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Introduction

Landslide susceptibility is defined as the 
probability of the occurrence of landslides in 
a given area according to local geo-environ-
mental variables (Brabb, E.E. 1984; Carrara, 
A. et al. 1995; Guzzetti, F. et al. 1999).

For defining landslide susceptibility, both 
direct and indirect methods can be used. 
Direct methods are based on analyses per-
formed by expert geomorphologists who 
divide the territory into areas with different 

susceptibility, defining the latter in quali-
tative terms (Verstappen, H.T. 1983; Van 
Westen, C.J. et al. 2003). By using indirect, 
deterministic or statistical methods, it is in-
stead possible to obtain a quantitative clas-
sification of landslide susceptibility (Chung, 
C.J.F. et al. 1995; Ohlmacher, G.C. and Davis, 
J.C. 2003; Conoscenti, C. et al. 2008).

Landslide susceptibility assessment, de-
veloped in recent years, has seen an increas-
ingly frequent use of the statistical approach. 
This method is based on the assumption 
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Abstract

In the studies of landslide susceptibility assessment, which have been developed in recent years, statistical methods 
have increasingly been applied. Among all, the BLR (Binary Logistic Regression) certainly finds a more extensive 
application while MARS (Multivariate Adaptive Regression Splines), despite the good performance and the inno-
vation of the strategies of analysis, only recently began to be employed as a statistical tool for predicting landslide  
occurrence. The purpose of this research was to evaluate the predictive performance and identify possible 
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debris flows. To this aim, an inventory of debris flows triggered by the passage of the hurricane IDA and the 
low-pressure system associated with it 96E, on 7th and 8th November 2009, in an area of about 26 km2 close to 
the Caldera Ilopango, El Salvador (CA), was employed. Two validation strategies have been applied to both 
statistical techniques, thus obtaining four models – BLR (I), MARS (I), BLR (II) and MARS (II) – to be compared 
in pairs. Model performance was assessed in terms of AUC (area under the receiver operating characteristic 
(ROC) curve), Sensitivity, Specificity, Positive Prediction Value and Negative Prediction Value. Moreover, to 
evaluate the robustness of the modelling procedure, 50 replicates were created for each model and standard 
deviation was calculated for each of them. The results show that both techniques allow for obtaining good 
or excellent performances so that it is not possible to define one of the two techniques as absolutely better. 
However, the validation procedure reveals slightly better performance of the MARS models, with greater 
sensitivity and greater discrimination among True Negatives (TNs).
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that new landslides occur in areas with geo-
environmental conditions that have caused 
landslides in the past (Carrara, A. et al. 1995; 
Guzzetti, F. et al. 1999; Van Westen, C.J. et al. 
2003, 2008). In light of this, geo-environmen-
tal variables can be considered as predictors 
or independent variables while the past/pre-
sent distribution of landslides as the depend-
ent variable. The covariates are selected to re-
flect the variability of geo-environmental fac-
tors that are considered related to the activa-
tion of landslides and, moreover, the choice 
is also a function of the quality and resolution 
of available data. The landslide archive can 
be generated through field mapping or de-
tection from high resolution remotely-sensed 
images. In this study, we employed the land-
slide archive produced by Rotigliano, E.  
et al. (2018), which was obtained through re-
mote mapping of the Google EarthTM image 
dated 11/21/2009 (DigitalGlobe Catalog ID: 
101001000AA5D801).

The statistical method is therefore aimed at 
determining relationships existing between 
the covariates and the dependent variable. 
For the determination of relationships, statis-
tical analysis of bivariate (logistic regression, 
binary logistic regression [BLR]) or mul-
tivariate type (e.g., Multivariate Adaptive 
Regression Splines [MARS], cluster analy-
sis, discriminant analysis) can be used. In the 
literature, a number of examples of landslide 
susceptibility studies performed using bivar-
iate (e.g., Guzzetti, F. et al. 1999; Rotigliano, 
E. et al. 2012; Costanzo, D. et al. 2014) or mul-
tivariate analysis (e.g., Vorpahl, P. et al. 2012; 
Felicísimo, Á.M. et al. 2013; Conoscenti, C. 
et al. 2015, 2016) can be found. Comparative 
studies of the two methods are however rare 
(e.g. Conoscenti, C. et al. 2015) and, as far 
as we know, no comparison has ever been 
made in the case of evaluation of suscepti-
bility from debris flow.

The main objective of the study is to show 
the difference in terms of predictive per-
formance of the two methods, i.e. BLR and 
MARS, by using two different validation 
schemes (Chung, C.J.F. and Fabbri, A.G. 
2003). Firstly, we created 50 datasets consist-

ing of balanced samples of event and non-
event pixels. In the first validation scheme, 
each dataset was exploited for both calibra-
tion and validation of the models. In the sec-
ond scheme, each archive was split in two: 
the first, containing 75 per cent of the positive 
and negative cases, was used for the calibra-
tion of the models; the second, containing 
the remaining 25 per cent of the balanced 
archive, was used for validation. The perfor-
mance of the models was assessed through 
the analysis of AUC (area under the receiver 
operating characteristic (ROC) curve) values 
and the confusion matrices.

The two validation schemes have been 
developed for both BLR and MARS models. 
The creation of 50 models for each procedure 
also allowed us to evaluate the robustness of 
the analysis (Costanzo, D. et al. 2014).

Materials and methods

Study area

The study area is a small drainage basin of 
about 26 km2, located along the slopes of the 
Caldera Ilopango, El Salvador, CA (Figure 1). 
The slopes of the area are covered by levels of 
tefra and ignimbrite, derived from the most 
recent Quaternary eruptions of the Caldera 
(Figure 2). In the area are found deep V-shaped 
valleys (Figure 3), whose formation is linked 
to intense weathering and mass movements 
that affected the volcanic bedrock. The latter, 
characterized by poor mechanical properties, 
can be in fact easily eroded by water espe-
cially during extreme meteorological events 
(cyclones and hurricanes), which occur very 
frequently in the region. 

The climate regime of El Salvador is tropi-
cal-humid, with average annual rainfall above 
1,500 mm and average annual temperature be-
tween 20 °C and 30 °C. Under these conditions, 
physical degradation is favoured, with further 
deterioration of the geotechnical properties of 
the pyroclastics. The meteorological phenom-
ena are then responsible for the saturation of 
the degraded material and thus for a signifi-
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cant decrease of cohesion. Due to these envi-
ronmental conditions, the study area is particu-
larly prone to landsliding, especially to debris 
flow type landslides. Unregulated deforesta-
tion and intensive cultivation of the area, even 
in very steep slopes, further promotes soil ero-
sion as well as landslide processes.

Landslide inventory

Between 7th and 8th November 2009, El Sal-
vador was affected by the simultaneous pas-
sage of Hurricane Ida and the 96/E low-pres-
sure system. The greatest damage occurred 
in an area of about 400 km2 around the Cal-
dera Ilopango, where more than 300 mm 
of rainfall in 12 hours were recorded at the 
Ilopango rain gauge station. Such an intense 
rainfall event triggered more than two thou-
sand debris flows and caused flooding of the 
valleys, causing approximately 200 fatalities 
and immense economic loss with destruction 
of houses, roads and crops (MARN 2010).

The landslide archive used in this study is a 
database of landslide phenomena that occurred 
in the catchment due to the concomitant pas-
sage of Ida and 96/E. The archive has already 
been used in Rotigliano, E. et al. (2018). The 
recognition of the landslides and their mapping 
has been carried out remotely, using a high-res-
olution satellite image available on the Google 
Earth software, which is dated 11/21/2009 
(DigitalGlobe Catalog ID: 101001000AA5D801). 

This image, acquired only 2 weeks after the 
passage of Ida-96/E, allowed the identification 
and mapping of 2231 debris flows triggered by 
the aforementioned rainfall event.

Each failure has been mapped by using a 
landslide identification point (LIP), located 
at the point of origin of the movement. In 
the case of evaluation of susceptibility to 
debris flow, according to Rotigliano, E.  
et al. (2011), LIPs allow us to obtain the most 
reliable landslide prediction as their environ-
mental characteristics are those that best rep-
resent pre-failure conditions and thus can be 
considered the best diagnostic areas for cali-
brating (and validating) landslide predictive 
models (Rotigliano, E. et al. 2011, Lombardo, 
L. et al. 2014; Cama, M. et al. 2015). For this 
reason, it was decided to use the archive 
without making any changes with respect 
to the initial characteristics.

Statistical modelling

In the last 20 years, many studies have dealt 
with landslide susceptibility modelling and a 
number of them have used a statistical mod-
elling approach. Binary logistic regression 
(BLR) is among the most frequently used sta-
tistical techniques in geomorphology, and in 
particular in the field of landslide susceptibil-
ity assessment (e.g. Bai, S.B. et al. 2010; Atkin-
son, P.M. and Massari, R. 2011; Costanzo, D. 
et al. 2014). On the other hand, Multivariate 
Adaptive Regression Splines (MARS) (Fried-
man, J.H. 1991), has been employed only a few 
times in geomorphology (e.g., Gómez-Gutiér-
rez, Á. et al. 2009, 2015; Conoscenti, C. et al. 
2016, 2018; Garosi, Y. et al. 2018).

Both BLR and MARS make it possible to 
identify relationships between a set of inde-
pendent variables (predictors), both continu-
ous or categorical, and a dependent dicho-
tomic variable, which is usually coded as 0 
(non-event) or 1 (event). 

The aim of BLR is to describe the linear 
relationship between the logit (or log odds) 
of the dependent variable and the set of n 
independent variables (Hosmer, D.W. and 

Fig. 1. Location of the study area
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Fig. 2. Outcropping lithology in the study area (from Weber, H.S. et al. 1978)

Fig. 3. Slope gradient map of the study area
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Lemeshow, S. 2000). This is described by the 
following equation:

where π (x) is the conditional mean of the 
response given specific values of x, α is the 
constant or intercept, xi (i = 1, 2, ... n) is the nth 
independent variable and βi (i = 1, 2, ... n) is 
the nth coefficient of the independent variable.

To optimize the values of y having certain 
independent variables, or rather to identify 
the value of α and βi, the maximum likeli-
hood technique is used, actually the log-
likelihood (LL) function (Menard, S. 1995).

MARS is a non-parametric regression tech-
nique capable of identifying non-linear ad-
aptation relationships between independent 
variables and dependent variables. MARS 
divides the range of the predictor values 
into regions and generates a linear regres-
sion equation for each region. The “nodes” 
are the extreme values of each region while 
each distinct interval is called “basis func-
tion” (BF). The latter can take the form:

max (0, x – c) o
max (0, c – x),

where x is an independent variable and c 
is a constant corresponding to a knot. The 
general expression of MARS can be written 
as follows:

where y is the dependent variable, α is the 
constant, N is the number of terms, βn is the 
coefficient of the nth term and hn (x) is a single 
basic fiction or a product of two or more BFs.

MARS builds the model in two phases. In 
the first step (forward pass) a complex model 
is produced in which basis functions generated 
for each variable are added. In the second phase 
(backward pass) a leaner model is established 
through generalized cross validation (GCV) 
(Craven, P. and Wahba, G. 1979). Basically, 
MARS removes the least influential pair in the 
creation of the best model and the GCV allows 

the identification, among the models gener-
ated, of the one offering the best compromise 
between adaptation (low RSS) and complexity/
completeness of the model (Briand, L.C. et al. 
2004; Gómez-Gutiérrez, Á. et al. 2009).

Both regression techniques and related anal-
ysis have been implemented using the software 
R (R CoreTeam, 2017). For the BLR analysis 
the “stats” package has been used, for MARS 
analysis the “earth” package (Milborrow, S. et 
al. 2011; Milborrow, S. 2015).

Predictors

The predictor variables were chosen accord-
ing to their expected influence on slope in-
stability and to their control on slope failure 
mechanisms (e.g., Conoscenti, C. et al. 2015; 
Cama, M. et al. 2016; Prokos, H. et al. 2016).

A set of ten geo-environmental variables 
was employed to predict debris flow sus-
ceptibility in the Caldera Ilopango. This set 
includes lithology (LIT) and land use (USE), 
in addition to the following eight terrain at-
tributes: landform classification (LCL), el-
evation (ELE), slope steepness (STP), slope 
aspect (ASP), plan curvature (PLN), profile 
curvature (PRF), topographic wetness index 
(TWI) and terrain ruggedness index (TRI).

The outcropping lithology was obtained 
through the acquisition and processing of a 
1:100,000 geological map (Weber, H.S. et al. 
1978), which was derived from field survey 
1: 25,000 scale. An up-to-date land use map 
was created on the basis of field surveys and 
analysis of ASTER and Google Earth im-
ages. The terrain attributes were extracted 
from a digital elevation model (DEM) with a 
ground resolution of 10-m, by using the soft-
ware SAGA-GIS. All terrain attributes were 
extracted as continuous variables with the 
exception of LCL, which was classified into 
10 classes, namely: streams, mid-slope drain-
ages, upland drainages, valleys, plains, open 
slopes, local ridges, mid-slope ridges, high 
ridges. The 10-m cells of the DEM were em-
ployed as mapping units of the debris flow 
susceptibility in the studied area.

,

),
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In order to detect collinearity among the 
chosen covariates, we calculated the Variance 
Inflation Factor (VIF) by using the “usdm” 
package (Naimi, B. 2015) implemented in the 
software R. A VIF value equal or higher than 
10 indicates collinearity among the selected 
covariates (Heckmann, T. et al. 2014; Jebur, 
M.N. et al. 2014; Bui, D.T. et al. 2016). As VIF 
values calculated for our variables were be-
low this threshold, all were included in both 
BLR and MARS models.

Model building and validation strategy

Landslide susceptibility assessment requires 
a validation procedure in order to evaluate 
the accuracy of the predictive models. This is 
generally performed in two steps: i) calibra-
tion of the models and ii) validation of the 
models (Chung, C.J.F. and Fabbri, A.G. 2003).

In this study, we evaluated adaptation, ac-
curacy and robustness of the models gener-
ated with BLR and with MARS. To this aim, 
two validation strategies were developed, 
applying a random partition to the same 
landslide archive.

First, the study area was divided into 
249,994 10-m grid cells corresponding to the 
pixels of the employed DEM. This data set 
includes 2,231 “event” or “positive” cells (i.e. 
cells hosting at least one LIP) and 247,763 
“non-event” or “negative” cells (i.e. cells not 
intersecting any LIP). Through random se-
lection, 50 balanced data sets were created, 
each of them containing all event cells and an 
equal number of randomly selected negative 
cells (Conoscenti, C. et al. 2016), thus includ-
ing in total 4,462 cells.

The first validation strategy involved 
the calibration and validation of one mod-
el for each of the 50 data sets. Therefore, 
each data set was exploited as both learn-
ing and validation data set. In the second 
validation scheme, each of the 50 data 
sets was randomly divided into two bal-
anced subsets: a training set, including  
75 per cent of the cases, and a test set, includ-
ing the remaining 25 per cent of the cases.

For both the validation schemes, it was 
possible to obtain a pair of models, one gen-
erated with the BLR and one with MARS, for 
each balanced data set (Figure 4 and 5). This 
allowed us to analyse the difference in terms 
of performance and robustness between the 
two employed statistical techniques. As train-
ing and test datasets were the same, these 
differences were assumed as due only to the 
different characteristics of the two statistical 
techniques. Statistical analyses were carried 
out to evaluate and quantify the goodness 
of fit, the prediction skill and the robustness 
of the models.

By comparing the prediction image of each 
model with the spatial occurrence of the 
event cells, the confusion matrix and thus 
the number of true positive, true negative, 
false positive and false negative cases (TP, 
TN, FP and FN, respectively) for each model, 
applying a Youden index optimized cut-off 
(Youden, W.J. 1950).

To evaluate the goodness of fit and pre-
diction skill of the susceptibility models the 
AUC (area under the receiver operating char-
acteristic [ROC] curve) (Goodenough, D.J.  
et al. 1974; Hanley, J.A. and McNeil, B.J. 
1982; Lasko, T.A. et al. 2005) was used. A 
ROC curve plots the true positive rate (sen-
sitivity) against the false negative rate (1 – 
specificity), at any given cut-off value. For the 
AUC values, Hosmer, D.W. and Lemeshow, 
S. (2000) identify the threshold values of 0.7, 
0.8 and 0.9 corresponding to acceptable, ex-
cellent and outstanding predictions respec-
tively.

Finally, to evaluate the robustness of the 
models, the validation procedures have been 
applied to all the model runs (50 for BLR and 
50 for MARS, for each validation strategy) in 
order to analyse the accuracy and reliabil-
ity of the models through the study of the 
average and standard deviation of the AUC 
values. These validation tools have already 
been successfully used in previous studies 
with the aim of comparing different methods 
and models (e.g., Von Ruette, J. et al. 2011; 
Conoscenti, C. et al. 2015, 2016; Cama, M. et 
al. 2017).
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Fig. 4. Graphical summary scheme of the first adopt-
ed validation strategy

Fig. 5. Graphical summary scheme of the second 
adopted validation strategy

Results

For the description of the developed mod-
els and the relative results, a subscript (I) 
is adopted for those generated through the 
first validation strategy, while subscript (II) 
is used for those created with the second vali-
dation strategy.

The mean AUC values of the BLR (I), 
MARS (I), BLR (II) and MARS (II) models 
are 0.796, 0.821, 0.789 and 0.811, respectively. 
According to the classification proposed by 
Hosmer, D.W. and Lemeshow, S. (2000), these 
values indicate excellent (> 0.8) and accept-

able (> 0.7) performance of the models. As 
shown by the AUC standard deviation values 
(Table 1), the performance of both modelling 
techniques is quite stable. The boxplots of 
Figure 6 show a low degree of dispersion in 
the AUC values, which, as expected, appears 
slightly higher for the second validation strat-
egy. Figure 7 shows the ROC curves obtained 
from the replicates of each model (grey) while 
the average ROC curves are plotted in red.

Table 2 shows the cumulative confusion 
matrices extracted by applying the models to 
the 50 validation data sets of both validation 
strategies. Table 3 shows the average values 
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the first validation strategy the training and 
the test data sets coincide whereas in the sec-
ond strategy, learning and validation sets do 
not share any pixels and they are randomly 
extracted from the training/test data sets em-
ployed in the first procedure.

Models validation using the first validation 
strategy

MARS (I) demonstrate slightly better perfor-
mance than BLR (I). It should be noted that 
the difference in terms of AUC is very small, 
being between 0.02 and 0.05. The accuracy of 
MARS (I) is only 0.02 higher than the accu-
racy of BLR (I), whereas the difference of av-
erage AUCs is only 0.03. Regarding the ability 
to predict event cells, a greater difference is 
recorded: the average sensitivity of MARS 
(I) is indeed 0.82 whereas that of BLR (I) is 
0.77. However, PPV values reveal the same 
ability for both BLR (I) and MARS (I). On the 
other hand, although the specificity values 
suggest similar abilities of BLR (I) and MARS 
(I) to predict the non-event cells, NPV values 
demonstrate better performance of MARS (I) 
(0.78) compared to that of BLR (I) (0.74).

Models validation using the second 
validation strategy

Also the second validation strategy reveals a 
slightly better performance of MARS compared 
to that of BLR, although the observed differ-
ences are once again weak. The difference of 
both accuracy and AUC values are indeed ap-
proximately 0.02. Again, the difference in terms 
of sensitivity between MARS (II) (0.81) and BLR 

Table 1. Characteristics of the AUC values for the four susceptibility models

Models Accuracy AUC-mean AUC-min AUC-max AUC SD*
BLR (I)
MARS (I)
BLR (II)
MARS (II)

0.720
0.744
0.716
0.736

0.796
0.822
0.789
0.811

0.783
0.805
0.754
0.779

0.806
0.833
0.815
0.836

0.005
0.006
0.012
0.012

*SD = Standard deviation.

Fig. 6. AUC boxplots for the four models

of sensitivity, specificity, positive prediction 
value (PPV) and negative prediction value 
(NPV) and the relative Youden index cut-off. 

The accuracy of the models can be con-
sidered good, with values between 0.71 and 
0.74. Sensitivity values between 0.76 and 0.82, 
attest to a good predictive power of positive 
cases while slightly lower is the ability to 
discriminate the true negatives (specificity 
in the range 0.66–0.67). On the other hand, 
it is noteworthy that the NPV values, which 
are between 0.74 and 0.78, reveal acceptable 
predictions of the TNs whereas the PPV val-
ues, which are approximately 0.7, attest to a 
slightly worse ability to predict the TPs.

Discussion

For the discussion of the results of model val-
idations we have to take into account that in 
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Fig. 7. ROC-plots for the four models
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(II) (0.76) does not result in a greater discrimi-
natory power of TP (the difference of PPV is 
0.01). Finally, the two techniques show the 
same specificity (0.66), but the discriminatory 
ability of TN is higher for MARS (II), with NPV 
values equal to 0.77 versus 0.74 of BLR (II).

Concluding remarks

The use of statistical methods in landslide 
susceptibility assessment raises the prob-
lem of the type of analysis to perform and 
which one is the best modelling approach 
and technique. BLR has been proven a useful 
technique for achieving reliable assessment 
of landslide susceptibility. In recent years, 
however, several other statistical techniques 
have also demonstrated equally good, and 
sometimes even better, performance. MARS, 
which is a relatively new technique, has been 
employed in few cases for assessing land-
slide susceptibility but it has already been 
demonstrated to provide very good accuracy 
in predicting the occurrence of slope failures. 
However, as far as we know, MARS has nev-
er been employed to predict debris flows. 

The aim of this study was to highlight the 
differences in terms of predictive perfor-

mance between BLR and MARS and, thus, 
identify the best method for the assessment 
of debris flow susceptibility in the area of 
Ilopango Caldera.

The obtained results show that both meth-
ods achieve good to excellent predictive per-
formances. Although MARS demonstrated 
slightly better performance, the difference is 
too small to be able to define this technique 
as clearly better than BLR.

Rotigliano, E. et al. (2018) hypothesize 
that in the 2009 dataset there is a problem 
related to a secondary triggering of a num-
ber of phenomena due to incision or lateral 
erosion produced by debris flows activated 
directly by the storm event. In fact, even 
in this study, the models obtained are af-
fected by this problem, as shown by the low 
specificity values. In light of this, however, 
the performance in terms of NPV is higher 
than expected. MARS, in fact, with the same 
dataset, is able to discriminate TN with bet-
ter ability than BLR. This is probably due to 
the ability of MARS of identifying different 
relationships between the dependent and the 
independent variables, for different regions 
of the predictors’ ranges. This allows MARS 
to overcome, even if only slightly, the prob-
lem of secondary triggering of landslides, 

Table 2. Confusion matrices of the four susceptibility models

BLR (I) Reference MARS (I) Reference

Prediction
0 1

Prediction
0 1

0 74,786 25,594 0 74,558 20,004
1 36,764 85,956 1 36,992 91,546

BLR (II) Reference MARS (II) Reference

Prediction
0 1

Prediction
0 1

0 18,569 6,490 0 18,453 5,234
1 9,331 21,410 1 9,447 22,666

Table 3. Summary of the validation metrics for the four susceptibility models

Models Youden index cut-off Sensitivity Specificity
Positive Negative

prediction value
BLR (I)
MARS (I)
BLR (II)
MARS (II)

0.48
0.46
0.48
0.46

0.77
0.82
0.76
0.81

0.67
0.66
0.66
0.66

0.70
0.71
0.69
0.70

0.74
0.78
0.74
0.77
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certainly with a better distinction of cases 
with respect to BLR. Furthermore, both vali-
dation strategies, albeit with subtle results, 
show a greater ability of MARS to identify 
positive cases compared to BLR.

In light of this, although the differences are 
not marked and certainly the results do not 
allow the definition of a modelling technique 
as absolutely better than the other, it is pos-
sible to identify more merits in the MARS 
technique than in the BLR.
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