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Introduction

The application of stable isotope analysis 
has proved to be an extremely useful tool for 
tracking various changes in the Earth’s sys-
tems. Since the discovery of isotopes in the 
1910s, stable isotope geochemistry has provid-
ed essential information for geosciences, first 
for chemistry and geochemistry and later for 
biochemistry and ecology (Dawson, T.E. and 
Siegwolf, R.T.W. 2007). With the help of stable 
isotopes, paleo-environmental reconstruction 
became an achievable tool (Epstein, S. et al. 
1953), as did the study of the atmosphere and 
the hydrological cycle via the isotopic signa-
ture of precipitation (Dansgaard, W. 1964). 

Stable isotopes also help the more precise 
identification of extinction events (Pálfy, J. 
et al. 2001). These are just a few examples of 
the possible application of stable isotopes in 
geochemical questions. Today, stable isotope 
analyses cover almost the entire spectrum of 
geoscience research and in some areas their 
application is mandatory (Demény, A. 2004).

The carbon isotope composition of organ-
ic and inorganic compounds alters in the 
course of exchange processes in the vegeta-
tion-soil-atmosphere cycle, leaving an isotop-
ic imprint on plant, soil and atmospheric car-
bon pools and fluxes (Werner, C. et al. 2012). 
These isotopic imprints allow, for example, 
the tracking of newly assimilated C incor-
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porated in plants, then migrating to the soil, 
stored within the soil ecosystem or lost to 
the atmosphere (Brüggemann, N. et al. 2011). 
Paleo-environmental studies (Schwartz, D. 
et al. 1986; Cerling, T.E. et al. 1989; Fox, D.L. 
and Koch, P.L. 2004; Barta, G. et al. 2018) use 
stable carbon isotopes in soils or paleosols 
to track past changes in vegetation and cli-
mate. Stable carbon isotope methods related 
to landscape evolution, land use change and 
erosion studies (Paul, S. et al. 2008a; Häring, 
V. et al. 2013; Alewell, C. et al. 2016; Brandt, 
C. et al. 2016, 2018) make it possible to trace 
the origin and stability of carbon in different 
systems during diverse processes. 

Today, stable isotope information permits 
scientists to address issues that seemed in-
tractable using other methods. The stable 
isotope data generated with these methods 
have provided insights into a wide range 
of complex processes on temporal and re-
gional scales from seconds to millennia and 
from cells to net ecosystem flux partitioning 
(Dawson, T.E. et al. 2002; Dawson, T.E. and 
Siegwolf, R.T.W. 2007). 

This review provides the theoretical back-
ground of stable isotope research, using ex-
amples of major processes resulting in car-
bon isotope fractionation to illustrate various 
types of isotope fractionation and highlight-
ing the stable carbon isotope variation in the 
Earth’s main reservoirs, focusing in particular 
on soil ecosystems. It details the applicability 
of stable carbon isotope research in soil sci-
ences, with special attention to the 13C natural 
labelling approach. The natural abundance 
of stable carbon isotopes has been widely 
used to probe the turnover of SOM and to 
differentiate the diverse sources of CO2 efflux 
from the soil. These results provide a clearer 
picture of the fate of organic carbon in the 
vegetation-soil-atmosphere cycle.

Isotope nomenclature and fractionation

Determining the absolute abundance of iso-
topes is difficult, because absolute variations 

in isotopic abundance based on physical and 
biological factors are small (to the order of a 
few percent) (Ehleringer, J.R. and Rundel, 
P.W. 1989), so relative isotope abundance is 
conventionally calculated as follows:

                  
R =

      rare isotope
                         abundant isotope

where R is the ratio of the rare isotope to the 
abundant isotope. The ratio R of a sample 
is generally compared to that of a known 
standard material, which provides high pre-
cision and repeatability over the long-term. 
Because of the small variations present in 
nature between the isotopic compositions 
of the sample and the standard material, the 
ratios are expressed using the conventional δ 
notation, introduced by Craig, H. (1953), in 
parts per thousand:

                  
δ (‰) =

  Rsample
                                Rstandard 

– 1 (x 103)

The unit of δ is “‰” or “permil” (also per 
mill).

The worldwide standards for the six con-
ventional elements are V-SMOW (Vienna-
Standard Mean Ocean Water) for H, V-PDB 
(Vienna-PDB, a replacement standard for 
the original calcium carbonate found in 
Belemnitella americana in the Cretaceous PeeDee 
formation in South Carolina, USA) for C, AIR 
N2 for N, V-SMOW for O, V-CDT (Troilite from 
the Canyon Diablo iron meteorite) for S and 
NBS-28 (quartz sand) for Si (Hoefs, J. 2009).

The basis for isotope geochemistry is the 
fractionation of isotopes, i.e. ’the partition-
ing of isotopes between two phases of the 
same substance with different isotope ratios’ 
(Hoefs, J. 2009), which results in different 
isotopes of the same element having differ-
ent distribution patterns in the environment. 
The fractionation factor (α) is the difference 
in the ratio of the product isotope ratio (RP) 
to the reactant isotope ratio (RR):

                               α = 
RP

                                     RR

,                   (1)

(2)

(3)
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In general, isotope effects are small, α ≈ 1, so 
it has become common practice in recent years 
to replace the fractionation factor α by the de-
viation of α from 1, referred to as the ε-value:

ε = α – 1 (x 103)

The ε-value represents the enrichment  
(ε > 0) or depletion (ε < 0) of the rare isotope 
in the product compared to the reactant iso-
tope and approximates the fractionation in 
parts per thousand, making it similar to the  
δ value (Mook, W.G. 2001; Hoefs, J. 2009).

Isotope fractionation is often referred to 
as ‘discrimination’ in biological systems, 
meaning that specific enzymes discriminate 
against the heavier and favour the lighter 
isotope (Dawson, T.E. et al. 2002).

Isotope fractionation is caused by mass-de-
pendent and mass-independent mechanisms, 
of which the latter is less frequent. Isotope 
exchange reactions (or equilibrium isotope 
distribution) and kinetic processes are the 
main mass-dependent processes.

Equilibrium isotope fractionation

The distribution of isotopes is controlled 
by the lowest energy state of the system 
(Ohkouchi, N. et al. 2015; Trumbore, S.E.  
et al. 2016). The energy state of a molecule is 
based differences in translation, rotation and 
vibration energy, among which differences in 
vibrational energy are predominant. There-
fore, this is the source of isotope partitioning 
(Hoefs, J. 2009). The vibrational energy of a 
molecule depends inversely on the masses of 
the atoms in the molecule (Bigeleisen, J. 1965). 
As a consequence, isotopes partition different-
ly for various types of chemical bonds and for 
the phases of the same molecule (e.g. for H2O 
as vapour, liquid or ice). The heavier isotope 
prefers molecules with stronger bonds and 
phases with less entropy (e.g. a solid versus a 
liquid versus a gas) (Trumbore, S.E. et al. 2016).

Equilibrium isotope fractionation occurs in 
nature especially between the phases of the CO2 
– H2O – H2CO3 – CaCO3 system. One typical ex-

ample is the isotope equilibrium between gase-
ous CO2 and dissolved bicarbonate (HCO3

−):

13CO2(gas) + H12CO3
- ↔ 12CO2(gas) + H13CO3

-      (5)

In this fractionation the 13R (see above) is 
0.0111421 for CO2 gas (g) and 0.0112372 for 
bicarbonate (b) at 20 °C (Mook, W.G. 2001), 
so the fractionation factors are 13αg/b = 0.9915 
and 13εg/b = −8.46‰. Figure 1. illustrates the 
different ε-values for different phases of the 
CO2 – H2O – H2CO3 – CaCO3 system. This fig-
ure also shows the temperature dependence 
of isotope fractionation. In general, isotope 
fractionation is higher at a lower temperature, 
while it becomes zero at a very high tempera-
ture, based on the different vibrational fre-
quencies of the molecules (Hoefs, J. 2009).

Another example of equilibrium fractiona-
tion is the precipitation of calcium carbonate 
from water. In this case the heavier C isotope 
will partition into the calcium carbonate, 
which has fewer degrees of freedom because 
it is solid. The δ13C of C in calcium carbonate 
will be enriched to a greater extent (~10‰) 

(4)

Fig. 1. Temperature-dependent equilibrium isotope 
fractionation for the different phases of the CO2 – H2O 
– H2CO3 – CaCO3 system. – a = dissolved CO2; b = dis-
solved HCO3

−; c = dissolved carbonate ions; g = gaseous 
CO2; s = solid carbonate. The different phases are shown 
with respect to dissolved HCO3

−. Source: redrawn from 
Mook, W.G. 2001.
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than that of atmospheric CO2 in equilibrium 
with water from which the calcium carbonate 
is precipitated (Mook, W.G. 2001; Trumbore, 
S.E. et al. 2016).

Kinetic isotope fractionation

In comparison with equilibrium fractiona-
tion, kinetic fractionation occurs in non-
equilibrium conditions when a reaction 
is irreversible, such as evaporation, diffu-
sion, dissociation or biologically mediated 
reactions (Bigeleisen, J. and Wolfsberg, 
M. 1958; Hoefs, J. 2009; Ohkouchi, N. et al. 
2015). Kinetic processes depend primarily on 
differences in the reaction rates of isotopic 
molecules: the lighter isotope will react and 
diffuse faster than the heavier isotope at a 
given temperature (Hoefs, J. 2009). As a 
consequence, the preferential enrichment of 
the lighter isotope is observed in the reac-
tion products compared to the heavier iso-
tope (Mook, W.G. 2001; Michener, R.H. and  
Lajtha, K. 2007; Hoefs, J. 2009; Ohkouchi, N.  
et al. 2015; Trumbore, S.E. et al. 2016).

One prominent example of stable C isotope 
fractionation is the process of photosynthesis:

6CO2 + 6H2O + light → C6H12O6 + 6O2 ,       (6)

where the 13R of the reactant (atmospheric 
CO2) = 0.9926, and the 13R of the product 
(plant material) = 0.9724 (Trumbore, S.E.  
et al. 2016), giving fractionation factors of  
13ε = 0.9796 and 13α  = −20.4‰. 

Another kinetic process is the mineraliza-
tion (bacterial decomposition) of soil organic 
matter to methane, resulting in an ε-value of 
about −55‰. Although natural processes are 
not purely kinetic or irreversible, they are of-
ten referred to as non-equilibrium fractiona-
tions (Mook, W.G. 2001). 

Mass-independent fractionation

Some fractionation processes do not exhibit 
the mass-dependent effects described above. 

Mass-independent fractionation was observed 
in meteorites by Clayton, R.N. et al. (1973) 
with the use of oxygen isotope diagrams and 
was interpreted by Thiemens, M.H. (1999). In 
this kind of fractionation, Allègre, C.J. (2008) 
reported that isotope differences do not de-
pend on the mass difference but on the sym-
metry of the molecule. Mauersberger, K. et al. 
(1999), however, demonstrated experimental-
ly that it is not the symmetry of the molecule 
which is responsible for fractionation but the 
difference in its geometry. New research in-
dicates that mass-independent isotope frac-
tionations are more abundant than originally 
thought and serve as a novel form of the iso-
topic fingerprint (Hoefs, J. 2009).

Stable carbon isotope variation in the Earth’s 
reservoirs

Of the three naturally occurring C isotopes, 
12C and 13C are stable, representing 98.89% 
and 1.11% of the C atoms on Earth, respective-
ly (Meija, J. et al. 2016). Both stable isotopes 
were originally created by nucleosynthesis 
in stars and their abundance has remained 
constant since their synthesis (Trumbore, S.E. 
et al. 2016). However, the relative abundance 
of stable C isotopes may vary in the Earth’s 
various carbon reservoirs (atmosphere, bio-
sphere, hydrosphere, lithosphere), resulting 
in naturally occurring variations greater than 
120‰, from heavy marine carbonates (δ13C 
values +20‰) to light methane (δ13C values 
–110‰, Figure 2). The systematic differences 
in the δ13C values of various carbon reservoirs 
have been known since the work of  Nier, 
A.O. and Gulbransen, E.A. (1939). 

Stable carbon isotope studies in soil science

Norman, A.G. and Werkman, C.H. (1943) con-
ducted the first soil tracer study on 15N-labelled 
soybean residues, examining their decomposi-
tion in the soil. Since then many types of re-
search have used tracers to track the fate of 
SOM constituents and dynamics in soils. Stable 
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carbon isotope measurements in soil science 
studies have become more and more signifi-
cant in the past decades, as soil plays an im-
portant role in the global carbon cycle. 

The significance of stable carbon isotope 
research in soil science was summarized by 
Brüggemann, N. et al. (2011), who provided 
a comprehensive overview of the complex 
network of carbon transformation and trans-
port processes in the plant-soil-atmosphere 
continuum and demonstrated that research 

using C isotopes makes it possible to track 
the fate of C molecules and to integrate in-
formation on physical, chemical and biologi-
cal processes in ecosystems across space and 
time. Kuzyakov, Y. (2011) stated that isotopic 
tracers are the most frequently applied and 
most powerful tracers because of the nearly 
identical chemical and biochemical proper-
ties of isotopes of a single element.

Isotope labelling in soils is based on the 
fact that biological, chemical and physical 

Fig. 2. δ13C variations in selected carbon-bearing materials. Source: redrawn from Meija, J. et al. 2016.
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fractionation processes in nature are unique-
ly δ13C labelled, and that this labelling is in-
herited in the soil. This labelling happens 
naturally. Another technique for understand-
ing C dynamics in soils is to artificially alter 
the C isotope content of assimilated C using 
enriched stable (13C) or radioactive (14C) C 
compounds (CO2, whole plant residues or 
plant monomers and polymers) in short 
pulses (pulse labelling) or over long periods 
(continuous labelling) (Kuzyakov, Y. 2006). 

Stable C isotope fractionation processes in the 
atmosphere-plant-soil system

The atmospheric CO2 photosynthesis of plants 
and the different mechanisms involved were 
reported by Bender, M.M. (1971), who was the 
first to describe differences in the δ13C values 
of various plant species. Reviews published 
from the 1980s onwards (e.g. O’Leary, M.H. 
1981; Farquhar, G.D. et al. 1989; Hayes, J.M. 
2001) provided the biochemical background 
of carbon isotope fractionation during pho-
tosynthesis. It was concluded that there are 
three different mechanisms of photosynthetic 

CO2 fixation: the C3 (Calvin-Benson) pathway, 
the C4 (Hatch-Slack) pathway and the crassu-
lacean acid metabolism (CAM). Plant photo-
synthesis strongly discriminates against the 
heavier carbon isotope, so the uptake of this 
isotope by C3 and C4 plants averages 19‰ and 
4‰ less, respectively, than the atmospheric 
ambient δ13C (Figure 3) (Boutton, T.W. 1996; 
Hoefs, J. 2009), which is −8‰ compared to the 
V-PDB standard (see Figure 2 and 3). The CAM 
pathway is a modification of photosynthetic 
carbon fixation resulting in δ13C values rang-
ing from –10 to –28‰ (Boutton, T.W. 1996).

After CO2 photosynthetic fixation by 
plants, further fractionation processes take 
place, resulting in different δ13C values for 
different compounds in plants (Park, R. and 
Epstein, S. 1960). Lignin, lipids and cellulose 
are depleted, while sugars, amino acids and 
hemicelluloses are enriched in 13C relative 
to the bulk plant material (Boutton, T.W. 
1996). Therefore, within a single plant δ13C 
differences between substances may be as 
much as 9‰ for C3 plants and 10.3‰ for C4 
plants (Hobbie, E.A. and Werner, R.A. 2004). 
Kinetic isotope effects seem to be the cause of 
these 13C differences (Hoefs, J. 2009).

Fig. 3. Isotopic composition of C3 and C4 plants compared to atmospheric CO2 and the C isotope ratio measure-
ment standard. Source: redrawn from Ehleringer, J.R. and Cerling, T.E. 2002.
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In addition, microbes in the soil also dis-
criminate isotopes. The term ’preferential 
substrate utilization’ or ’preferential decom-
position’ refers to the phenomenon whereby 
microorganisms select certain individual sub-
stances in plant residues and decompose them 
to CO2 (Werth, M. and Kuzyakov, Y. 2010). 
Microbes, especially the bacteria prefer easily 
decomposable substances (e.g. glucose, su-
crose) enriched in 13C rather than lignin and 
lipids. This preferential substrate utilization is 
more significant than the 13C-depletion effect 
of the metabolism (CO2 from microbial respi-
ration is 13C-depleted compared to the sub-
strate from which it is derived) (Šantrůčková, 
H. et al. 2000). As a consequence, the CO2 emit-
ted during decomposition is enriched in 13C, 
while 13C-depleted SOM remains in the soil, as 
the preferential utilization of the 13C-enriched 
SOM fractions means that 13C is lost more rap-
idly than 12C (Ågren, G.I. 1996). 

Application of natural C isotope fractionation

The differences in δ13C values between C3 
and C4 plants have great importance for soil 
science since the δ13C of SOM in the steady-

state system is nearly identical to that of the 
source vegetation from which the organic 
matter was derived (Boutton, T.W. 1996). 
This is the basis for numerous stable carbon 
isotopic applications in soil science.

The natural labelling or δ13C natural abun-
dance method is based on 1) the above-men-
tioned physiological difference in the photo-
synthetic fixation of CO2 in C3 and C4 plants 
and 2) the assumption that the δ13C natural 
abundance signature of SOM is identical to the 
δ13C natural abundance signature of the plants 
from which it is derived, because the isotopic 
difference between C3 and C4 plants is much 
larger than the isotopic changes occurring dur-
ing SOM decay (Balesdent, J. and Mariotti, 
A. 1996). Thus, growing C4 plants on a C3 soil 
or vice versa can be considered as in situ label-
ling. With this method the rate of loss of the C 
derived from the original vegetation and the 
incorporation of C derived from the new veg-
etation can be estimated (Balesdent, J. et al. 
1987). As a consequence, the natural labelling 
approach makes it possible 1) to calculate the 
turnover rate of C derived from the original 
vegetation (Six, J. and Jastrow, J. 2002) and 
2) to separate the different sources of soil CO2 
efflux (Kuzyakov, Y. 2006).

Fig. 4. The basis of C3–C4 vegetation change for natural abundance 13C labelling. The figure represents the 
replacement of SOM derived from previous vegetation A by the new vegetation B. Source: redrawn from 

Balesdent, J. and Mariotti, A. 1996.
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In natural labelling experiments, in contrast 
to artificial labelling, the isotope differences 
are smaller, but they have the advantage that 
no artificially enriched compounds are re-
quired. For example, as described by Gunina, 
A. and Kuzyakov, Y. (2014), the δ13C natural 
abundance approach is able to estimate C 
flows under steady-state conditions without 
applying artificial tracers. In addition, the dis-
tribution of 13C between the pools is more uni-
form than in artificial pulse labelling methods 
(Kuzyakov, Y. 2005). One of the strengths of 
the method is the easy application under field 
conditions, because there is no need for artifi-
cial labelling equipment or isolation from the 
atmosphere (Kuzyakov, Y. 2006). Therefore, 
this technique is one of the best for the study 
of field soil dynamics (Paul, E.A. 2016). 

Nevertheless, the method has some short-
comings (Kuzyakov, Y. 2006): (i) C3 plant/C4 
soil pairs or vice versa are rare under field 
conditions; (ii) the maximum δ13C variation 
of CO2 between C3 and C4 plants is only about 
14‰; (iii) there is a 13C discrimination by 
plants caused by temperature, water avail-
ability, air humidity, N supply, light intensity 
and plant properties (root length, plant sex).

Figure 4 illustrates the basis of the C3–C4 
vegetation change method representing 
the two photosynthetic pathways A and B 
(Balesdent, J. and Mariotti, A. 1996). At the 
time of the vegetation change (t0) SOM has an 
isotopic composition δA0 close to that of the 
original vegetation. 

As this SOM from vegetation A progres-
sively decays, it is partially replaced by 
SOM derived from the new vegetation B. At 
a given time t, the total SOM content can be 
expressed as C = CA + CB and the isotope com-
position δAB of SOM under mixed vegetation 
is the following:

δAB (CA + CB) = δAB (C) = δACA + δBCB

where CA and CB stand for the amount of 
SOM from the old (A) and new (B) vegeta-
tion, respectively, and δA and δB are the δ13C 
values of SOM derived from vegetation A 
and B, respectively. As CA = C – CB,  Eq. (7) 

can be rewritten as follows (Amelung, W.  
et al. 2008):

δAB = 
 δBCB 

+
 δA (C–CB) 

=
 δBCB  + δA (1 – 

CB)   (8)
  C            C             C                   C

Hence, the contribution of plant B to the 
total C content can be calculated as fol-
lows (Balesdent, J. and Mariotti, A. 1996; 
Amelung, W. et al. 2008):

F =  
CB  

=
 
(δAB – δA) / (δB – δA)                     C

expressed as the fraction of new carbon in 
the soil (F).

Because δA and δB cannot be measured di-
rectly in the mixed cropping system, they 
must be estimated. The natural labelling 
method assumes that δB is equivalent to the 
isotopic composition of the new vegetation 
(δVEG B, see Figure 4), and δA to the initial δ13C 
of the soil or of the control soil remaining un-
der the initial vegetation (δREF A). Hence, the 
new portions of vegetation B are estimated 
as follows (Balesdent, J. and Mariotti, A. 
1996; Amelung, W. et al. 2008):

F = (δAB – δREF A) / (δVEG B – δREF A)

Many studies (Balesdent, J. and Balabane, 
M. 1992; Six, J. et al. 1999; Dignac, M.F. et al. 
2005; Paul, E.A. et al. 2008b; Pausch, J. and 
Kuzyakov, Y. 2012; Schiedung, H. et al. 2017; 
Poeplau, C. et al. 2018) have applied the 13C 
natural abundance approach to calculate 
the proportion of C derived from the new 
vegetation/fresh organic input. Based on Eq. 
(10), this technique allows also the percent-
age of C derived from different treatments 
and amendments to be calculated. For ex-
ample, Lynch, D.H. et al. (2006) estimated 
the percentage of C derived from different 
C4 compost treatments and the retention of 
compost C in a temperate grassland (C3) soil 
in Nova Scotia. Measurements took place 
one and two years after the application of 
the compost treatments (corn silage, dairy 
manure and sewage sludge) and showed that 

,  (7)

           (9)

      (10)
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the fraction of SOM derived from compost 
was around 33% for most of the treatments. 
The results indicated that the fraction of com-
post retained in the soil was the highest for 
corn silage compost one and two years after 
the treatment (~ 95% and 90%, respectively).

Another possible application of the 13C 
natural abundance method is connected with 
land use change studies (e.g. Yamashita, T. 
et al. 2006; Jakab, G. et al. 2018a; Zhang, Q.  
et al. 2018). Agricultural land use disturbs the 
natural SOM system, e.g. by affecting the ag-
gregate size and stability of SOM (Bilandžija, 
D. et al. 2017; Jakab, G. et al. 2018b). With the 
help of 13C natural abundance these effects 
can be examined in more detail, as stable 
carbon isotopes widen the scope of land use 
research. For instance, the effect of land use 
changes on the aggregate systems in the soil 
or how different land use types influence 
the fraction of C derived from the new veg-
etation can be examined with the help of 13C 
natural abundance approach (John, B. et al. 
2005; Yamashita, T. et al. 2006; Paul, S. et al. 
2008a,b; Liu, Y. et al. 2018).

In addition, 13C natural abundance has been 
successfully applied to trace sediment and 
SOM transfer during erosion (Papanicolaou, 
A.N. et al. 2003; Alewell, C. et al. 2008; 
Schaub, M. and Alewell, C. 2009; Zollinger, 
B. et al. 2014). The source of eroded soil sedi-
ments or suspended organic matter and the 
rate of soil erosion and redistribution can 
be monitored by the δ13C signature of soils. 
Turnbull, L. et al. (2008) used the δ13C sig-
nals of eroded material of soils over a C4 
grass to C3 shrub transition. They concluded 
that variations in δ13C values of SOM in bulk 
eroded sediment can be used to trace changes 
in erosion dynamics over events of different 
magnitudes and over different vegetation 
types. Jacinthe, P.A. et al. (2009) determined 
the amount and source of eroded soil organic 
carbon retained in C3 grass filters receiving 
runoff from areas supporting C4 vegetation. 
Novara, A. et al. (2015) measured the δ13C 
values of different soil profiles sampled along 
a Sicilian vineyard slope and quantified the 
rates of erosion. 

Estimation of the turnover rate of C pools

The carbon turnover rate is the rate of C cycling 
from one pool to another. If the system is in the 
steady-state condition (i.e. input into the pool is 
equal to the output), the value of the turnover 
rate is the ratio of the input amount per time 
unit to the total pool amount. In this case, the 
mean residence time (i.e. the mean period of 
residence of C in the given pool) is the inverse 
of the turnover rate (Kuzyakov, Y. 2006).

Based on the simplest assumption, SOM 
consists of a homogeneous, single C pool, 
which decomposes exponentially following 
first-order kinetics (Stanford, G. and Smith, 
S.J. 1972). For the amounts of SOM from the 
old vegetation:

CA = (CA + CB) exp ( – kt)

where CA and CB stand for the amount of 
SOM from the old (A) and new (B) vegeta-
tion, k is the decay rate constant and t is the 
time since vegetation change. The mean resi-
dence time (MRT) can be calculated as the 
inverse of the decay rate constant as follows 
(Amelung, W. et al. 2008):

MRT = 1 = –t/ln (1 – F)                              k

SOM pools dominated by turnover times 
ranging from a year to several hundreds of 
years have been calculated with the help of 
the natural labelling approach (Balesdent, J. 
and Mariotti, A. 1996). 

Carbon turnover time is not just an impor-
tant indicator of SOM dynamics, but is a key 
parameter in coupled climate-carbon cycle 
models (e.g. Earth System Models). Hence, 
there is an urgent need to accurately estimate 
the turnover times of SOM to predict the fu-
ture sizes of the terrestrial C sinks and sources 
and to obtain a better understanding of cli-
mate-carbon feedback (Carvalhais, N. et al. 
2014; He, Y. et al. 2016; Wang, J. et al. 2018).

Balesdent, J. et al. (1987) were the first to 
use the natural 13C abundance method on two 
French sites which originally had C3 type veg-

,         (11)

             (12)
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etation. They cultivated maize (C4 type veg-
etation) to achieve a C3/C4 vegetation change. 
An organic carbon turnover rate of 22% was 
calculated from the δ13C values of soils sam-
pled at one experimental site after 13 years of 
maize cultivation, with different annual rates. 
This suggested that the decay of SOM can-
not be described using a single carbon pool 
model. A turnover time of 36 years was cal-
culated for this site assuming an exponential 
decay. At another experimental site, where 
continuous maize cultivation for 23 years 
was applied after pine forest clearing, two 
treatments were used: in the first, leaves and 
stalks were incorporated back into the soil, 
while in the second, leaves and stalks were 
removed for the last 17 years. The percentage 
of organic carbon derived from maize was 
calculated for different particle size fractions 
in the topsoil (0−30 cm) and subsoil (30−40 
cm) horizons. The turnover of the coarse 
sand fraction (200−2,000 mm) was found to 
be the most rapid, while the fine clay fraction  
(<0.2 mm) contained most of the SOM.

Since then, a number of studies have used 
the 13C natural abundance method for SOM 
turnover rate calculations for different pur-
poses, but the work of Balesdent, J. et al. 
(1987) forecast the major questions of SOM 
research which have since been studied with 
this method. These are the 1) estimation of the 
turnover time of different physically and/or 
chemically separated SOM fractions repre-
senting distinct SOM fractions connected to 
different soil textures or minerals (Martin, A. 
et al. 1990; Bonde, T.A. et al. 1992; Balesdent, 
J. et al. 1998; Shang, C. and Tiessen, H. 2000; 
Liao, J.D. et al. 2006; Dalal, R.C. et al. 2013); 
2) estimation of the turnover time of dif-
ferent SOM pools (Bernoux, M. et al. 1998; 
Derrien, D. and Amelung, W. 2011); 3) esti-
mation of the turnover time of SOM derived 
from different treatments or land uses (Six, 
J. and Jastrow, J. 2002; Zach, A. et al. 2006; 
Novara, A. et al. 2013); 4) comparison of the 
turnover time of SOM at different soil depths 
(Bernoux, M. et al. 1998; Flessa, H. et al. 2017). 

A combination of these topics is embed-
ded in many other studies. For example, 

Collins, H.P. et al. (1999) investigated the 
soil C dynamics in the Corn Belt region of 
the central USA. They calculated the per cent 
of C derived from corn after conversion to a 
monoculture of C4 corn and the MRTs of the 
C3 soils. The proportion of corn-derived C 
decreased with soil depth and was minimal 
in the 50–100 cm depth increments of fine-
textured soils. The mean residence time of 
non-corn C (C3) ranged from 36 to 108 years 
at the surface and up to 769 years at the sub-
soil depth. It was shown that clay minerals 
effectively protected the organic matter in 
the case of older C3-derived C (longer MRTs), 
while no such protection was observed for 
the younger C4-derived C (shorter MRTs).

John, B. et al. (2005) estimated the turnover 
times of different density fractions of SOM 
(free particulate organic matter with a den-
sity <1.6 g cm−3, light occluded particulate 
organic matter with a density of <1.6 g cm−3, 
dense occluded particulate organic matter 
with a density of 1.6−2.0 g cm−3 and mineral-
associated SOM with a density >2 g cm−3) 
and of SOM from different depths. They 
calculated turnover times of 54, 144 and 223 
years for the 0−30 cm, 30−45 cm and 45−60 cm 
horizons, respectively. The mean turnover 
times for the density fractions were found 
to be the following: 22 years for the free par-
ticulate organic matter, 49 years for the dense 
occluded particulate organic matter, 63 years 
for mineral-associated SOM and 83 years for 
light occluded particulate organic matter. 

Lisboa, C.C. et al. (2009) calculated the 
turnover time of different SOM fractions 
(>250 mm, 53−250 mm, 2−53 mm, <2 mm) 
applying a two-pool (active and slow decom-
position rate) exponential model for a forest-
to-pasture chrono-sequence in the Brazilian 
Amazon. Except for the >250 mm fraction 
no difference was detected between the frac-
tions in the active pool phase, whereas in the 
slow pool phase the fractions were separated 
according to their turnover rates: the clay-
associated SOM (fraction <2 mm) had the 
greatest turnover rate (>2,500 years), the mi-
croaggregate and silt-associated SOM had 
medium turnover rates (498 and 210 years, 
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respectively) and the particulate organic 
matter (>250 mm fraction) had the smallest 
turnover rate (~ 1 year).

Panettieri, M. et al. (2017) studied the differ-
ent turnover times of fractionated water-stable 
aggregates (larger macro-aggregates with 
2.0−7.1 mm, macro-aggregates with 0.200−2.00 
mm, microaggregates with 0.050−0.200 mm and 
silt + clay fraction with <0.050 mm) of perma-
nent cropland and temporary grassland plots 
after nine and three years of maize cultivation, 
respectively. The calculated turnover times for 
the two land uses were similar for the micro- 
and macro-aggregates but different for the silt 
+ clay fraction. Namely, the MRT of the silt + 
clay fraction of grassland soil was twice as of 
the cropland soil confirming that this smallest 
fraction is affected to the greatest extent by land 
use practices, and particularly tillage. It could 
be explained by the increased degradation of 
SOM due to higher aeration caused by tillage.

Soil CO2 efflux source determination 

Besides the estimation of SOM turnover time, 
the 13C natural abundance method is well ap-
plicable to partition the CO2 fluxes from the 
soil (Cheng, W. 1996). The evaluation of the 
contribution made by different C sources to 
soil CO2 efflux is also a key parameter in de-
termining whether the soil is a net source or 
sink of atmospheric CO2 (Kuzyakov, Y. and 
Larionova, A.A. 2005).

According to Kuzyakov, Y. (2006) there are 
five main sources of soil CO2 efflux (Figure 5): 
1) microbial decomposition of SOM (termed 
basal respiration), 2) microbial decomposi-
tion of SOM affected by recent input of rhizo-
deposits and/or fresh undecomposed plant 
residues (termed priming effect), 3) microbial 
decomposition of partly decomposed dead 
plant remains, 4) microbial decomposition 
of rhizo-deposits of living roots (termed 
rhizomicrobial respiration) and 5) root res-
piration (respiration of assimilates by roots 
of autotrophic plants). These CO2 effluxes 
represent different C pools with different 
turnover rates and MRTs (see Figure 5).

The pedogenic or anthropogenic acidi-
fication of soils containing CaCO3 is also a 
source of CO2 efflux in the soil, but its con-
tribution is only significant on the geological 
time scale and not on the sub-annual to dec-
adal time scales used in soil research studies 
(Kuzyakov, Y. 2006).

With the help of the 13C natural labelling 
approach, it is possible to separate the sourc-
es of soil respiration. Growing C4 plants on 
a C3 soil or vice versa and tracing the δ13C 
value of CO2 efflux from the soil allows the 
separation of SOM-derived from plant-de-
rived CO2 (see Figure 5). If additional data 
on the δ13C values of microbial biomass and 
roots is available, root and rhizomicrobial 
respiration can also be partitionated, as can 
the separation of SOM-derived basal respi-
ration from the microbial decomposition of 
plant residues.

Natural C3/C4 vegetation differences are 
also used to partition the autotrophic (root 
respiration) and heterotrophic (other 5 res-
piration sources in Figure 5) soil respira-
tion in many studies (e.g. Rochette, P. and 
Flanagan, L.B. 1997; Giardina, C.P. et al. 
2004; Millard, P. et al. 2008).

Millard, P. et al. (2010) were the first to 
quantify the proportion of SOM-derived CO2 
in a forest soil using 13C natural abundance 
discrimination, with carbon input derived 
solely from C3 photosynthesis. For this, meas-
ured δ13C values of root respiration (−27.60 ± 
0.51‰) and SOM-derived respiration (−25.10 
± 0.88‰) were used as the end points of a 
two-component mixing model using the 
small isotopic difference between them. The 
calculated mean percentage of SOM-derived 
CO2 was 0.61 ± 0.28.

By adding C4 plant residues to a C3 soil 
or vice versa and measuring their contribu-
tion to the total CO2 efflux it is also possible 
to separate the CO2 originating from plant 
residues and that derived from the microbial 
decomposition of SOM. In addition, by com-
paring soil with added residues to control 
soil with no residue addition, the priming 
effect can be calculated using the 13C natural 
labelling approach (Kuzyakov, Y. 2006). For 
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example, Kuzyakov, Y. and Cheng, W. (2001) 
applied the 13C natural abundance method to 
partition the soil-derived and root-derived 
(root respiration plus rhizomicrobial respi-
ration) CO2 from C4 prairie soil planted with 
C3 wheat in a 7-day laboratory experiment. 
Photosynthesis was greatly reduced and, 
on average, 75% of total CO2 efflux from 
the soil proved to be root-derived and 25% 
soil-derived. When the priming effect was 
compared for planted and non-planted soils 
a positive priming effect (42 mg C kg−1 h−1 and 
33 kg C ha−1 d−1) was recorded during the first 
3 days, whereas without light, the priming 
effect decreased and was negative due to the 
reduction of exudation.

Werth, M. and Kuzyakov, Y. (2009) used 
the natural 13C labelling approach to parti-
tion root respiration, rhizomicrobial respira-
tion and basal respiration under field condi-
tions in a loamy Haplic Luvisol in Stuttgart, 
Germany. They used the δ13C values of SOM, 
roots, microbial biomass and total CO2 efflux 
from the soil and applied isotopic mass bal-
ance equations to calculate the contributions 
of the three sources of CO2 efflux. The δ13C 
values from a bare-fallow plot were used to 
calculate the 13C fractionation between SOM 
and CO2 and between microbial biomass and 
CO2 and the contribution of different CO2 
sources was estimated, taking into account 
the 13C fractionation. 

The calculations revealed significant 
changes between the results with and with-
out 13C fractionation. It was therefore sug-
gested that the isotope fractionation process-
es of 13C should be embedded in studies deal-

ing with CO2 efflux partitioning. Werth, M. 
and Kuzyakov, Y. (2010) reviewed the pos-
sible uncertainties connected with 13C frac-
tionation in the 13C natural abundance meth-
od, with special attention to the partitioning 
of CO2 efflux. It was concluded that even a 
small variation (±1.0‰) in the δ13C value of 
the ’endmembers’ of the mixing equations 
led to strong uncertainties. In addition, if 
significant isotope fractionation takes place, 
the uncertainties increase significantly. As 
possible solutions, they recommended vari-
ous approaches to reduce uncertainties: 1) to 
increase the difference in δ13C value between 
the two ’endmembers’ (if necessary, using ar-
tificial labelling); 2) to estimate the fractiona-
tion of individual processes in the specific 
study, not using mean values estimated in 
other studies; 3) to analyse the δ13C values of 
individual substance groups or substances 
(i.e. compound-specific isotope analysis).

Conclusions

The 13C natural abundance approach occu-
pies an important place among the isotope 
applications used in soil research, especially 
for the calculation of SOM turnover and the 
partitioning of CO2 efflux sources.

The 13C natural abundance approach com-
bined with other methods is a useful tool 
to measure the effect of different human-
induced changes on organic carbon stor-
age, such as land use change, erosion and 
soil management. Along with the traditional 
methods of watershed monitoring, slope 

Fig. 5. Main sources of soil CO2 efflux and C pools in order of turnover rates and residence times. Source: redrawn 
from Kuzyakov, Y. and Gavrichkova, O. 2010.
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measurements and rainfall simulation ex-
periments or tracer applications (rare earth 
elements or radionuclides), stable carbon 
isotope measurements provide additional 
spatial information on soil erosion dynam-
ics. In addition, the 13C natural abundance 
approach in combination with photogram-
metry or remote sensing could be useful to 
precisely monitor areas affected by different 
land use changes.

With the combination of 13C natural abun-
dance method and 14C labelling, the contri-
bution of carbon sources to the carbon pools 
can be distinguished in more detail and the 
priming effect connected to the processes 
can be calculated. The measurement of the 
natural 14C abundance of SOM extends the 
timescales for C cycling to millennia supple-
menting the turnover times ranging from a 
year to several hundreds of years calculated 
by the 13C natural labelling approach. The 
physical fractionation of soils combined with 
isotope labelling provides another possibility 
to estimate the turnover times of physically 
defined SOM pools. 

Data obtained using the 13C natural abun-
dance technique provide important informa-
tion on SOM dynamics, which has been in 
the focus of interest in recent years due to 
the significant role of soil in the global car-
bon cycle. The determination of the turnover 
time and size of the active and passive soil 
reservoirs is essential for the evaluation of 
whether they serve as potential sources or 
sinks for atmospheric CO2. Therefore, tech-
niques such as the 13C natural abundance ap-
proach, not only lead to a better understand-
ing of processes in the global carbon cycle 
but also provide fundamental information 
for climate change mitigation.
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