k2d
k1−1 exp

(
−k2dk1

)
13 Exponential power- Pasikatan P (d) = exp

(
−k1dk2

)
14 Logarithm-Zhuang P (d) = k1 ln(d) + k2

15 Log-exp-Kolev P (d) = k1 exp [k2 log(d)]

16 Weibull-2par P (d) = 1− exp
[
−(d/k1)k2

]
17 Lognormal- Zobeek P (d) = 1/

{
k1(2π)

1/2 exp
[
−(log(d)− k2)2/(2k21)

]}
3 parameters (k1, k2, k3)

18 S-Curve: Vipulanandan Ozgurel P (d) = 100 exp
{
−k1

[
k2 ln(d/0.001)

d/k3

]}
19 Weibull-3par P (d) = k1 − exp

[
−(d/k2)k3

]
4 parameters (k1, k2, k3, k4)

20 Gompertz P (d) = k1 + k2 exp {− exp [−k3(d− k4)]}

21 Weibull-4par P (d) = k3 + (1− k3)
[
1− exp

(
−k1kk2

4

)]
where k4 = (d− dmin)/(dmax − dmin)

22 Fredlund P (d) =
{
1/
[
ln
(
exp(1) + (k1/k2)

k2
)]k3

}{
1− [ln(1 + k4/d)/ ln(1 + k4/0.001)]

7}
23 Tanh if 0<k2+k3d then P (d) =

{
tanh

[
(k2 + k3d)

k4
]}k1

otherwise P (d) = 0
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Figure 1: The cumulative distribution of the Rosin-
Rammler (1 %), Exponential-power Pasikatan (5 %) and
Logarithm-Zhuang (11 %) models as well as the generated
data.

2.4 Parameter correlation

The next step in the modelling process was the investiga-
tion into how the model parameters of each simple PSD
model can be fitted into a monotonous series over time.
Based on this experiment, these simple models can be ap-
plied to describe the swelling of specific material systems
over time.

By depicting the parameters of the distribution func-
tions as a function of time, a statement can be made for
the models if they were capable of this task. Assuming
that the correlation is linear for every model parameter,
in each PSD model it can be calculated as follows:

kx = Ax +Bxt (2)

where the parameter of the PSD model is denoted by kx,
the parameters of the k parameter are A and B, and the
time passed is t.

It is obvious that there are twice as many unknown
model parameters than in the previous step, i.e. every
model parameter in each model is defined by Eq. 2, how-
ever, only one set of parameters is required to describe the
swelling process over time. In this examination, the mean
absolute difference was also needed to fit the functions
to different time instants. In this case the extreme value
problem solver determined the minimum for the average
of the mean absolute difference:

E =

∑nt

t=1 Et

nt
(3)

where the average of the mean absolute difference is de-
noted by E and the number of time instants by nt.

3. Results and analysis

The zero distribution was evaluated by MATLAB based
on a picture taken from a sample of polymer beads. The
sample consisted of approximately five hundred beads
within the diameter range of 0.2 to 0.9 mm. The prob-
ability distribution with regard to the size of the polymer
beads is shown in Fig. 2.

Figure 2: The probability distribution with regard to the
size of the polymer beads before swelling within the di-
ameter range of 0.2 to 0.9 mm.

The parameters for the generated data were p = 2 and
t = 1500 s which means the polymer beads doubled their
size in 1500 s and the steady-state size of the beads is this
rate of growth. PSD was calculated twenty-five times be-
tween 0 and 1500 s. Three of the twenty-five distributions
are shown in Fig. 3.

All 23 models were fitted to all the distributions gen-
erated at every instant. Altogether twenty-three times
twenty-five curve fittings were performed. The parame-
ters were calculated for all the fitted models. For every
fitted value a mean absolute difference (Et) was deter-
mined, the average of which are shown in Table 2

According to the values in Table 1 a selection of PSD
models could be made. Those models show good agree-
ment with the generated PSD, which yields an average
mean absolute difference of less than five percent. A dif-
ference can be observed between the two methods to find
extreme values. The global finder “NOMAD” has found
a better fit for the two-parameter model known as BEST.
In most cases the two search methods give the same re-
sults using the same model parameters. In some models,
the global optimizer has found a better solution than was
expected.

Eleven of the twenty-three models were found to be
able to describe the distribution at all time instants. From

Figure 3: Cumulative distribution functions at three differ-
ent time instants during the swelling of the polymer beads.
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Table 2: The goodness of fit for the different models.

PSD Model
ID

SIMPLEX
fitting E [%]

NOMAD
fitting E [%]

1 15 15
2 39 39
3 24 24
4 2 2
5 10 10
6 12 8
7 3 3
8 1 1
9 19 13

10 8 9
11 39 2
12 5 5
13 5 5
14 12 12
15 8 8
16 1 1
17 30 30
18 35 13
19 0 0
20 2 1
21 1 1
22 37 34
23 1 1

these, the best model was the Weibull-3par which is
shown in Fig. 4. This result does not mean that the model
is able to describe polymer growth. A correlation should
be present in terms of changing the parameters.

By examining the correlation of model parameters in
these eleven models, one model called Jaky exhibited a
correlation as shown in Fig. 5 The other models did not
show any kind of correlation over time.

The Jaky model consists of one parameter and it
seems to describe properly the growth of heterodisperse
polymer systems. The other models did not show any cor-
relation in terms of the changing of the parameter over
time. In most cases one parameter was present which did

Figure 4: The change in the parameter of the Weibull-3par
model after various durations of swelling.

Figure 5: The change in the parameter of the Jaky model
after various durations of swelling.

not show any regularity as is shown in Fig. 4.
The following examination sought to set a correla-

tion between the change in the parameter and time due
to the swelling of beads. With linear criteria (see Eq. 2)
the goodness of fit will definitely deteriorate. The pre-
sumption was to find a model which exhibits a goodness
of fit of under five percent after setting the criterion.

The results collected in Table 3 show that two of the
eleven selected models produced a goodness of fit of un-
der 5 %, the others were all in excess of 30 %. There-
fore, the Jaky model consisting of one parameter and the
Rosin-Rammler model of two exhibit a linear correla-
tion for their parameters over time. The other nine mod-
els did not exhibit a linear correlation in their parameters
over time. It would be worthwhile trying other non-linear
functions to describe the parameters.

4. Conclusion

In polymer technologies, one of the steps is the swelling
of the polymer beads. Several studies were conducted that
deal with the swelling of polymer networks. Our aim was
to examine the swelling of the polymer beads from a dif-
ferent point of view to find out if a simple PSD model
exists which may be able to describe changes in size of
this system.

Table 3: The goodness of fit of the linear correlation of
parameters over time.

PSD Model
ID

SIMPLEX
fitting E [%]

NOMAD
fitting E [%]

4 2 2
7 33 14
8 1 1

11 − 44
12 44 44
13 53 44
16 44 44
19 35 35
20 35 35
21 30 52
23 44 44
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PSD models were examined according to their abil-
ity to describe the swelling of polymer beads. The re-
sults show that two models were present which could be
used to describe and predict the behavior with regard to
changes in size of the heterodisperse polymer bead sys-
tems.

In this examination, the copolymer styrene divinyl-
benzene was used. Two extreme value problem solvers
were used to identify and confirm PSD models that are
able to describe changes in size of the copolymer system.

Two models, namely the one-parameter Jaky model
and the two-parameter Rosin-Rammler model, were able
to describe the growth in size over time with an error of
less than 2 %. The parameters of these models could be
interpreted by a linear correlation over time according to
the generated data that was produced in this study. Based
on these working models a prediction can be made with
regard to changes in size of a heterodisperse copolymer
system over time.

Symbols

Et Mean absolute difference

E Average of mean absolute difference

P (d)
′
t Calculated distribution

P (d)t Generated distribution

nd Number of data

nt Number of time instants

kx Parameters of models
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