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Introduction

The characteristics of fluid turbulence in riv-
ers, estuaries, coastal environments and the 
atmosphere are a primary focus of the study 
of Earth surface processes. Characterization of 
coherent turbulent structures is of consider-
able interest because these structures govern 
the exchange of energy and momentum over 
a wide range of spatial and temporal scales, 
thereby influencing sediment transport rates, 
patterns of erosion and deposition, rates of 
fluid and constituent mixing, and interactions 
between flow structure and vegetation (e.g. 
Niño, Y. and Garcia, M.H. 1996; Buffin-Bé-
langer, T. et al. 2000; Zedler, E. and Street, 

R. 2001; Cellino, M. and Lemmin, U. 2004; 
Wu, F. and Yang, K. 2004; Singh, A. et al. 2012; 
Nepf, H. et al. 2013; Venditti, J.G. et al. 2013; 
Lewis, Q.W. and Rhoads, B.L. 2015). Thus, 
coherent structures play an important role in 
the morphologic evolution of fluvial, aeolian, 
and coastal systems. 

Analysis of velocity time series has become 
an important tool in attempts to identify co-
herent structures in turbulent flows and to 
characterize the properties of these structures. 
Fourier analysis, which yields power spectra 
illustrating the distribution of turbulent en-
ergy associated with different frequencies, is 
a common method of analysing velocity sig-
nals for natural turbulent flows (Nikora, V.I. 
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and Smart, G.M. 1997; Uijttewaal, W.S.L. 
and Tukker, J. 1998; Sukhodolov, A. and 
Rhoads, B. 2001; Rhoads, B. and Sukhodolov, 
A. 2004; Singh, A. et al. 2010). More recently, 
wavelet analysis, which yields amplitude-fre-
quency-time spectra, has been used to study 
the time-dependent behaviour of turbulent 
flows (Chen, J. and Hu, F. 2003; Hardy, R.J. 
et al. 2009; Wu, X. et al. 2013). Applications of 
these two methods have greatly enhanced our 
understanding of turbulence by identifying 
important frequency scales of velocity fluctua-
tions in different types of turbulent flows and 
by providing empirical evidence in support of 
theoretical analyses, such as energy cascade 
theory (Kolmogorov, A.N. 1941; Sukhodolov, 
A. 1998; Sukhodolov, A. and Rhoads, B. 2001; 
Rhoads, B. and Sukhodolov, A. 2004). 

Despite these successes, Fourier and wave-
let analyses are subject to limitations. To be 
suitable for Fourier analysis signals must be 
both stationary and linear, while for wavelet 
analysis signals must be linear (Huang, N.E. 
et al. 1998). Moreover, both methods decom-
pose the velocity signal using pre-defined 
waveforms. In the case of Fourier analysis, 
signals are decomposed into sine waves. If 
the fluctuations in a velocity signal are not 
well described by sine waves, this approach 
can spread energy over spurious harmonics 
that do not necessarily reflect real, physical 
motions of the fluid. Fourier analysis, since 
it treats sine-wave oscillations over the entire 
velocity signal, also cannot capture well (if at 
all) localized fluctuations in a signal produced 
by turbulent events that occur only for a short 
duration of the total signal length. Wavelet 
analysis, by yielding amplitude-frequency-
time spectra, can capture events localized in 
time; however, the waveform used to analyse 
the signal is pre-defined by the user. Common 
forms include the Morlet, Gaussian, or Haar 
wavelets. Because results depend on the type 
of waveform selected, analysis of a signal us-
ing this method is not unique, complicating 
comparisons among studies. 

To address the limitations of Fourier and 
wavelet analysis, Huang, N.E. et al. (1998) 
proposed a new method for spectral analy-

sis of nonlinear and non-stationary data. 
The cornerstone of this method is Empirical 
Mode Decomposition (EMD), which decom-
poses a signal into a finite number of modes, 
termed Intrinsic Mode Functions (IMFs), us-
ing the local timescales present in the signal 
itself. An important attribute of EMD is that 
the resulting IMFs have physically mean-
ingful Hilbert transforms. The set of Hilbert 
transforms of the IMFs is used to generate 
the amplitude-frequency-time distribution 
of a signal. This distribution may then be in-
tegrated over time to yield the power spec-
trum of frequency. It is therefore possible to 
investigate the frequency spectrum for the 
entire signal as well as the time-evolution of 
the frequency spectrum. 

When Huang, N.E. et al. (1998) first proposed 
the Hilbert-Huang transform (HHT) method, 
they used a time series of wind speed to dem-
onstrate its capabilities. Since then, the Hilbert-
Huang method has been used to investigate 
periodicities in many different types of data, 
including time series of rainfall, lake tempera-
ture, and wind speed (e.g. Rao, A.R. and Hsu, 
E.C. 2010), stream gage data (e.g. Huang, Y. et 
al. 2009; Rao, A.R. and Hsu, E.C. 2010), ground 
motion during earthquakes (Loh, C. et al. 2000, 
2001), and oxygen isotope data from ice cores 
(Thomas, E.R. et al. 2009). Application of the 
HHT method to the study of ocean waves has 
been especially useful because such waves 
are non-linear, which limits the applicabil-
ity of Fourier and wavelet analysis (Huang, 
N.E. and Wu, Z. 2008). Additionally, efforts 
have been made to establish confidence lim-
its for the EMD (Huang, N.E. et al. 2003) and 
to determine the nature of noise in the EMD 
(Flandrin, P. et al. 2004, 2005; Flandrin, P. 
and Gonçalves, P. 2004; Wu, Z. and Huang, 
N.E. 2004, 2005). A full summary of previous 
applications and advances of the HHT method 
is beyond the scope of this paper; a more com-
plete description can be found in Huang, N.E. 
and Wu, Z. (2008). 

Although the HHT method has been suc-
cessfully applied in a wide variety of fields, 
applications of the HHT method to turbulent 
shear flows, such as those that can occur in riv-
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ers, streams, estuaries and coastal zones, are 
rare and limited in scope (e.g. Schmitt, F.G. et 
al. 2009; Kanani, A. et al. 2010). Given its robust 
capacity to deal with nonlinear, nonstationary 
signals, the HHT method has enormous poten-
tial to improve our understanding of turbu-
lent shear flows. The purpose of this paper is 
to illustrate the value of the HHT method for 
analysing turbulence in water flows through 
applications including: (1) velocity measure-
ments of unidirectional flow over a flat sand 
bed below the threshold for sediment mo-
tion (laboratory), (2) velocity measurements 
of unidirectional flow with high suspended 
sediment concentration (laboratory), (3) veloc-
ity measurements from a combined flow (e.g. 
a flow with both a unidirectional and oscil-
latory component of velocity) over a mobile, 
evolving bed (laboratory), and (4) temperature 
measurements from the shear layer of a large 
river confluence (field). These examples were 
specifically chosen to highlight the advantages 
of the HHT method. The applications show 
that the method can be used to identify inter-
mittency in an otherwise stationary velocity or 
temperature signal, analyse time-dependent 
flows, and capture fluctuations in a signal that 
are not sinusoidal. EMD also provides a means 
of noise-removal and signal de-trending. The 
HHT method is not a replacement for Fourier 
or wavelet analysis, but it can provide useful 
additional information on the character of tur-
bulent flows when used in conjunction with 
those methods.

Methods

The Hilbert-Huang transform (HHT) deter-
mines the local frequency spectrum (i.e. the 
frequency spectrum at each individual time 
step) of a signal by applying a Hilbert trans-
form to a complete set of locally orthogonal 
modes, or intrinsic mode functions (IMFs), 
of the signal. The HHT method consists of 
two main steps. First, the original signal is 
decomposed into a set of IMFs using a meth-
od termed Empirical Mode Decomposition 
(EMD). Next, a Hilbert transform is applied 

to each IMF and the frequency spectrum of 
the signal is calculated. 

Empirical Mode Decomposition

The method of EMD is used to transform the 
signal into a set of IMFs (Huang, N.E. et al. 
1998), which satisfy the following two con-
ditions: (1) the number of extrema (maxima 
or minima) in the IMF must be equal to the 
number of zero crossings (e.g. where the 
signal crosses the x-axis) or differ by one, 
and (2) the average of the envelope curve 
of the IMF maxima and the envelope curve 
of the IMF minima must equal zero at each 
time step. The HHT method calculates these 
modes from the signal itself, with no wave-
form defined a priori. Each IMF represents 
characteristic oscillations over a narrow 
range of frequencies, which occur locally, 
intermittently, or persistently throughout the 
sample length of the signal. The decomposi-
tion procedure involves several steps (for full 
details of the method, see the original work 
by Huang, N.E. et al. 1998):
1. Create upper and lower envelope curves 
emax(t) and emin(t) for the signal by fitting cubic 
splines to the local maxima and minima in 
the time series.
2. Average the values of the upper and low-
er envelope curves at each time to get m1(t) 
(Eqn. 1).

                                                                                                                                   (1)

3. Subtract m1(t) from the signal x(t) to get 
h1(t) (Eqn. 2).

                                                                        (2)

Check to see if h1(t) satisfies the two condi-
tions to be an IMF. If h1(t) satisfies the require-
ments, it is IMF1(t). If not, treat h1(t) as the new 
signal and repeat steps 1–3 for “j” iterations 
until if h1j(t) is an IMF. This process is referred 
to as “sifting.” Although satisfying the first 
condition is absolutely necessary for an IMF, 
if iterations are carried to an extreme to satisfy 
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the second condition, physically meaningful 
amplitude fluctuations can be obliterated, 
resulting in a pure frequency modulated sig-
nal of constant amplitude (Huang, N.E. et al. 
1998). It is therefore necessary to introduce a 
stopping criterion for the sifting process. This 
criterion involves imposing a constraint on 
the magnitude of the standard deviation (Eqn. 
3) between two consecutive “siftings”; in the 
analyses presented in this paper a value of 0.2 
is used (Huang, N.E. et al. 1998):

                                                                       (3)

4. Calculate the residual r1(t) between the first 
IMF and the signal (Eqn. 4).

                                                                       (4)

The residual r1(t) is now the new signal. 
5. Repeat steps 1–4 using r1(t) to determine 
m2(t), h2j(t), and the second intrinsic mode 
function IMF2(t).
6. Calculate the new residual r2(t) (Eqn. 5).

                                                                       (5)

7. Repeat steps 1–7 to obtain IMF3, IMF4, … 
IMFn until rn(t) becomes a monotonic func-
tion or has only one extreme.

The EMD process produces n orthogonal 
IMFs and a residual r(t) = rn(t). The sum of 
the n IMFs and the residual r(t) equals the 
original signal x(t) (Eqn. 6). Performing this 
summation is a check to determine that the 
decomposition is complete.

                                                                      (6)

During each iteration of the decomposi-
tion, progressively lower frequencies of 
characteristic oscillations remaining in the 
signal are “sifted” out into a new IMF. The 
resulting IMFs encompass a narrow range 
of the frequencies present in the original 
signal, and as mode number increases, the 
mean frequency associated with that mode 
decreases. As with Fourier analysis, the sam-
ple length and the Nyquist frequency (half 

the sampling frequency) set the limit on the 
lowest and highest frequencies, respectively, 
that can be identified in the signal. The re-
sidual, which must be monotonic or contain 
only one extreme, represents the trend of the 
signal over the sample length. 

Hilbert transform

The Hilbert transform is used to extract the 
local frequency and amplitude from each 
IMF for spectral analysis. The IMFs, as ex-
tracted from EMD, satisfy the two conditions 
required to define meaningful frequencies 
using the Hilbert transform. The Hilbert 
transform is the convolution of a function 
f(t) with 1/πt (Eqn. 7). 

                                                                        (7)

A real function f(t) and its Hilbert transform 
f(t) form a strong complex analytic signal, Z(t) 
in which the real (r) part of Z(t) is f(t) and the 
imaginary (i) part is given by f̃(t) (Eqn. 8). 

                                                                     (8)

The Hilbert transform is applied to each of 
the n IMFs, forming n strong complex ana-
lytic signals (Eqn. 9a), which can be also be 
written in a polar form (Eqn. 9b).

                                                                      (9a)

                                                                     (9b)

The local amplitude Aj(t) is given by Eqn. 
10 and the local angular frequency ωn and 
frequency fj(t) for each IMF are computed as 
shown in Eqn. 11a and Eqn. 11b.

                                                                           (10)

                                                                     (11a)

                                                                      (11b)
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Thus, there are n values of frequency and 
amplitude at every time step, which can be 
expressed as Aj(f,t). The amplitude of an IMF 
at any given time step, for example A3(tm), 
reflects the degree to which the correspond-
ing local IMF frequency, f3(tj), is present in 
the original signal at that time step, tm. The 
combined set of all n Aj(f,t) gives the Hilbert 
spectrum H(f,t) (Eqn. 12).

                                                                      (12)

If two or more IMFs happen to have the same 
frequency at the same time step, the Hilbert 
spectrum value for that frequency is the sum of 
those IMF amplitudes at that time. The Hilbert 
spectrum can be plotted as discrete points in 
time-frequency space using a colour scale to 
represent H. Previous studies have applied a 
weighted Gaussian filter to the discrete points 
of the Hilbert spectrum to produce a visually 
continuous plot (Huang, N.E. et al. 1998). 

The plot of the Hilbert spectrum is similar 
to a wavelet plot in that it displays the time 
evolution of the frequency spectrum. The 
main difference between H(f,t) and a wavelet 
plot is in the method of calculating the am-
plitude at each frequency-time pair. Wavelet 
analysis performs a correlation of the signal 
with a wavelet of varying size at each time-
step. The wavelet scale (a) is converted into a 
“pseudo-frequency” (Fa) using the centre fre-
quency of the wavelet (Fc) and the sampling 
period of the signal (Δ) (Eqn. 13). 

                                                                               (13)

The form of the wavelet is defined a priori 
and can influence the results of the analy-
sis substantially. Thus, comparisons be-
tween wavelet analyses are limited to those 
which use the same wavelet. In contrast, the 
Hilbert-Huang transform does not require 
any a priori choice of waveform, as the 
Hilbert spectrum is calculated directly from 
empirically derived IMFs. The only tuning 
parameter that affects HHT is the standard 
deviation tolerance in the shifting process, 
and, if kept at or below 0.2 (Huang, N.E.  

et al. 1998), primarily influences effects the 
calculation time with negligible changes in 
the IMFs and residual. 

Integrating the Hilbert spectrum over time 
gives the marginal Hilbert spectrum h(f) 
(Eqn. 14).

                                                                         (14)

This spectrum is similar to the Fourier spec-
trum in that it represents the contribution of 
a given frequency to the original signal. The 
marginal Hilbert spectrum differs substantial-
ly from the Fourier spectrum in that the HHT 
method can capture periodicities that occur 
only locally or intermittently in a signal – a 
capability that Fourier analysis lacks. Thus, 
peaks in the marginal Hilbert spectrum may 
represent frequencies that are present locally, 
intermittently or throughout the whole sam-
ple length. In contrast, the Fourier spectrum 
only captures periodicities that are present 
persistently over the entire sample length. 
Peaks in the marginal Hilbert spectrum h(f) 
can be examined in detail via the Hilbert spec-
trum H(f,t) to determine if these peaks repre-
sent persistent periodicities in the signal or 
intermittent variations in signal amplitude at 
certain frequencies. The frequency spectrum 
of the signal can also be investigated in more 
detail by integrating each Aj(f,t) separately, 
yielding the marginal spectrum of each IMF. 
Such an approach is useful for identifying the 
relative contributions of characteristic oscilla-
tory modes in a signal to the overall spectral 
characteristics of the signal and for comparing 
characteristic modes among different signals 
(Huang, N.E. et al. 1998; Konsoer, K.M. and 
Rhoads, B.L. 2014). The Hilbert spectrum may 
also be integrated over frequency to give the 
“Instantaneous Energy” (IE) at each time step 
(Eqn. 15). Large values of IE reflect local high 
amplitude oscillations, a metric of signal en-
ergy, of unspecified frequency:

                                                                      (15)

In summary of this method section, HHT 
provides an alternative approach to analys-
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ing temporal or spatial signals in spectral 
space compared to Fourier and wWavelet 
analyses, and offers provides an additional 
methods of decomposing a the signal and/or 
integrating it over time or frequency space. 
Importantly, HHT does not require the selec-
tion of a waveform for the spectral analysis a 
priori. In the next sections, we illustrate us-
ing present through various hydrodynamic 
examples the utility of the HHT method.

Results and discussion

Application to clay-laden flows

To illustrate the capabilities of the method to 
characterize complex turbulent flows with 
high degrees of intermittency, HHT analysis 
is applied to velocity data for clay-laden wa-
ter flows, which exhibit flow characteristics 
that vary both with the concentration of sus-
pended sediment and the mean velocity. Pre-
vious work has identified five types of clay 
flows based on the effect of increasing clay 
concentration on the characteristics of fluid 
turbulence: turbulent flow (TF), turbulence-
enhanced transitional flow (TETF), lower and 
upper transitional plug flow (LTPF/UTPF) 
and quasi-laminar plug flow (PF) (Baas, J.H. 
et al. 2009). HTT analysis was performed on 
streamwise velocities measured in four types 
of clay-laden flows (Runs 10–1, 10–19, 10–22 
and 10–26 from Baas, J.H. et al. 2009) (Table 
1). These flows have similar depth-averaged 
velocities and depths, but different clay con-
centrations. Velocity signals for all four flows 
were measured 5 mm above the bed with an 
ultrasonic Doppler velocity profiler (UDVP) 
operating at a sampling frequency of 125 

Hz (for details see Baas, J.H. et al. 2009). The 
UDVP measures the component of velocity 
parallel to the instrument beam at 128 points 
along the beam length.

Velocity time series for each of the four 
types of flows have distinctive characteris-
tics (Baas, J.H. et al. 2009) (Figure 1). Signals 
for the TF and the TETF flows are similar in 
form, but amplitudes of turbulent fluctua-
tions for the TETF are greater in magnitude 
than those for the TF. The LTPF exhibits dis-
tinct low-frequency oscillations compared to 
TF and TETF, whereas UTPF is characterized 
by intermittent “saw-tooth” shaped oscil-
lations (Baas, J.H. et al. 2009). The Fourier 
and marginal HHT spectra for each of the 
four flows are generally similar in form, but 
the Fourier spectra exhibit more variability 
than the HHT spectra (Figure 2). The Fourier 
and Hilbert spectra of the LTPF and UTPF 
have slightly steeper slopes than spectra 
for the TF and TETF, but otherwise all four 
spectra have slopes close to -5/3 – the value 
expected for the energy cascade associated 
with the inertial subrange of turbulent flows 
(Kolmogorov, A.N. 1941; Sukhodolov, A.N. 
and Uijttewaal, W.S.J. 2010). 

By contrast, the full Hilbert spectra of the 
four flows, plotted as filled contours, differ 
considerably from one another (Figure 3). The 
TF Hilbert spectrum and the TETF Hilbert 
spectrum are similar in that the Hilbert am-
plitude fluctuates intermittently, with a few 
localized high-amplitude sections. The TETF 
Hilbert spectrum exhibits consistently higher 
Hilbert amplitudes than the TF Hilbert spec-
trum over the whole range of frequencies 
and over the entire duration of the signal. 

As expected based on the apparent pe-
riodicity of the velocity signal, the Hilbert 

Table 1. Details for the four clay-laden flows

Run* Flow type Clay concentration, 
vol. %

Depth-averaged 
velocity, cm/s

Mean streamwise 
velocity**, cm/s Flow depth, cm

10–1
10–19
10–22
10–26

TF
TETF
LTPF
UTPF

0.03
12.48
14.45
16.44

140.3
143.3
140.4
134.9

97.85
96.12
75.15
38.83

14.3
14.0
14.1
14.8

*From Baas, J.H. et al. 2009. **At 5 mm above the bed.
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Fig. 2. Comparison of the Fourier spectra to the marginal Hilbert spectra for the four time series of clay-laden 
flows. – TF, TETF, LTPF and UTPF: For explanation see Fig. 1.

Fig. 1. Time series of streamwise velocity for different concentrations of suspended sediment. Classifications 
as identified by Baas, J.H. et al. (2009). – TF = turbulent flow; TETF = turbulence enhanced transitional flow; 

LTPF = lower transition plug flow; UTPF = upper transition plug flow
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spectrum of the LTPF is characterized by 
intermittent high amplitudes at frequencies 
less than ~10 Hz. Values of amplitude for 
these low-frequency velocity variations are 
the greatest of any of the four flows. Strong 
low-frequency turbulence for LTPF has been 

attributed to Kelvin-Helmholz instabilities 
along an internal basal shear layer that devel-
ops between highly turbulent near-bed flow 
and less turbulent flow in the upper portion 
of the fluid column (Baas, J.H. et al. 2009). 
The Hilbert spectrum of the UTPF is charac-

Fig. 3. Full Hilbert spectra for the four time series of clay-laden flows. – TF, TETF, LTPF and UTPF: For ex-
planation see Fig. 1.
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terized by small amplitudes at all frequen-
cies, indicating nearly pervasive damping 
of turbulence by high sediment concentra-
tions. Weak turbulence near the bed, where 
the vertical gradient in streamwise velocity is 
largest, produces a number of highly isolated 
high amplitude fluctuations of the signal at 
low and intermediate frequencies (e.g. at ~13 
seconds and ~42 seconds). 

The Instantaneous Energy (IE) plots of 
the four signals reflect the differences in 
the Hilbert spectra (Figure 4). Because these 
plots show the sum of the local Hilbert am-
plitudes over all frequencies, high values of 
IE at a particular time may signify a strong 
local fluctuation of a single frequency or 
synchronous local fluctuations over multi-
ple frequencies. Averaging the Instantaneous 
Energy over time gives a measure of the 
overall oscillatory energy in the signal. The 
mean Instantaneous Energy of the TETF 
(mean IE = 493) is higher than that of the TF 
(mean IE = 221), which is consistent with the 
higher turbulence intensity of the TETF com-
pared to the TF (Baas, J.H. et al. 2009). The IE 

of both the TETF and TF fluctuate over time, 
reflecting that the strength of the turbulence 
fluctuates over time. The LTPF Instantaneous 
Energy consists of systematic low-frequency 
fluctuations about a relatively high mean 
value of 690. These low frequency fluctua-
tions in IE probably reflect Kelvin-Helmholz 
instabilities within the basal shear layer of 
the LTPF, which produce high magnitude, 
low frequency fluctuations in streamwise 
velocity. The mean Instantaneous Energy of 
UTPF is the lowest of the four signals (mean 
IE = 143); a result that indicates suppression 
of turbulence related to gelling of the flow 
(Baas, J.H. et al. 2009). The IE of the UTPF is 
also characterized by local spikes, which oc-
cur at the same times as the “saw-tooth” ve-
locity fluctuations in the raw velocity signal. 

The distinct forms of the Hilbert spectra 
and Instantaneous Energy plots illustrate 
nicely the different behaviours of clay-en-
riched flows described by Baas, J.H. et al. 
(2009). Moreover, the full Hilbert spectrum 
provides a means of distinguishing among 
different types of clay-laden flows even 

Fig. 4. Instantaneous energy plots for the time series of clay-laden flows. – TF, TETF, LTPF and UTPF:  
For explanation see Fig. 1.
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though the marginal Hilbert spectra and 
Fourier spectra of these flows do not differ 
substantially. Results of the analysis can also 
be used to characterize differences in the 
intermittency of these flows, both for indi-
vidual frequencies and over the entire range 
of frequencies. The applications of the HHT 
method to these clay-laden flows shows that 
it is a robust tool for examining the character-
istics of complex turbulent flows, especially 
when velocity fluctuations of these flows are 
highly intermittent.

Application to combined flow over a mobile bed

The second application examines labora-
tory measurements of non-stationary time 
series of streamwise and vertical velocity 
components from a combined flow over an 
evolving mobile bed. The experiments were 
conducted in the Large Oscillatory Water-
Sediment Tunnel facility at the Ven Te Chow 
Hydrosystems Laboratory at the University 
of Illinois, Urbana-Champaign (Perillo, 
M.M. et al. 2014). The combined flow is com-
posed of an oscillatory component with a pe-
riod of 5 seconds and a maximum oscillatory 
velocity of 30 cm/s, and a unidirectional com-
ponent with mean velocity of 10 cm/s. The 

experiment began with a flat, mobile sand 
bed (D50 = 250 µm) and continued for 640 sec-
onds through the development of bedforms. 
Velocities were measured with an ADV at a 
distance of 1 cm above the initial flat bed at 
a sampling frequency of 25.6 Hz. The time 
series were de-spiked prior to analysis with 
the HHT method (Goring, D.G. and Nikora, 
V.I. 2002).

Time series of streamwise (u) and vertical 
(w) velocities clearly show the non-stationar-
ity of the signal, particularly the variance of 
the vertical velocities (Figure 5). The marginal 
Hilbert spectra of the streamwise and vertical 
velocities both have peaks centred at a fre-
quency of 0.2 Hz, but the peak is much more 
pronounced for the streamwise velocities 
(Figure 6). In this case, the peak at 0.2 Hz is 
much sharper for the Fourier spectrum than 
for the marginal Hilbert spectrum because 
the persistent 0.2 Hz oscillatory component 
of the flow over the entire measurement is 
particularly well suited for Fourier analysis. 
Overall the marginal Hilbert spectra and 
the Fourier spectra of the two velocity com-
ponents are similar in shape (see Figure 6). 
However, the marginal Hilbert spectrum of 
streamwise velocity exhibits a broad second-
ary peak centred on a frequency of 1 Hz, not 
visible in the Fourier spectrum, suggesting 

Fig. 5. Time series of (a) streamwise and (b) vertical velocity components of a combined oscillatory and unidi-
rectional flow. (Data courtesy of Perillo, M.M.)
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that high-frequency turbulent fluctuations 
are an important part of the signal and that 
the Fourier spectrum does not capture these 
high frequencies as well as the marginal 
Hilbert spectrum (see Figure 6).

A major advantage of the HHT method is 
its capacity to yield marginal Hilbert spectra 
for each IMF (Figure 7). The IMFs represent 

major modes of variability over a narrow 
range of frequencies within the original time 
series. For the time series of streamwise ve-
locity, the individual marginal Hilbert spec-
tra of the IMFs show that IMFs 4–6 capture 
the primary oscillatory component of the 
combined flow, IMFs 7–11 represent large 
scale fluctuations not associated with the os-
cillatory motion, and IMFs 2 and 3, as well 
as the high-frequency tails of IMFs 4 and 5, 
represent turbulence associated with high 
frequency fluctuations (see Figure 7). The 
first IMF can be associated with measure-
ment noise (Kanani, A. et al. 2010).

The Hilbert spectrum for the streamwise 
velocity of the combined flow (plotted as dis-
crete points) shows a high-amplitude band 
centred on 0.2 Hz (Figure 8, a). By isolating 
IMFs 2 and 3, which do not include the 0.2 
Hz oscillation, it is possible to examine the 
time evolution of high frequency turbulent 
fluctuations independent of the low-frequen-
cy oscillatory component of the combined 
flow (Figure 8, b). To aid interpretation of 
the time evolution of the signal, the data in 
the Hilbert spectrum were contoured. After 
an initial period (0–50 seconds) of increased 
Hilbert amplitudes associated with turn-
ing on the pumps for the experiment, am-
plitudes diminish as flow over the initially 
flatbed stabilizes and attains its target oscilla-
tory streamwise velocities. At approximately 
290 seconds, the Hilbert amplitudes begin 
to steadily increase until the end of the time 
series. This increase in Hilbert amplitude 
represents an increase in high-frequency tur-
bulent energy associated with the initiation 
and growth of bedforms. The influence of the 
initiation of bedforms at roughly 290 seconds 
is also apparent in the time series of vertical 
velocity (see Figure 5, b) and its Hilbert spec-
trum (Figure 8, c). The full Hilbert spectrum 
for streamwise velocity is in good agreement 
with the wavelet spectrum for lower frequen-
cies (Figure 8, d). 

A comparison of the Hilbert spectrum 
and wavelet spectrum computed using the 
Mexican hat waveform illustrates some of the 
major differences between these two meth-

Fig. 6. Comparison of Fourier spectra and marginal 
Hilbert spectra for (a) streamwise velocity and (b) 
vertical velocity components for the combined flow 

described.
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Fig. 7. Marginal Hilbert spectra for each IMF from 
the streamwise velocity signal of combined flow. 

Numbers 1–11: For explanation see the text.

ods (see Figure 8). The wavelet spectrum 
clearly shows an increase in the strength of 
the 0.2 Hz oscillation over the first 50 sec-
onds, as expected from turning on the pumps 
for the experiment. However, in the wavelet 
spectrum, the 0.2 Hz oscillatory component 
dominates the entire signal and it is difficult 
to isolate the temporal evolution of the high 
frequencies. Thus, the ability to isolate in-
dividual IMFs is a unique advantage of the 
HHT method. Moreover, while the Hilbert 
spectrum provides discrete values of the fre-
quency associated with these high amplitude 
events (see Figure 8, a), the wavelet spectrum 
spreads high amplitudes over a range of fre-
quencies (see Figure 8, d).

Detrending and noise-removal with HHT

Because IMFs represent different oscillatory 
modes of characteristic frequencies contained 
within the original signal, the highest and 
lowest frequency components can be used to 
de-trend or remove noise from a signal. The 
HHT method is a robust tool for de-trending 

because it does not require an initial assump-
tion about the type of trend in the signal and 
because it can easily remove nonlinear trends. 
The trend in a signal is simply the residual 
component from EMD. Subtracting this resid-
ual from the signal yields a stationary signal 
that can be analysed with either the Hilbert 
transform or the Fourier transform. 

A time series of surface water tempera-
tures collected from a mixing interface of 
a large river confluence of the Wabash and 
White rivers in Illinois (Figure 9, a–c) is used 
to demonstrate the de-trending capabilities 
of HHT (Konsoer, K.M. and Rhoads, B.L. 
2014). The data were collected using a boat-
mounted RDI acoustic Doppler current pro-
filer (ADCP) at a sampling frequency of 1 Hz 
over a sampling interval of 117 minutes. The 
residual trend in the data, as extracted by 
EMD, shows temperatures increasing non-
linearly throughout the sampling interval 
(Figure 9, b). This increase in temperature is 
associated with diel fluctuations of heating. 
Subtracting the residual from the original 
time series produces a detrended signal that 
is stationary over the full length of the time 
series (Figure 9, c). In this manner, the diel 
trend in heating is isolated from the fluctua-
tions in water surface temperature that result 
from the dynamics of the mixing interface at 
the confluence without assuming a certain 
type of trend a priori. 

Assuming the surface water temperature 
acts as a passive marker of the fluid from the 
two tributaries, it is possible to extract infor-
mation about the mixing interface from the 
frequency spectrum of the detrended tem-
perature data. The Fourier spectrum of the 
original signal contains the energy associ-
ated with the low frequency diel fluctuation 
in temperature (Figure 10, a), and is therefore 
greater than the Fourier spectrum of the de-
trended signal at frequencies less than ~10-2. 
The Fourier spectrum of the detrended sig-
nal is nearly identical to the marginal Hilbert 
spectrum of the original signal, in which the 
residual trend is automatically excluded from 
calculations. The power-law form of the fre-
quency spectrum of the detrended signal re-
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Fig. 8. The full Hilbert spectrum for the streamwise component of the combined flow signal – shown in  
Figure 5, upper part – plotted as discrete points (a); the Hilbert spectrum for only IMFs 2–3, plotted as filled 
contours (b); Full Hilbert spectrum for the vertical velocity component of combined flow, plotted as filled 
contours (c); and wavelet spectrum calculated using the Mexican Hat waveform (d) with scale converted to 

pseudo-frequency using Eqn. 13.
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flects the variety of scales at which fluid is 
exchanged across the mixing interface at the 
confluence. A more detailed interpretation 
of the flow structures at the Wabash-White 
confluence is presented in Konsoer, K.M. 
and Rhoads, B.L. (2014). In addition to de-
trending hydraulic signals, the HHT method 
can also be used to de-trend and analyse mor-
phologic data, as was shown for outer bank 
roughness characteristics along the meander-
ing Wabash River (Konsoer, K.M. et al. 2017).

The first IMF, which represents the highest 
frequency fluctuations, contains most of the 
measurement noise in the signal (Huang, E.N. 
et al. 2003; Kanani, A. et al. 2010). To remove 
this noise, the first IMF can be subtracted from 
the original signal prior to Fourier analysis 
(Figure 10, b) or the marginal Hilbert spectrum 
of the first IMF can be excluded from the total 
marginal Hilbert spectrum (see Figure 10, b). In 
either case, this adjustment to the data removes 
the flat, high frequency tail of the spectrum 
that is dominated by signal noise.

Conclusions

The examples presented herein demonstrate 
the unique capabilities of the Hilbert-Huang 
transform method to shed light on the char-
acteristics of turbulent shear flows. In par-
ticular, Hilbert-Huang transform analysis is 
well-suited for identification of intermittent 
or localized turbulent events and for analy-
sis of turbulence characteristics over specific 
frequency ranges. The major benefits of the 
Hilbert-Huang transform include:

 – The Hilbert spectrum is discrete, permitting 
precise identification of the frequency of 
a distinct high-amplitude turbulent event 
occurring at a specific time.

 – The Hilbert spectrum allows for the analy-
sis of non-stationary time-evolving flows, 
enabling exploration of how the spectral 
characteristics of flow properties vary with 
changing boundary conditions.

 – The Hilbert spectrum is useful in identifying 
intermittency and determining the character-

Fig. 9. Surface temperature at a fixed location along a mixing interface at a large river confluence, measured 
over the course of ~2 hours (a); Residual of the temperature signal as extracted from the EMD process (b); 

Detrended surface temperature, calculated by subtracting the residual from the original signal (c).
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istics of intermittent turbulent events in sig-
nals that otherwise appear to be stationary.

 – The Hilbert spectrum provides an ad-
ditional means of distinguishing types 
of flows that may show similar marginal 
Hilbert spectra or Fourier spectra (e.g. the 
four types of clay-laden flows).

 – The Hilbert-Huang transform allows for 
isolation of individual IMFs, enabling de-
tailed analysis of key frequency ranges.

 – The EMD process provides a means of de-
trending and noise-removal that requires 
no a-priori assumptions about the signal.

Fig. 10. Fourier spectrum of the original temperature 
signal (red), Fourier spectrum of the detrended tem-
perature signal (dark red) and the marginal Hilbert 
spectrum of the original temperature signal (blue) 
– double-arrow line indicates low frequency energy 
associated with residual trend in Fourier spectrum 
(a); Examples of noise removal using EMD for the 
streamwise velocity of the unidirectional flow. The 
light red line and light blue line show the Fourier 
spectrum and the marginal Hilbert spectrum, respec-
tively, prior to noise removal and the darker lines 

show the spectra following noise-removal (b).

Because of these attributes, Hilbert-Huang 
transform analysis is useful as an additional 
tool for spectral analysis of data from these 
types of flows, but is not a replacement for 
Fourier or wavelet analysis. Further applica-
tion of the Hilbert-Huang transform method 
to turbulent shear flows may provide new 
insights into how the frequency spectrum of 
these flows is influenced by strong intermit-
tency, non-stationarity, and non-linearity.
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