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Succinic acid (SA) is an important chemical intermediate from which fine chemicals ( e.g. detergents), additives (for
pharmaceuticals, food (taste), plant growth stimulants) as well as other important intermediates (maleic anhydride, suc-
cinimide, 2-pyrrolidinone, dimethyl succinate) can be manufactured. Since SA is involved in the central metabolism of
cells (in the tricarboxylic acid (TCA) cycle), it is a key player in the biochemistry of life, which has the potential of biotech-
nological production. Since SA is formed in the “middle” of the TCA cycle it can be formed by both CO2 production and
fixation. The significance of the latter is that the amount of the product can be controlled by the availability of CO2, since
stoichiometrically one molecule of CO2 is fixed by one molecule of SA. In our studies of compositions of Actinobacillus
succinogenes media, the role and effect of pH regulator compounds as well as the effect of an inert atmosphere were
investigated in terms of the yield. Furthermore, in fermentation experiments, the application of higher sugar concentra-
tions was also studied. On the basis of different fermentations, a neural network for modelling and describing how factors
influence SA production was established.
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1. Introduction

Succinic acid (SA), as an intermediate of the tricar-
boxylic acid (TCA) cycle, plays an essential role in the
metabolism of microorganisms. SA can be produced by
many anaerobes or facultative anaerobes as a metabolic
product, thus can be used as an important platform chem-
ical, a precursor of many pharmaceuticals, feed additives,
green solvents or biodegradable polymers. SA itself is
a colourless, odourless and crystal-forming compound.
Since this metabolite is bifunctional (pKa1

= 4.21,
pKa2

= 5.72 [1]), it is very reactive so has many potential
applications, e.g. it plays important roles in the synthesis
of γ-butyrolactone, maleic anhydryde, succinimide, 1,4-
butanediol, dimethyl succinate, succinonitrile and 1,4-
diaminobutane. It is industrially produced, mainly syn-
thetically, in a complex way from maleic anhydride found
in crude oil, which is both economically and environ-
mentally unfavourable [2]. Therefore, its biotechnologi-
cal production is a current research topic to find an alter-
native method to avoid the above-mentioned side effects
[3]. Furthermore, a great advantage of the microbial pro-
duction of SA is that one of the initial biochemical re-
actions is the carboxylation of phosphoenolpyruvate [4]
which is regulated in the case of anaerobic bacteria by the
availability of CO2 [2], thus the elevation of the CO2 con-
centration can shift product portfolio from formate and
ethanol towards SA (Fig. 1).
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Despite this fact, the process can help to de-
crease the CO2 emissions of the human population [5].
Both fungi and bacteria can be found among the SA-
producing microorganisms, but their ability to produce
SA differs significantly: fungi ∼45 g/L (Aspergillus
niger, rec. Yarrowia lipolytica), Gram-negative bacte-
ria (wild-type Actinobacillus succinogenes 98.7 g/L,
Mannheimia succiniciproducens 90 g/L) and Gram-
positive bacteria (Clostridium thermosuccinogenes 82.5
g/L, rec. Corynebacterium glutamicum 145 g/L) [5].
The most frequently applied strains in the industry are
Aspergillus niger, Aspergillus fumigatus, Byssochlamys
nivea, Lentinus degener, Paecilomyces variotii, Peni-
cillium viniferum, Saccharomyces cerevisiae and Acti-
nobacillus succinogenes [4].

The latter bacterium is one of the most prominent
producer strains that is isolated from bovine rumen and
has been identified as a member of the genus Pas-
teurella, which is a facultative anaerobic, non-motile,
Gram-negative pleomorphic, rod-shaped bacterium [2]. It
has great potential in terms of SA production, because
of its higher yield and wide range of applicable sub-
strates, e.g. glucose, cellobiose, maltose, lactose, saccha-
rose, fructose and sorbitol. Furthermore, it can tolerate
high initial concentrations of glucose, therefore, is suit-
able for simple batch fermentation instead of the more
complex and costly fed-batch culture technique [5]. The
most widely applied strains are Actinobacillus succino-
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Figure 1: SA metabolism with CO2 regulation

genes 130Z and its variants (FZ6, 9, 21, 45 and 53) [2],
which can tolerate both high glucose and SA concentra-
tions as well as achieve high SA yields [5].

The aim of this paper is to compare fermentations of
Actinobacillus succinogenes under different experimental
conditions, then – due to the many influential factors – to
set up a neural network-based model which can be used
to predict high SA titres.

2. Materials and Methods

2.1 Cultivation of the bacteria

Actinobacillus succinogenes 130Z (DSM22257) was cul-
tivated in 10 ml of tryptic soy broth (TSB) (Sigma) in an
impedimetric BacTrac 4100 (SY-LAB, Austria) anaero-
bic cell. For a 1 L fermentation with a working volume
of 0.8 L, an AS medium was applied according to Liu
et al. [5] as follows: 62.5 g/L total sugar including 44.9
g/L saccharose, 9.8 g/L glucose and 7.2 g/L fructose sup-
plemented with 15 g/L yeast extract, 1.5 g/L NaHPO4,
1g/L Na2HPO4, 1 g/L NaCl, 0.2 g/L MgCl2 and 0.2 g/L
CaCl2. During preliminary tests, a temperature of 37◦C
was not successful for SA production, therefore, 34◦C
was applied and the pH regulated by 3M Na2CO3. Af-
ter each fermentation, 200 ml of broth remained in the
reactor and 600 ml was extracted, while 600 ml of fresh
AS media was introduced. The 5 different fermentations
are compared in the Results section.

An innovative solution was to apply a CO2 economi-
cal gas supply through the oxygen enrichment system of
a Biostat Q DCU3 fermentor system in the absence of air
and oxygen. The gas mix oxygen enrichment regulator
was set at 4 %, therefore, periodically a small amount of
CO2 was introduced into the fermentation broth.

2.2 Analysis

During fermentations, samples were taken periodically
and the optical density (OD) determined by a spectropho-

tometer (Ultrospec Plus, Pharmacia LKB) at a wave-
length of 600 nm (OD600) against the supernatant of a
centrifuged sample by applying the same dilution factor
(5×) as in the case of the samples. The cell dry weight
(CDW) was obtained by a multiplication factor of 2 from
OD600. Substrate consumption and product as well as
by-product formation were detected by the Waters Breeze
HPLC System by applying 5 mM H2SO4 in deionized
water at a flow rate of 0.5 ml/min through a BioRad
Aminex HPX87H column at 65◦C in a refractive index
(RI) detector at 40◦C.

2.3 Neural networking

For model building and evaluation, Neural Designer
v2.9.5 was used by applying the following 4 steps:

1. Fermentation data were combined into a single MS
Excel spreadsheet and exported to a tab-delimited
text file, which could be imported into the modelling
software. 9 variables, i.e. 7 inputs (time, lactic acid,
acetic acid, propionic acid, glycerol, ethanol, total
sugar) and 2 outputs (succinic acid, CDW), were
applied to 58 fermentation samples from which 36
were used for training the network, 11 were selected
and 11 were used for testing the behaviour of the
model.

2. From among the many options, a model was defined
(Fig. 2) by automatic scaling, without any principle
component, with 2 layers and 3 neurons/hidden lay-
ers that exhibit a logistic activation function in the
absence of a bounding layer. In terms of a training
strategy, the normalized mean squared error method
was selected using a Quasi-Newton algorithm and
a maximum of 1000 iterations. Incremental order
was chosen as the order selection algorithm together
with the growing inputs.

3. Model fit, i.e. performance training, was conducted.

4. Output of the model: impact figures of factors were
determined (the other parameters were fixed), model
equations obtained and predictions made by imple-
menting input data into an input data matrix.

3. Results and Discussion

Since Actinobacillus succinogenes is a facultative anaer-
obic microorganism, the first fermentation experiment
(Fig. 3A) was started in the absence of any specific at-
mosphere.

However, it ran very slowly, therefore, around 48 h
(denoted by a red arrow) of continuous 5 % CO2 enrich-
ment was applied via a zero flow rate gas inlet. The exper-
iment confirmed that the application of CO2 is essential
to form SA, therefore, finally 6 g/L SA was achieved and
the model fitted very well for both CDW and SA mea-
surements.
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Figure 2: The used neural network for describing SA fer-
mentations

Therefore, the next fermentation (Fig. 3B) was con-
ducted under 5 % CO2 enrichment of zero flow rate gas
inlet and resulted in the highest 16 g/L SA (besides 11
g/L residual sugar) corresponding to a yield of 37 %.
To increase the economic feasibility, the amount of CO2

was reduced by 50 % to 2.5 % in the following experi-
ment (Fig. 3C). To avoid a fall in the SA concentration,
detected by-products (such as lactic acid 3.5 g/L, acetic
acid 5.7 g/L, propionic acid 1.7 g/L and glycerol 1.3 g/L)
should be repelled as a result of the addition of 20 g/L
calcium lactate.

The model once again fitted well to the measured
CDW and SA values. Unfortunately, the carbon flux
shifted towards propionic acid formation, therefore, the
subsequent experiment (Fig. 3D) was both supplemented
with 20 g/L lactic acid and 11 g/L propionic acid, but this
resulted in a low level of SA and a high level of lactic acid
(52 g/L). The model yet again fitted well to the measured
CSW and SA values.

Independent fermentation results were also checked
by the model (Fig. 3E) and resulted in very good fits. It
can be concluded that the artificial neural network model
constructed described well the SA fermentations, which
is in line with the results of Li et al. [7], namely that ar-
tificial neural network models can describe succinic acid
fermentation better than response surface methodology.

The presented results revealed that for SA fermenta-
tion, 5% CO2 enrichment is essential and cannot be fully
or partially replaced with the addition of lactic acid or
propionic acid.

After validating the model by conducting 5 different
fermentations, it was used to optimize influential factors
via impact figures (directional output plots) (Fig. 4).

These trends show that all the presented factors cor-
relate with SA concentration, i.e. any increment in their
amounts resulted in an increment in SA, with the excep-
tion of propionic acid which exhibited a negative corre-
lation. These suggest that the addition of propionic acid
can decrease the concentration of SA obtained and the
addition of lactic acid can increase it.

(A)

(B)

(C)

(D)

(E)

Figure 3: Actinobacillus succinogenes fermentations with
different degrees of CO2 enrichment in combination with
lactic acid (LA) and propionic acid (PA). Dots indicate the
measured values and lines indicate the model prediction.
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Figure 4: Factors impact plots: PrOH – propionic acid
(g/L), Total sugar (g/L), LA – lactic acid (g/L) and CO2 –
carbon dioxide (%)

4. Conclusion

Five Actinobacillus succinogenes fermentations were run
under different conditions: semi-anaerobic method, con-
trolled introduction of CO2, and introduction of CO2

combined with either the addition of lactic acid or both
lactic acid and propionic acid. All together 58 samples
were taken and analysed, the results of which were en-
tered into Neural Designer modelling software and used
for training and testing the model. While the fermenta-
tions resulted in very different final SA concentrations,
the established model fitted well to all of the fermen-
tations, even to the one which was not used for model
building, testing and validation. While economical CO2

enrichment was successfully applied and resulted in the
highest SA yield (37 %), the addition of lactic acid and
propionic acid was not successful in terms of SA concen-
tration.
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