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The principle of systems and process engineering was introduced into mathematical modelling in the middles of 20-th 
century by Bertalanffy, Mesarovič, Kalman, Zadeh, Benedek and others [1,2,7,9]. Himmelblau and Bischoff showed that 
population balance problems, i.e., processes described with another independent variable than a physical space variable, 
can be solved by differential equations similarly to the transport equations. Essentially the same concepts are used – even 
with different names – in the theory of chemical, petrochemical, ceramic, food, biochemical process engineering, 
building material production, metallurgy, nuclear engineering and maybe in other fields of applied chemistry or physics.  
The differences in the nomenclature and treatment make difficulties transferring the theoretical bases and ways of 
solution of different problems from one field already solved to an other one. The aim of this paper is to define the 
processes, so that all models shall be given a common mathematical background, all models can be deduced therefrom. 
The postulates listed here can also serve as definitions of processes, process engineers deal with. To sum up the main 
concepts of process engineering is also worthwhile to identify and support the most important I/O elements in a process 
approached Quality Management System for different fields of industry. 
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Introduction 

In the middles of 20-th century as the principle of 
systems and process engineering was introduced into 
mathematical modelling, Bertalanffy [2] called the 
attention to the fact that the models describing processes 
functioning differently, have sometimes similar 
mathematical descriptions. Mesarovič [9] was the first, 
attending to formulate this mathematically. The 
mathematical system theory that could be first applied 
in linear cases can be regarded to Kalman [7], mostly 
used in control theory. The concepts of state, of the 
mathematical process modelling and computer 
simulation can also be regarded to him. Himmelblau 
and Bischoff [6] showed that population balance 
problems can be solved by differential equations 
similarly to the transport equations. Fan and Friedler 
[8], Grossman [4] and Floudas [3] have recently dealt 
with optimization of processes. 

Essentially the same concepts are used – even with 
different names – in the theory of processes in different 
fields of applied chemistry and physics. The 1 to 3-
dimensional physical spaces (length, width and depth), 
and other independent variables of process description, 
either continuous or discontinuous (like particle size, 

transition between phases, microorganism age, grade of 
polymerization, etc.) or combination thereof can be 
mathematically handled similarly. Even the ISO 
9001:2000 standards encourage the adoption of the 
process approach for the management of the 
organisations [5]. In the standard there is explicitly 
written, that “any activity that receives inputs and 
convert them to outputs, can be considered as a 
process.” In our paper we give some postulates which 
are necessarily valid for ordinary processes. We use in 
the following the term process for all real or theoretical 
systems, that satisfy the given postulates. 

According to our concepts a correct process model 
describes process activities independently of personal 
wills (except environmental impacts) and do not 
contradict the accepted laws of classical physics. Those 
of relativistic and quantum physics are not taken in 
consideration here. 

Concepts 

Our aim is to present some properties of process models 
necessary to be correct in the sense that they obey the 
postulates below, i.e., the obvious rules of classical 
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Newtonian physics. The first question is whether it is a 
necessary condition for process models to fulfil the 
condition not to contradict the rules of conservation. 
There are two logical arguments to accept this. 

First: Nobody wants to have such a process model 
that produces anything from nothing that is possible 
according to a model contradicting the rules of 
conservation of material. Similarly, a model 
contradicting the first law of thermostatics is worthless 
when it is applied to simulate the energy scheme of a 
plant. According to such a model it would be the most 
profitable action to produce only energy from nothing.  
Secondly: Models, contradicting the rules of classical 
physics are valid of zero probability in practical, non-
microphysical processes. It is a logically acceptable 
conjecture for all realistic models that parameters, 
estimated according to the maximum probability 
principle, give a better approximation of the reality also 
extrapolating out of their validity range.  

All changes during the process operation1 are due to 
the state of the process and its environment. The 
components of the state are the conserving substances 
(like mass, energy, momentum, and other conserving 
physical substances) that change in a process influenced 
only by the environmental streams (sE,·,·). In some 
practical cases also other categories may be chosen as 
entity components, conserving their quantity during the 
process, changing only on environmental influences as 
well. Such are composition in separation or 
disintegration processes, the amount of chemical 
elements in chemical reactions, the amount of 
elementary nuclear particles in nuclear processes, etc.. 
All they are nominated as entities. In our formulation, 
we say their time–dependent distribution over the space 
of process coordinates the process state ei(t). 

The consequence of the above is that a certain 
process is totally specified by the initial state and by the 
(not necessarily time dependent) environmental streams 
in the time period of simulation. 

The independent variables of process description are 
the process variables (x) and time (t). Process variables 
span the space of process coordinates (X∋x).  

The elements of the space of process coordinates are 
n-element variables, where n means the number of the 
process variables. They may be considered as 
continuous (i.e., physical space coordinates), equidistant 
discrete (i.e., grade of polymerization, serial number of 
units, etc.) or abstract variables (i.e., physical phases, 
crystal forms, chemical compounds, etc.). For shortness 
we say for them n-dimensional vectors. Time may be 
considered as continuous, equidistant discrete, non–
equidistant discrete or general time (continuous mixed 
with discrete events). Continuous variables are 
described by continuous functions, discrete variables by 
sets of integer numbers, abstract variables by some 
single points. The set of process variables is a direct 
product of them, used in the process modelling.   

                                                                                                 
1 In the following: operation, where a unit operation in 
principle corresponds to exactly one correct mathematical 
operation considering the level of decomposition. 

The cardinality of the sets, both that of process 
variables (I) and of entity (M) is considered as finite.  

Decomposition is cutting the space of process 
variables into two or more disjoint process variable 
subspaces, said subprocesses. Their elements are 
interconnected by inner entity streams.  

Processes are encircled by environment. Streams 
from or to it, the so-called environmental streams 
influence its operation. A process model including the 
environmental parameters, possibly also time-
dependent, describe the dependence of their variables. 

Subprocesses are linked by inner entity streams 
depending on the states of the connected subprocesses. 
They are environmental streams from the view of the 
subprocesses. Naturally, other variables, necessary to 
compute the operation or streams between the 
subprocesses maybe introduced within the model but 
not between the subprocesses, as necessary.  

Subprocesses have similar properties as the 
processes themselves. When decomposing continuous 
variable processes into two or more discrete 
environmental variable processes at least one of them 
has to consist again of a continuous one.  

Composition is the contrary of decomposition, i.e., 
building a composite model from more processes that 
will be subprocesses of the composed one. The process 
coordinates of the composed model will be the union of 
each subprocesses, the states are the union of 
subprocess states and the parameters are the union of 
the subprocess parameters. 

Cutting a process into subprocesses has practical 
reason; generally only models of parts of a process can 
be described by an elementary or comparatively simpler 
model and the full process model has to be composed by 
them. In order to simplify the process model, usually the 
number of entities, process variables and parameters is 
reduced. This reduction results naturally in another, 
more inaccurate, less generally applicable model. 

The operation of processes are described by 
operation models and, if they are composed of more 
subprocesses, by transfer models between them. 
Operation models describe the distribution of entity 
streams depending on the state and environmental 
streams. Transfer models describe the dependence of 
streams on the state of the connected subprocesses and 
some entity–independent subprocess. Transfers are 
monotonic functions of the driving forces i.e., of the 
differences/differential quotients2 for each potential, that 
depends on the entity content/density of the submodel. 
The other factor of transfer is the transfer coefficient 
depending on the operation parameters of the submodel 
and on material properties, of the streams between the 
points connected.  

The inputs of operation models are the initial state 
(e(0)) and their time–dependent environmental streams. 
The outputs of the operation model are either the actual 
model’s state change or any functions of them. 

 
2 We write as ⋅/⋅ (e.g., content/density) if we refer to a notion, 
differing in our discrete/continuous treatment. The character 
∅ shall not be read in the text, as in (e.g., ∅/density). 
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We deal only with reproducible processes. 
Reproducibility is understood that the states of 
processes are independent of start time: with identical 
state at the start time and identical environmental 
streams, the states of the processes are identical in any 
times related to the initial. This is only an abstraction; 
true exactly reproducible processes don’t exist in the 
reality but can be well applied in practical modelling 
processes. 

The second rule of thermostatics, the criterion of the 
increase of entropy is not dealt here with explicitly. In 
order to treat it, energy should divided into two kinds, 
regular and irregular and its motion should be 
constrained to one-sided. From the side of the theory, its 
validity is scale-dependent, what is regarded as irregular 
motion of particles. Also the molecular or Brownian 
motion of particles could be described as regular, seeing 
them from a molecular order of magnitude and stellar 
motion (movement of stellar objects) may be regarded 
as irregular, seeing it from a point of a higher 
magnitude. We omit handling these kinds of inequality 
constraints here. All of it is considered here is 
prescribing the rule that the direction of streams be 
always from higher potentials toward the lower. All 
other consequences of the second law are considered to 
be fulfilled by the operation models of the subprocesses. 

Naturally, rules of less importance seen from the 
point of view of the actual problem, may be neglected in 
order to simplify the model. But if it has been neglected 
in one of the subprocesses the whole composed process 
model becomes more or less incorrect, concerning the 
left entity component 

Dependent variables of a process are a finite set of 
entities in the case of discrete process variable 
functions; they are density distributions in the case of 
continuous process variable functions of the 
independent process variables. In most of the problems 
there are combined discrete and continuous processes. 

Postulates 

The first assumption put is that with correctly posed and 
unbounded number of measurements a process model 
approximates the mapping of reality. We deal only with 
correct models, fulfilling this assumption. 

The postulates 1 to 5 are the comprised and most 
important component–independent features, generally 
accepted in the macroscopic real world.  
It is claimed that 
Postulate 1 actual properties of a process depend 

only on its actual state. 
Postulate 2 actual changes of a process state depend 

only on the actual state and on the environmental 
streams. 

Postulate 3 each process model shall obey the 
conservation laws for each entity component at any 
time. 

Postulate 4 there exists at least one set of linearly 
independent process variables one–to–one mapping 

any subspace of process variable space to the space of 
entity content/density and to the potential functions.    

Postulate 5 processes shall obey the principle of 
causality. 

The next postulates express the trivial aim to the model 
application that results should be independent on the 
model users’ subjective decision. 

Postulate 6 If a field of process variables is built up as 
a union of more than one subspaces, it can be 
decomposed into subprocesses of the same 
independent variables and/or those of the same time 
variable.  

Postulate 7 It is claimed that decomposition–
composition fulfils by definition that the composition 
or decomposition of a process model with any initial 
state and environmental stream functions must result 
into the same environmental variable relations, 
independently of the mode of decomposition into any 
submodels.  

Postulate 8 Processes are only relative–time 
dependent and they are independent on the zero and 
unit choice of time in the model. 

Postulate 9 The model must be measurement–unity–
invariant in time, in all its process variables and 
entities. 

Reasons and physical background of 
postulates 

Reason and consequence of Postulate 1: It is assumed 
that all material properties necessary to describe the 
process depend only on the actual entity 
content/density in the process. Simply practically 
there are no other impact possibilities and there is no 
other way of remembering on past events influencing 
the present or the future but the material state3. The 
fulfilment of this postulate is important in formulating 
models of composed processes as a complex, 
multivariate system of algebraic, partial 
difference/differential and integral equations. 

Reason and consequence of Postulate 2: Streams 
depend on the process states and parameters – named 
in some cases transfer coefficients, but also rate 
coefficients, etc. – between the connected 
subprocesses. Referring to postulate 1 we obtain 
postulate 2. This postulate is fulfilled also for 
controlled processes if set points and other control 
variables are ordered to the process parameters. 

Reason and consequence of Postulate 3: This 
condition is equivalent to the laws of conservation of 
entities, stated by definition. The sum/integral of 
entity changes in any process must be equal to the 
algebraic sum/integral of its environment streams in 
any time–interval/any actual time. Any sum/integral 
of streams must be equal zero at its junction points.     

                                                 
3 This statement is difficult to see in biological processes, but 
sometimes it has its importance in these cases, as well [11].  
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Reason and consequence of Postulate 4: This postulate 
is a necessary condition to observe and to simulate the 
operation of a submodel. 

Reason and consequence of Postulate 5: This postulate 
is trivial in everyday life. No actual or past event or 
observation is influenced by future environmental 
impacts. 

Reason and consequence of Postulate 6: This postulate 
is valid by definition of decomposition. Contradicting 
this postulates the result depended on the cut, i.e., the 
result of simulation would depend on the subjective 
choice of model decomposition. Process models of 
the decomposed models’ submodel are not 
necessarily of similar structure. The model state is the 
union of each/all its subprocess states; parameters are 
the union of submodel parameters. The 
sum/Lebesque–integral of inner streams between 
each/all subprocesses is zero for each entity 
component. Long–distance effects in process 
engineering are electromagnetic radiation, i.e., light 
and heat radiation, microwave heating, etc.4. These 
can be simulated by no–time–delay algebraic 
equations, while others by difference/differential 
equation increment models. 

Reason and consequence of Postulate 8: It is a 
necessary condition in the everyday life. No event is 
influenced by the fact, whether the time is measured 
from the zero of the time scale, whether it is counted 
according to the time according to the Buddhist, 
Christian, Jew, Muslim, etc. calendar, or from the 
beginning of the operation of the invested process or 
from the beginning time instance of a batch process. 

Reason and consequence of Postulate 9: Measurement 
units are on the model builder’s choice, so it is 
impossible to influence the real operation. It is trivial 
that real processes are independent on the time scale 
shift, like in case of Postulate 8.  

It should be noted that fulfilment of all the postulates is 
only necessary condition of practical correctness of the 
model. It depends also on the exactness of constitutive 
equations. In all of our next treatment their validity is 
assumed.  

Process models 

According to the above postulates, processes may be 
described by operation, composed processes by 
operation and transfer models between them. Operation 
of a composed unit would depend on the operation of all 
of its subprocesses. Decomposition is possible applying 
the philosophy of Postulate 6, in the praxis if the 
process can be clearly decomposed in selfstanding 
operation models, and in transfers connecting them. 

We consider all processes possible subprocesses of a 
more general process, what means, it is enough to 
discuss process models, it includes subprocess models, 
as well. 

                                                 
4 I.e., the speed of light is considered as infinity. 

In general, to simulate both the process and transfer 
models, the knowledge of a lot of state–property 
functions is needed. These functions are generally called 
constitutive equations. All of their knowledge is 
supposed in this treatment.  

According to Postulate 1, actual properties of a 
process, depending on material quality, are depending 
only on their actual entity content/density 

According to Postulate 2, actual changes of 
processes are depending only on the actual state of the 
given process, it means, on their X-space distribution. 

As a corollary of Postulate 3, the sum/integral of 
streams or stream densities of entities is given by the 
sum/integral of connected streams or stream densities in 
any arbitrary (x,t) point of the process space, regardless 
to the direction of the streams.  

For the model of a process decomposition it is 
necessary to take in account Postulate 6, it means the 
process should be decomposed into subprocesses of the 
same independent variables and those of the same time 
variable.  

At last, the operation model has to fulfill Postulate 
9, e.g. the operation model should be dimensionally 
correct. 

A part of the streams of the process from or to the 
environmental points is known, other part is unknown 
and we have to evaluate them. According to Postulate 6 
we may assume that the equation describing the 
operation model fulfils the conditions for existing 
solution, and so it makes possible to determine the 
potentials of the unknown streams and the 
differences/derivatives of the entities with respect to the 
time. 

The trajectories of the process – e.g. the solution of 
composed model – will be given by the time 
sum/integration of the simultaneous equation system of 
each operation model and of each stream model, 
including their initial and boundary conditions. 

One of the steps is to determine all potentials 
depending on the density content/density of entities, that 
are necessary to the calculation of connected streams by 
the stream models. Some of the connected streams are 
known, others are unknown and are to be evaluated. We 
again assume, that the equation describing the operation 
model fulfils the conditions for existing solution, and so 
it makes possible to determine the unknown streams. 

The operation model – of course – depends on the 
material properties, too, but they are considered as  
properties of the functions describing the model, so we 
don’t discuss it in details. But we assume – according to 
Postulate 4 – that the functions that connect potentials 
and entity contents/densities are known one–to one 
(invertible) functions. 

To simulate a process, its model has to solve the 
following problem:  

It is necessary to determine the potentials and 
driving forces between the connected environmental 
points, based on the entity content/density of the process 
and its environmental points, then to determine the 
entity content/density corresponding to a ∆t time step, 
using the sum/integral of the potentials and driving 
forces with respect to the process variables. 
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By repeated application of this step, the operation 
model of the process can determine the entity 
content/density on any time–interval, also for non 
constant environmental streams.  

Operation models 

An operation model is a set of relations, describing the 
time dependent state change and the potentials 
necessary to compute the driving forces of the process 
toward or from its environment. The distribution of the 
entity content/density streams is influenced by the 
constitutive relations, by the equipment parameters of 
operation and by every/all streams entering and leaving 
the model. Operation models have to based on the 
constitutive equations. 

Describing an operation model by its equations, in a 
discrete process space we have to determine the hj(ei,t) 
potentials from i transfers the j subsystems and the 
stream rates toward or from the environment denoted by 
vi(t). Using the notation above we get the equation for 
the ∆ei(t) entity change: 
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The first term on the right side is a sum regarding all 
subprocesses, defined so, that the stream is zero 
between subprocesses having no contact, or in the case 
i=j.  

In continuous process space the corresponding 
functions are g and Ki,j , similarly as the streams and the 
density of entities are denoted by d(x,t). The derivative 
of the density function with respect to the time is given 
by  
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It is important to see that Postulate 3 is fulfilled if 
the submodels fulfil it and the composed operation 
models are sums/Lebesque integrals of entity on the 
space of process variables at any considered time. 
Postulate 8 and Postulate 9 are fulfilled on any time 
interval if the submodels fulfil them and if the 
composed operation models are sums/Lebesque time 
integrals of entity of environmental streams.  

The sufficiency is clear, the necessity has not been 
proven according to author’s knowledge, but it is of less 
practical importance. It is obvious in the case of 
transport equations. 

The necessary condition of fulfilling, the laws of 
conservation according to Postulate 3, is given for 
discrete processes in Equation 3, and for continuous 
processes in Equation 4. 
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For discrete processes, the entity increase of each entity 
component in any process space element i must be the 
sum of all entering–leaving streams j connected to it; 
the entity increase of each entity component in any 
continuous process space element x must be the integral 
of entering–leaving streams on the whole process 
variable space and that of environmental stream 
connected to it. 

Stream/stream density and velocity of transfers 

Environmental streams in a composed model are 
computed by transfer models, and have to undergo the 
conservation rules.  

Transfer between discrete submodels is interpreted 
as transfers of each entity belonging to them. 

Transfer models of a composed process describe the 
dependence of transfer streams on the environmental 
potentials and on some entity–independent and 
eventually time–dependent parameters. Transfer 
potentials are assumed to be one–to–one functions of 
the entity content/density according to Postulate 2 and 
Postulate 4. They have to be computed either from the 
environment entity content/density or the potential 
itself by the operation models, depending eventually on 
the entity independent parameters of the constitutive 
equations. If the environmental entity capacity is 
considered infinite, then the potential itself has to be 
specified.  

Transfer models are usually described as functions – 
mostly, but not necessarily – as products of state–
dependent driving forces between the connected models 
and an approximately but not necessarily state–
independent transfer coefficient. This is a somewhat 
redundant way of the stream–entity function description 
but is practical when the dependence is linear: the 
driving force equals approximately the difference of 
connected submodel transfer potentials, and the transfer 
coefficient an entity–independent constant. In this way 
the transfer streams depend on the driving forces that 
monotonously depend on the differences/derivatives of 
each potential and equal zero if the difference between 
the connected potentials is zero. 

Note that such rules were motivating the first steps 
of physical chemistry and fluid mechanics. They are 
only linear approximating rules (like the Newtonian 
rules of heat and impulse transfer, Henry’s Raoult’s, 
rule of component transfer between fluid phases, rules 
of Fourier, Fick, etc.). Also such relation is for first 
order isothermal chemical reaction, but other reaction 
mechanisms are essentially non–linear. 

The potentials (chemical potential, temperature, etc.) 
of the environment entity variables must coincide with 
the entity variables of the process. Environmental 
streams may be either time independent or dependent 
variables, according to the process specification. 

Eq. 5 defines the velocity of entity-transfer between 
the points i and j in case of discrete-time processes 
having discrete process variables:  
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As one can see, the velocity in Equation 5 is defined 
by the partial difference quotients of ei or ej with respect 
to the time, according to this, the dimension of r is 
entity/time. This definition contains also the fulfilling of 
Postulate 3.  

Similarly, for discrete-time processes having 
continuous process variables, the velocity of entity-
density transfer is given in Equation 6)  
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The dimension of q is entity/(generalized 
volume×time), the dimension of d is entity/generalized 
volume. In Eq. 7 and 8 is given the definition of the 
entity density, d , and the generalized volume, ∆V: 

( ) ( )
V

tt
∆

∆
=

→

,lim,
0

xx ed
ζ

                            (7) 

 where   ∏
∈

∆≡∆
Ii

iV x   and  {
Ii

i
∈

∆= xsupζ }       (8) 

Equation 9 and Equation 10 express the velocity of 
entity/density -transfer for time-continuous processes 
having discrete/continuous process variables. 
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Phenomenological description of stream/stream 
density 

The q(x,ξ,t) entity density-transfer stream velocity 
between points x and ξ is defined usually as the product 
of an entity-transfer coefficient and of the driving force. 
The entity-transfer coefficient is usually – but not in all 
cases – described by the Li,j(hj(ei(t)) transfer coefficient, 
depending on the entity content of the subprocesses and 
on the geometry describing their contacts (for example 
heat transfer coefficient in discrete state space or heat 
conduction coefficient in continuous state space.), and 
by the potential difference vectors – called the driving 
force vectors – as their component–by component 
product. 

The above mentioned decomposition is not a unique 
one, but it is very useful for linearization, because the 
entity-transfer coefficient may be regarded often 
constant, and the driving force can be considered as 
proportional with the entity-differences, which means a 
considerable simplification in the numerical steps of the 
simulation. 

Considering the above mentioned, the transferred 
entity stream/density between any arbitrary two discrete 
time points from x2 toward any x1 points is given by  
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The number of equations describing these conditions 
is n(I)2. In the case of i=j Equation 11 is an identity, 
thus is meaningless. 

Similarly, Equation 12 describes the entity-change 
rate in case of continuous process variables: 
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The functions K and L are nonnegative, and 
invariant to interchanging of the points 1 and 2 , 
necessarily for all entity components of any subsystems. 

Streams can belong to more than two contact points, 
as well. (Like in chemical reactions between more than 
two molecules). 

Primary model 

Here we don’t deal with functions describing 
operation of elementary models. We assume, those are 
well known either from the theoretical background of 
the process or from some empirical equations. 
But fulfilling the postulates discussed above, is required 
for the primary models, as well. 

Composed model 

The solution of a composed model means that we know 
all the trajectories of the subprocesses, i.e. the entity 
contents and all the streams at all possible time point is 
determined. 

In case of a composed model the solution is given by 
the simultaneous solution of a multidimensional, usually 
non–linear, perhaps in closed form not known, partial 
integro–differential equation (including initial and 
boundary values). This integro–differential equation is 
given by all of the operation models and by all of the 
stream models. The simultaneous solution of this p.d.e. 
gives the derivative of the processes, from that the 
trajectories can be determined. Usually we don’t have 
general solution in closed form, but only numerical ones 
by Euler, Newton, Broyden, etc. methods. 
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Some usual notions 

Velocity: Entity/density velocity is an often-occurring 
concept in process engineering. It is difficult to define in 
the process variable spatial description but may be 
defined as the absolute value of the difference–
quotient/gradient of the mass components of entity on 
the process subspace: length, width and deepness. The 
gradient direction of energy–stream and velocity are 
often but not necessarily taken as equal to the former.  
Generally speaking, each entity component has its own 
velocity. 
Conductive streams: Conductive streams (like 
molecular diffusion, heat conductivity, etc.) are often 
occurring in the so–called transport equations as second 
order difference/differential terms. The description of 
such conductive streams is possible, taking into 
consideration the entity contents/densities in all points 
of the considered space with proper weights. In the 
practice they can be simplified into the usual second 
order differential equations (divergence or rotation). 
This way of describing conductive streams is strongly 
exhausted in the so called transport equation in the 
theory of chemical process engineering. In our further 
treatment it will be not discussed; it is left for the future. 

Cross effects: In most of the cases the so–called 
cross effects can be neglected between the component 
entity Ø/density and the energy or impulse transfer 
streams5. In some cases they are also applied in 
industrial processes, like thermodiffusion in isotope 
separation. If necessary, they can be taken into 
consideration using vector–vector equations instead of 
particular relations to compute each transfer coefficient. 

Pressure, pressure drop: The theoretical base of 
pressure and pressure drop computation is the law of 
conservation of momentum, transferring the momentum 
change by the pressure drop to the ground. Its value is 
computed from the state, its change by the Navier–
Stokes equation. In most of the cases, however, the 
change calculation is simplified calculating the pressure 
drop by friction factors. 

Linear models in the space of process 
coordinates 

Linearity in the space of process coordinates 

A process model is said to be linear in the space of 
process coordinates (further l.p.c.) if the 

Equation 13
 

( ) ( ) ( )22112211 zzzz eee ⋅+⋅=⋅+⋅ cccc  

holds for any two z∈X∪U points of the union of the 
space of process and environment variables. According 
to this definition is easy to see that if an operator l.p.c. 
contains parameters, they have to be independent of z. 
                                                 
 

If such a model is a linear approximation of a 
continuous and differentiable non–linear model its 
coefficients become the corresponding partial 
difference/differential quotients of the variables on the 
corresponding (discrete or continuous) time variable. 
The simulation result becomes  

the sum of the state changes in time differences 
in discrete processes, and  

the time integral of  the state changes in time 
in continuous time processes.  

It is easy so see that time independent processes 
have to be time independent as well. In all cases the 
models can be discrete or continuous in time. Nothing is 
against that subprocesses of a l.p.c. process be 
nonlinear, supposed that their corresponding partial 
difference/differential quotients are approximated by 
state independent values. 

The coefficients of the linear system are given by the 
Equation 11 and Equation 14: 

( ) ( )( ) ( ) ( )( ) Ijitttt iijjijijji ∈∀⋅−⋅= ,h,,h,, ,, eeeLeeeL0  
(14) 

( ) ( ) ( ) ( )
X

tttt
∈∀

⋅−⋅=

ξ
dddKdddK0 ξξξξξ

,
,g,,,g,, ,,

x
xxxxx  

(15) 

If the problem is linearized, all coefficients Li,j⋅h(ej) 
of Equation 11 and Equation 14 are constants. It can be 
described clearly by hypermatrix – hypervector 
notation. For lack of space, it is omitting here. 

One of the most problematic cases is dividing 
homogeneous streams, that needs a prescription of 
entity stream ratios. It has to be described by bilinear 
equations that restricts the validity of the linearized 
equations into small time steps. That’s why networking 
programs have to iterate the concentration at each 
stream recirculation, too.  

An algorithm for the solution 

Considering the above mentioned model descriptions, 
we suggest the following algorithm for the solutions: 

1. Having determined the derivatives of each 
entity content and each entity stream functions for each 
subprocess, we have to solve the corresponding system 
of linear equations. These procedures result an 
approximating linear system, whose accuracy depends 
on the length of the applied steps. This linear system 
won’t be more complicated if we consider as variables 
not only the entity contents of the subprocesses, but 
those of the higher level processes, too.  

2. The next procedure is to evaluate the roots of 
the approximating linear system, that makes possible to 
approximate the next time-step values of the streams 
using Euler, Newton, Broyden, or other methods 

3. We add the resulted entity changes to the 
corresponding previous entity values. 
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4. We do this procedure until the last time point 
will be reached. 

Theoretically the method offers the possibility for 
the numerical approximation of the trajectories also in 
the case of non–constant environmental streams. Of 
course, the numerical differentiation in each step could 
require a long computer time if the number of 
subprocesses is high. 

The goal of the most computer engineering problems 
is to determine the stationary state of a stable system. 
This goal, considering constant values of the 
environmental variables (theoretically) can be reached if 
we know the coefficient matrix of the linear model: it 
requires the numerical solution of the eigenvalue–
eigenvector system corresponding to the coefficient 
matrix of the dynamic simulations equation system.  

We don’t suggest any method to determine the 
process variables or to carry out the decomposition. 
Both problems need special engineering aspects for 
each individual problem. The regularity of the 
corresponding Jacobian matrix offers only a checking 
possibility. Decomposition usually expands the number 
of parameters, but in case of linear models the huge 
equation system splits into several smaller ones, so that 
it offers bigger accuracy of numerical approximation. 
Inversely, if we patch up subprocesses, the number of 
parameters decreases. Sometimes it is necessary to 
shorten the intolerable long computing time, satisfied 
with lower accuracy of numerical approximations.  

These models are important, showing the theoretical 
possibility of simulation and optimizing complex 
processes, built up from subprocess models. We can 
also see the problem inversely: how a process may be 
seen from above, yielding a product wanted, 
decomposing it into subprocesses such detailed as it is 
necessary to reach the accuracy wanted. We are 
continuously working on some examples describing 
very different fields of process engineering, which show 
well the common bases and sometimes different ways of 
solving the complex process simulation and 
optimization problems. 

Conclusions 

However, processes have been designed and industrially 
applied for centuries, the theory of their simulation, 
based on correctly formulated and defined basis, has not 
clearly put yet, according to the authors knowledge. The 
postulates put in this paper show some theoretical bases 
of simulation and process design and inspire a 
theoretically exactly based way of computing. The 
reason, not to formulate these rules is possibly due to 
the difficulty of executing such a calculation. This 
seemed to be impossible by human forces and to 
computers too up to the last decades. However, the 
computation possibilities reached in last years such a 
speed and memory capacity that the computation, 
necessary to such a simulation is over or shall reach 
them in few years. This paper tries to give basic 
postulates, some of them based on the well–known rules 
of physics and others on trivial logical statements. 
Naturally, the question on the knowledge of 
constitutional equations remains.  

Applying the algorithm outlined would be able to 
simulate, design, optimize processes, design their 
control system, their sensitivity on input, their stability.  

The stochastic simulation has not been treated here, 
in that case the objects are not numeric but probability 
distributions and the theoretical treatment becomes 
more complicated. One must not forget applying also 
the deterministic simulation model the chaotic 
uncertainty of the result due to the inherent sensitivity 
on initial conditions of such systems. 
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List of Symbols 

cont. pr. continuous process 
disc. pr. discrete process 
d(x,t). density of an entity 
ei(t) time dependent distribution of an entity  

g(d(x,t)) potential in a cont. pr. 
h(ei(t)) potential in a discrete process 
i or j a discrete process variable vectors  

I the set of disc. proc. variable vectors 
M the set of entities 
Li,j entity transfer coefficient for disc. proc. 

variables 
Kx,ξ entity transfer coefficient for cont. proc. 

variables 
ri,j(t) velocity of entity transfer 

q(x,ξ,t) velocity of entity density transfer 
s, σ streams 

t time 
T the set of time values 

vi(t) environmental stream vector (discr. pr.) 
u(x,t) environmental stream vector (cont. pr.) 
x or  ξ process coordinate vectors 

X the set of cont. proc. variable vectors 
∆V generalized volume 

ζ  factor for the definition of d(x,t). 
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