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Quantum computing and communications try to identify more efficient solutions to the most challenging classical problems
such as optimization, secure information transfer, etc. This paper will describe a new quantum method for the distribu-
tion of resources in computing platforms that consist of a large number of computing units. Furthermore, a simulation
environment was developed and the performance of the new method compared to a classical reference strategy will be
demonstrated. Moreover, it will be proven that the proposed solution tackles the problems of computational complexity,
computing units that are time-consuming and slow to process, as well as the accuracy in determining the optimum result.
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1. INTRODUCTION

Nowadays, resource management and especially the dis-
tribution of resources is one of the most discussed and
fundamental issues, for example, the problem considers
a large amount of distributed energy resources includ-
ing electric vehicles with gridable capacity [1], and the
rapid progress of cloud computing, i.e. the growing num-
ber of video providers that have deployed their streaming
services onto multiple distributed data centers [2]. This
greatest demand on efficient resource distribution moti-
vated us to search for new approaches and solutions.

The majority of operational processes require an
amount of computational resources and their wide avail-
ability, namely the amount of computing units, is not the
present issue, rather the utilization of resources and us-
age of the units are [3]. Thus, this challenge was tack-
led by introducing a new strategy which aims to optimize
the computational load of the resources that handle the
problems of computational complexity, time, speed and
accuracy.

As is common knowledge, the primary aim of Quan-
tum Computing and Communications is to reduce com-
putational complexity and achieve optimum and efficient
results with regard to the requirements of the given prob-
lem [4]. In order to exploit the power of quantum comput-
ing in terms of resource distribution, a quantum extreme
value searching algorithm was used [5], which will be
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combined with an appropriately designed classical frame-
work.

2. Modelling

Our novel model deals with the classical problem of re-
source distribution and contains three components.

The first one generates tasks to be computed in the
system denoted by pi and can be characterized as pro-
cessing time, memory, energy, etc. The actual number of
running tasks in the system is referred to as n. These tasks
are served by computing units that represent the resources
of the system. The number of the units is denoted by c.
The computing units may have different theoretical ca-
pacities. The theoretical capacity of the jth unit is de-
picted as sj and its free (unused) capacity is denoted by
xj [t] which depends on time t, as depicted in Fig. 1.

The third block is the decision-making unit which an-
swers the question of how to deploy a new task among
the process units in order to optimize the operation of the

Figure 1: Architecture of the model
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system. There are different metrics to distribute the re-
sources, here uniformly loaded units have been chosen
because actually, they are an important aspect of many
applications.

The overall capacity of the processing units in the sys-
tem can be calculated as

ŝ =

c∑
j=1

sj , (1)

while the overall free processing capacity is determined
according to

x̂ =

c∑
j=1

xj [t]. (2)

The average amount of free capacity per unit is given by
the following expression

x[t] =
1

c

c∑
j=1

xj [t]

sj
. (3)

Our purpose is to uniformly distribute the load over the
resources. Therefore, the variance of the relative free ca-
pacities in the system is used. In the case of optimal task
distribution, if σ2 tends to zero, then the resources are
distributed uniformly, otherwise they are not. The corre-
sponding formula of the relative variance is:

σ2 =
1

c

c∑
j=1

(
x[t]− xj [t]

sj

)2

. (4)

2.1 Description of the quantum algorithm

The optimized solution will be based on the quantum
extreme value searching algorithm, a stochastic process
which functions on an unsorted database that combines
the technique of a classical binary search of a sorted
database [6] and quantum existence testing (QET) [4].
The best classical solution requires N queries of the
database to determine the optimum result, while in order
to solve previous problems the well-known logarithmic
(often referred to as binary) search algorithm, which is
originally intended to search for a given item in a sorted
database with quantum existence testing (a special case
of quantum existence testing interested in whether a given
entry exists in the database or not rather than in determin-
ing the number of existence entries) needed to be com-
bined. The quantum algorithm maintains the efficiency of
the binary search while processing an unsorted database
[4].

It is hard to classically compute the optimum de-
ployment scenario, therefore, the quantum extreme value
searching algorithm [5] is applied as a minimum search-
ing algorithm (MSA), which enables the deployment sce-
nario to be identified and results in minimum variance.
The MSA is a stochastic process that works on an un-
sorted database. Our new approach handles the database

1: We start with S = 0 :
σ2

min 1 = σ2
min 0 ,

σ2
max 1 = σ2

max 0 ,
and
∆σ2 = σ2

max 0 − σ2
min 0

2: S = S + 1

3: σ2
medS = σ2

minS +
[
σ2
maxS−σ

2
minS

2

]
4: flag = QET

(
σ2

medS

)
5: if flag = True then

σ2
maxS+1 = σ2

medS

6: else
σ2

maxS+1 = σ2
maxS ,

σ2
minS+1 = σ2

medS

7: if S < log2

(
∆σ2

α

)
then

goto 2
8: else

yopt = σ2
medS

stop

as a function, i.e. the variance. The proposed algorithm is
now given in detail:

The algorithm will stop once the following step S <

log2

(
∆σ2

α

)
has been fulfilled where α denotes the small-

est sub-region between two possible results in a database
and is explained in more detail in Section 2.3.

2.2 Description of the randomized, exhaus-
tive and sequence-searching algorithms

The randomized, exhaustive and sequential- searching
algorithms are generally viewed as references and the
cornerstone with regard to finding solutions. They are
considered as three different methods [7]. Firstly, the
randomized approach anticipates the solution guided by
given knowledge and is not perceived as an optimal so-
lution because it randomly searches for one solution in
one step from the space in which the duration of time
may be less reasonable [8]. On the other hand, the ex-
haustive algorithm examines every possible solution and
leads to an optimal result, it checks all the O(d) steps
which is time-consuming and yields an accurate result. A
large number of iterations are required when compared
to the number of queries, hence, its time-consuming na-
ture. Furthermore, the sequence method exhibits a similar
degree of computational complexity to the randomized
method, using O(const) or O(1).

2.3 Evaluation of the algorithms

Our purpose is to provide a concrete comparison of solv-
ing distribution problems via heuristic ‘random’, exhaus-
tive or sequence as well as quantum algorithms, hence,
the difference in terms of the computational complex-
ity applied and the minimum variance computed by each
method was measured leading to the optimum distribu-
tion uniformity of the system.
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Figure 2: Quantum existing testing device (QFT: Quan-
tum Fourier Transform).

Comparison according to computational complexity

By comparing the computational complexity of the quan-
tum, randomized, exhaustive and sequence solutions,

the quantum solution requires only
√

log2(T ) log3
2

(√
d
)

steps, where d refers to the number of different possible
deployment scenarios and T denotes the number of sub-
regions given by all the possible outcomes of the different
deployments. The exhaustive solution, on the other hand,
needs O(d). With regard to the randomized solution, it
uses fewer steps so is faster than the three former solu-
tions, which means that the computational complexity of
the random method is less than for the other ones. More-
over, it does not determine the optimum solution since
the computational complexity of the sequence method is
similar to the randomized algorithm. In contrast, the ex-
haustive and quantum solutions require more computa-
tion steps, but the quantum solution always is preferred
because it requires significantly less computation than the
exhaustive method.

As was mentioned previously, the quantum extreme
value searching algorithm uses the binary search and
quantum existing testing methods. As the quantum phase
estimation algorithm is the core of QET, as can be seen in
Fig. 2, it outperforms the other counterpart’s algorithms,
thus, its physical implementation is highly constrained
with the required number of bits k.

In fact, the number of bits k depends on the applica-
tion of the system, as is illustrated in Fig. 2. This remains
hard to realize, for example, if the error probability Pε
of the application is neglected and the classical specifi-
cation considered, which is of accuracy a, the number of
steps needed is O

(
log2(T ) log3

2

(√
d
))

and the number
of bits will be influenced only by one factor, namely the
accuracy a, as presented in

k = a− 1 (5)

In addition, the relationship between the maximum rela-
tive variance and the number of sub-regions given T ac-
cording to all the possible outcomes of the different de-
ployments is given by

T =
σ2

max

α
(6)

where α denotes the smallest sub-region between two
possible results in a database (Eq. 7). α is illustrated in

Figure 3: Functional representation of the database

Fig. 3:
α = min

∀ i,j

∣∣(σ2
i − σ2

j

)∣∣ (7)

On the other hand, if two factors, namely the accuracy a
and probability of error Pε [4], are taken into considera-
tion, this assumption will influence the second term of the
computational complexity log3

2

(√
d
)

, it will be trans-

formed intoO
(

log2 (T ) log3
2

(
2

P
2

√
d
))

and the number
of bits will be expressed by

k = a− 1 +

⌈
log2(2π) + log2

(
3 +

1

P̌ε

)⌉
︸ ︷︷ ︸

P

, (8)

where P̌ε is the maximally allowed quantum uncer-
tainty (probability of error) and P is the number of qbit
which controls the quantum uncertainty. The computa-
tional complexity of the classical (exhaustive) and quan-
tum solutions is compared. The number of computational
steps to yield the desired results with regard to the num-
ber of different deployment scenarios is in accordance
with function O(d), while the quantum solution only re-
quires O

(
log2 (T ) log3

2

(√
d
))

.
Furthermore, the quantum method derives its stochas-

tic behavior from the quantum phase estimation algo-
rithm which heightens the degree of accuracy and speed
in computation.

In the light of what has been shown, in Fig. 4, the
classical strategy for identifying the deployment scenario
which leads to the minimum variance needs more compu-
tational computing, while the quantum solution requires
significantly less computation, which reduces the com-
plexity and duration necessary to determine the optimum
deployment scenario of resource distribution.

Figure 4: Comparison between the computational com-
plexity of the classical and quantum decision-makers
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Figure 5: The simulation architecture

Comparison of the uniformity

In compliance with what has been discussed, the quan-
tum and exhaustive solutions conserve the uniformity of
the system, but the proposed quantum solution is the best
and most efficient method because it requires less com-
putation and time to determine the optimum deployment
scenarios. However, the randomized and sequence algo-
rithms do not ensure the uniformity of task distribution.

3. Results and Analysis

To show the importance of the proposed quantum solu-
tion, a simulation environment of Optimizer+Distributor
was constructed.

The model of a resource distribution system contains
three processing units with different theoretical capac-
ities: twenty, forty and sixty running tasks in parallel.
Practical systems contain significantly more processing
units, however, to observe trends and effects it is worth-
while investigating a small-scale model first. Further-
more, a task generator block is present in the system. The
tasks are considered to have exponential arrival times.
An Optimizer+Distributor block is considered to be a
decision-maker between the different deployment scenar-
ios. The model implemented in the simulation environ-
ment is illustrated in Fig. 5.

3.1 Experiments

Two factors influence the behavior of the simulation: the
mean (intensity) of the exponential distribution with re-

Figure 6: The average load of processing units in the case
of the random reference strategy

Figure 7: Average load of the three distribution strategies
when the mean (intensity) of the exponential distribution
of the arrival times of tasks is equal to 0.6

gard to the arrival times of tasks, and the service time of
the tasks in the processing units.

The system will be more heavily loaded if the mean
value is smaller or the service time of the tasks larger.

3.2 Simulations

In order to demonstrate the efficiency of the proposed op-
timization strategy, two other reference strategies were
considered which distribute the tasks randomly or se-
quentially among the processing units.

By considering the following simulation parameters,
the mean of the exponential arrival times is equal to 0.4
and the service time of the resources is equal to 3.

The average load of the processing units in the case
of the random reference strategy is presented in Fig. 6
with the following simulation parameters: the mean of
the exponential arrival times is equal to 0.4 and the ser-
vice time of the resources is equal to 15. The line graph
contains two phases: the transition phase with a duration
of 0 to 30 s, and the stationary phase that commences af-
ter approximately 30 s, when the system reaches a certain
equilibrium.

Comparing the performance of the three distribution
strategies, it can be stated that during the transition phase
the variances of the reference systems are approximately
stable, but during the stationary phase (normal opera-
tion) the variance started to fluctuate dramatically as well
as increase. On the other hand, the variance of the pro-
posed quantum solution remained approximately linear
and tended to zero, therefore, the quantum system con-
serves the distribution uniformity.

According to Fig. 7 and 8 the average load of the dif-
ferent methods remains similar independent of the inten-
sity of the exponential distribution of the arrival times of
tasks as well as the decision methods. Furthermore, it
is clearly noticeable that when the mean of the exponen-
tial distribution of the arrival times of tasks is smaller, the
tasks are generated faster which leads to an increase in
the load of the computing units.
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Figure 8: Average load of the three distribution strategies
when the mean (intensity) of the exponential distribution
of the arrival times of tasks is equal to 0.1

The simulation results concerning the variance of
each distribution strategy show that the trends of the ran-
domized and sequence strategies diverge from zero, but
the sequence method yields a more uniform variance than
the randomized one. In contrast, the optimized (quantum
and exhaustive) strategies maintain and conserve the load
uniformity of the system. These results are illustrated in
Fig. 9 and 10.

4. Conclusion

In this paper, a new strategy for resource distribution
based on a quantum searching algorithm was introduced.
It was demonstrated that the quantum solution is more
efficient by comparing the computational complexity and
distribution uniformity of the quantum solution with the
randomized, exhaustive and sequence methods. Further-
more, the changes applied to the computational complex-
ity when the specification classical requirement depends
on the application were demonstrated.

To show the importance of the quantum solution, a
simulation environment of the proposed optimization of

Figure 9: Variances over time of the optimized (yel-
low), randomized (blue) and sequence distribution (or-
ange) strategies when the mean (intensity) of the expo-
nential distribution of the arrival times of tasks is equal to
0.1

Figure 10: Variances over time of the optimized (yel-
low), randomized (blue) and sequence distribution (or-
ange) strategies when the mean (intensity) of the expo-
nential distribution of the arrival times of tasks is equal to
0.6

a distribution system was constructed and compared to
two reference distribution systems which follow the ran-
domized and sequence strategies. The proposed quan-
tum approach is practical in most domains of info-
communication and computer science where resources
have to be distributed among a large number of process-
ing units.

These are the initial results of this new field of re-
search. Obviously, other optimization metrics should be
considered in the future. Furthermore, tasks can be mod-
elled in a more sophisticated manner: different classes of
tasks can be defined following various arrival processes
and characterized by more than one resource parameter
(processing time, memory, battery requirement). Finally,
even an individual task can contain more blocks with de-
pendencies among them and different blocks can be dis-
tributed among different processing units.

The wider future context of our research is to start
with a polynomial time problem and progress towards a
nondeterministic polynomial time problem.
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